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FIVE LIMIT CYCLES
FOR A SIMPLE CUBIC SYSTEM

N. G. Lloyd and J. M. Pearson

Abstract
We resolve the centre-focus problem for a specific class of cubic
systems and determine the number of limit cycles which can bi-
furcate from a fine focus. We also describe the methods which we
have developed to investigate these questions in general. These
involve extensive use of Computer Algebra; we have chosen to use
REDUCE.

1. Introduction

Suppose that P and Q are polynomials and that the origin is a critical
point of focus type for the system

(1.1)
ẋ = P (x, y),
ẏ = Q(x, y).

We are concerned with two closely related questions, both of which are
significant elements in work on Hilbert’s sixteenth problem. The first
is the number of limit cycles which bifurcate from a critical point and
the second is the derivation of necessary and sufficient conditions for a
critical point to be a centre. These questions have attracted a great
deal of attention over the years and our approach involves extensive
use of Computer Algebra. They are intertwined issues: in particular, an
understanding of the centre conditions is required to resolve the question
of bifurcation. The problem of distinguishing between a centre and a
focus is of independent interest; it has been extensively studied over the
years and is closely related to the question of integrability.

Research on Hilbert’s sixteenth problem in general usually proceeds by
the investigation of particular classes of polynomial systems. Much effort
has been devoted in recent years to the investigation of various systems
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in which P and Q are cubic polynomials. In this talk we consider the
class of systems

(1.2)
ẋ = λx + y + Ax2 + Bxy,

ẏ = −x + λy + Kx2 + Lxy + My2 + Nx3

and thereby illustrate our approach to the twin questions of bifurcation
and integrability. The presence of a single cubic term in system (1.2)
has a number of effects. In particular, we shall see that up to five limit
cycles can bifurcate from a fine focus (as opposed to three for quadratic
systems) and we shall require a wider range of techniques to resolve the
centre-focus problem than is the case for quadratic systems.

2. Centres and fine foci

Since the origin is a critical point of focus type we write system (1.1)
in canonical coordinates in the form

(2.1)
ẋ = λx + y + p(x, y),
ẏ = −x + λy + q(x, y),

where p and q are polynomials with no linear terms. It is well known that
there is a function V , analytic in a neighbourhood of the origin, such that
V̇ , the rate of change of V along orbits, is of the form η2r

2 + η4r
4 + · · · ,

where r2 = x2 +y2. The η2k are polynomials in the coefficients arising in
p and q and are the focal values. We say that the origin is a fine focus if
λ = 0 and a fine focus of order k if η2� = 0 for � ≤ k and η2k+2 �= 0; note
that describing the critical point as a fine focus allows the possibility
of its being a centre. The first task is to compute the focal values.
We do so using our Computer Algebra procedure FINDETA which is
described in [3] and which has been used extensively. The stability of
the origin is determined by the sign of the first non-zero focal value and
the origin is a centre if all the focal values vanish. Having computed
the focal values they are then ‘reduced’ in the sense that the relations
η2 = η4 = · · · = η2k−2 = 0 are used in η2k. The polynomials so obtained
are called the Liapunov quantities; this process also involves the use of
Computer Algebra and can be computationally intensive (see [4]). By
the Hilbert basis theorem there is M such that η2k = 0, for all k, if
η2k = 0 for k ≤ M . Thus the origin is a centre if and only if all the
focal values of η2k with k ≤ M are zero. However, M is not known
a priori and therefore neither is the number of focal values required.
Necessary conditions for the origin to be a centre are found by computing
a certain number of focal values and reducing each modulo the earlier
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ones until the point is reached where the latest Liapunov quantity, with
factors common to all previously computed Liapunov quantities removed,
is necessarily non-zero.

Having obtained necessary conditions in this way their sufficiency is
proved separately using a variety of methods. There are two classical
results: the first is that the origin is a centre of (2.1) if λ = 0 and
the divergence px + qy is zero in a neighbourhood of the origin (that is,
the system is Hamiltonian). The second is that we have a centre if the
system is symmetric in a line through the origin —in particular if the
system is unchanged by one of the transformations (x, y, t) �→ (x,−y,−t)
or (x, y, t) �→ (−x, y,−t). Generalising the first of these results the origin
is also a centre if λ = 0 and there is a function D, continuously differ-
entiable in a neighbourhood of the origin such that (Dp)x + (Dq)y = 0.
Such functions are called Dulac functions and are, of course, integrating
factors. A systematic approach to finding these functions is developed
in [1] and we describe in [6] how this search can be partly automated.
Initially we search for polynomials Cr which are invariant with respect
to (2.1) and powers αr such that the product ΠCαr

r is a Dulac function.
Suppose that p and q are of degree n: we say that the polynomial C,
or the algebraic curve C = 0, is invariant if there is a polynomial R of
degree n − 1 such that Ċ = CR. We extend this definition to include
the possibility that C is the exponential of a polynomial. When there is
a Dulac function of this form there is a liouvillian first integral —that
is, a first integral which involves polynomials, exponentials, logarithms
and algebraic functions. In this case the system is sometimes said to
be ‘integrable’; it is of course a classical result that for systems of the
form (2.1) the origin is a centre if and only if there is an analytic first
integral.

The approach via invariant functions is a powerful method for proving
that under given conditions the origin is in fact a centre (see [7], [8]).
However, not all centre conditions can be obtained in this way, as seen
in [5] and [6]. To complete the proof of the sufficiency of the centre
conditions for (1.2) we exploit the fact that the system can be trans-
formed to Liénard form and use the results of [2]. These depend on the
fact that, for any functions p0, p1, q0, q1, q2 (not necessarily polynomials)
with p1(0) �= 0, the system

(2.2)
ẋ = p0(x) + p1(x)y,

ẏ = q0(x) + q1(x)y + q2(x)y2

can be transformed to a Liénard system. Under the transformation
(x, y, t) �→ (x, (p0(x) + p1(x)y)ψ(x), τ), where dt

dτ = ψ, the system (2.2)
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becomes

(2.3)
ẋ = y,

ẏ = −g(x) − f(x)y,

with
f = −(p′0 − p0p

′
1p

−1
1 + q1 − 2p0p

−1
1 q2)ψ

and
g = (p0q1 − p1q0 − p2

0q2p
−1
1 )ψ2,

where

ψ(x) = (p1(x))−1 exp
(
−

∫ x

0

q2(s)(p1(s))−1 ds

)
.

Let F (x) =
∫ x

0
f(s) ds and G(x) =

∫ x

0
g(s) ds. For system (2.3) two

necessary and sufficient conditions for the origin to be a centre are given
in [2]. The first is that there is an analytic function Φ with Φ(0) = 0
such that G(x) = Φ(F (x)); this was the result used in [2]. The other,
and the result which we use here, is the following.

Lemma 1. The origin is a centre for (2.2) if and only if there is an
analytic function z(x) with z′(0) = −1 such that

F (z(x)) = F (x) and G(z(x)) = G(x).

3. Centre conditions

We consider (1.2) with N �= 0. When N = 0 the differential system
is quadratic and the relevant results are well known. Using FINDETA
we calculate the focal values up to η12. We obtain the Liapunov quan-
tity L(i) from the focal value η2(i+1) modulo η2j , where j = 1, . . . , i,
with positive multiplicative factors removed. We note that for the
origin to be a fine focus we must have L(0) = λ = 0. We find
L(1) = −AB + 2AK + KL + LM . For a fine focus of order greater
than one we require L(1) = 0. Assume for the time being that L �= 0
and let M = L−1(AB − 2AK −KL). Then

L(2) = L−1(2A + L)(L2D1N −A(3A− L)F1),

where D1 = 4AB − 8AK + 2BL + KL and

F1 = AB3 − 6AB2K + 12ABK2 −ABL2 − 8AK3 + 2AKL2 −B3L

+ 3B2KL + BL3 − 4K3L−KL3.
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When M is given as above, (2A+L) is a factor of η8, η10, η12, suggesting
that L = −2A, B = −2M is a condition for the origin to be a centre. In
fact when this condition holds the divergence of the vector field is zero
and the origin is a centre.

Assume that L(2A + L)D1 �= 0 and let N = L−2D−1
1 A(3A − L)F1.

Then L(2) = 0 and the origin is a fine focus of order greater than two or
it is a centre. We have

L(3) = −(LD1)−1(2A + L)AC1F1(E2K
2 + E1K + E0),

where

C1 = AB − 2AK − 2BL−KL,

E0 = B2(3A− L)(11A2 + 14AL− L2),

E1 = −2B(2A + L)(33A2 − 2AL− L2),

E2 = 2A(66A2 − 4AL− L2).

Now if AF1 = 0 then N = 0, which is excluded. We find C1 is a factor
of η10, η12 with M,N as given above, which suggests that

(3.1)
{

M = 2B, (2A + L)K −B(A− 2L) = 0,
25(2A + L)N = (L− 3A)(8A2 − 2AL− 25B2 − 3L2)

is another condition for the origin to be a centre.
In the following assume that L(2A + L)C1D1 �= 0. For the

origin to be a fine focus of order at least four we must have
E2K

2+E1K+E0 = 0. Assume that E2 �= 0, if E2 = 0 there are no condi-
tions for the origin to be a centre that are not covered
elsewhere in this section. Let K = 1

2 (−E1 + 2BLR0)E−1
2 , then

L(4) = (66A2 − 4AL−L2)−1(2A+L)(3A−L)C1F1B(SR0 + T ), where
S, T are homogeneous polynomials in A,L of degrees 11, 13 respectively
with integer coefficients of magnitude up to 1011 and

(3.2) R2
0 = 2871A4 − 570A3L− 68A2L2 + 10AL3 + L4.

Under current assumptions the origin can be a fine focus of order five
only if SR0 + T = 0. Assume that S �= 0 (if S = T = 0 then A = L = 0
which violates current hypotheses) and let R0 = −TS−1. Now for R0 to
satisfy (3.2) we require

Γ = (9A + L)(5A− L)(7A + L)(15A + L)φ = 0,
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where φ = 4506A4 − 1140A3L+149A2L2 +2AL3 −L4. When φ �= 0 but
Γ = 0 we find η12 = 0. This suggests that the origin is a centre if

L = −9A, K = −4B, M = 3B, N = −4(3A2 + B2)
or if L = 5A, K = −2B, M = 3B, N = −(A2 + B2)
or if L = −7A, K = 4B, M = −3B, N = −4(A2 + B2)
or if L = −15A, K = −2B, 3M = 5B, N = −45A2 −B2.

When none of these conditions hold and φ = 0 we have

L(5) = −(ALSD1)−1(66A2 − 4AL−L2)−1(2A+L)(5A−L)(7A+L)

(15A + L)(151A2 − 14AL− L2)C1F1(N1B
2 + N2),

where N1, N2 are bivariate, homogeneous polynomials of degrees 11, 13
respectively. Under current assumptions L(5) is non-zero.

In order to determine all necessary conditions for which the origin
is a centre for (1.2) we return to those cases that were excluded in
the preceding argument. When L = 0, we find that A is a factor of
all the calculated focal values. This suggests that A = L = 0 is
a condition for the origin to be a centre. Assume that A �= 0; then
L(1) = 0 if B = 2K and we have L(2) = A(3M1 + M2N), where
M1 = A2M + 2K3 + 3K2M − M3, M2 = 9K + 4M . For the time
being assume that M2 �= 0; now L(2) = 0 if N = −3M1M

−1
2 and

then L(3) = A(4K − M)M1(15K2 + 44KM + 11M2). With L = 0,
M = 4K, B = 2K, 25N = −6(2A2 − 25K2) the relationships of (3.1)
are satisfied. If M1 = 0 then N = 0, which is excluded as is A = 0. If
A(4K − M)M1 �= 0 then L(3) = L(4) = 0 if and only if K = M = 0,
which also violates current assumptions. On the other hand if M2 = 0
then L(2) = AK(425K2 − 144A2) and K is a factor of η8, η10, η12 sug-
gesting that the origin is a centre if B = K = L = M = 0. There are no
other new conditions arising in the case L = 0.

Consider D1 = 4AB−8AK+2BL+KL = 0. Assume that 2A+L �= 0
and let B = 1

2K(8A−L)(2A+L)−1. The case L = 0 is covered above so
we can assume that L �= 0 and let M = L−1(AB−2AK−KL) such that
L(1) = 0. Under current assumptions L(2) is zero if AK(3A−L)G1 = 0,
where G1 is a polynomial of degree three in A,K and L, and AK is a
factor of η8, η10, η12. This suggests that A = 0, K = −M = −2B (which
is covered by (3.1)) and B = K = M = 0 are conditions for the origin to
be a centre. When L = 3A or G1 = 0 no further conditions are found.
Similarly, when L = −2A no new centre conditions are obtained.

We summarize the necessary conditions for the origin to be a centre
in the following result.
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Theorem 2. The origin is a centre for (3.1), with λ = 0, N �= 0, if
and only if one of the following conditions holds:

(i) B = −2M , L = −2A;
(ii) A = L = 0;
(iii) B = K = M = 0;
(iv) M = 2B, (2A + L)K − (A− 2L)B = 0,

25(2A + L)N + (3A− L)(8A2 − 2AL− 25B2 − 3L2) = 0;
(v) K = −4B, L = −9A, M = 3B, N = −4(3A2 + B2);
(vi) K = −2B, L = 5A, M = 3B, N = −(A2 + B2);
(vii) K = 4B, L = −7A, M = −3B, N = −4(A2 + B2);
(viii) K = −2B, L = −15A, 3M = 5B, N = −45A2 −B2.

Proof: The necessity of conditions (i)-(viii) has been shown in the
argument leading to Theorem 2. We have already stated that when
condition (i) of Theorem 2 holds, the divergence of the vector field is
zero. When conditions (ii) or (iii) hold the vector field is symmetric,
in the x- or y-axis respectively, and thus the origin is a centre. The
sufficiency of conditions (iv)-(vii) is proved by finding invariant curves
and constructing appropriate Dulac functions as outlined in section 2
and described in detail in [6]. Using the result of part (ii) of Lemma 2.2
in [6], regarding factors of the highest order terms of an invariant curve,
we know that any invariant polynomial of degree n of (1.2) will be of
the form xn+ lower order terms. In each case only one invariant curve
is required.

Specifically, when (iv) holds, Cα
1 is a Dulac function where

C1 = (−8A2 + 2AL + 25B2 + 3L2)x2 + 50Bx− 10(2A + L)y + 25

and α = −5/2. For conditions (v), (vi) or (vii) an invariant degree three
curve is appropriate. Again, writing the Dulac function as Cα

1 , we have

C1 = 8B(3A2+B2)x3+3(3A2+4B2)x2+18ABxy−3B2y2+6Bx+6Ay+1,

α = −7/6 when condition (v) holds,

C1 = B(A2 + B2)x3 + 3(A2 + B2)x2 + 3Bx− 3Ay + 1,

α = −7/3 when condition (vi) holds and

C1 = −8B(A2+B2)x3+3(A2+4B2)x2−18ABxy−9B2y2−6Bx+6Ay+1,
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α = −5/6 when condition (vii) holds.
Extensive searching failed to yield an appropriate invariant curve for

condition (viii) without imposing additional relationships between the
coefficients. Here transformation to Liénard form proves more judicious.

To prove the sufficiency of condition (viii) we use Lemma 1. The
corresponding Liénard system (2.3) has ψ(x) = (1 + Bx)−8/3,

f(x) = 13Ax(1 + Bx)−11/3(1 + 4
3Bx)

and

g(x) = x(1 + Bx)−19/3[(1 + Bx)4 + 5
3A

2x2(27B2x2 + 44Bx + 18)].

We use REDUCE to obtain F and G, the integrals of f and g, respec-
tively. Let 1 + Bx = u3 and 1 + By = v3. It is found that

Ω = 4u3v3 − u3 − v3 − u2v − uv2

is a common factor of F (u) − F (v) and G(u) − G(v). In terms of x
and y,

Ω=4B2xy+3B(x+y)+2−(Bx+1)2/3(By+1)1/3−(Bx+1)1/3(By+1)2/3.

Now, when x = y = 0, Ωx = Ωy. By the Implicit Function Theorem there
is y(x) with y′(x) = −1 such that F (x) = F (y(x)) and G(x) = G(y(x)).
The origin is therefore a centre by Lemma 1.

4. Limit Cycles

In section 3 we have given the conditions under which the origin is a
centre for (1.2). In arriving at our conclusions we found that the highest
possible order for a fine focus at the origin is five.

Theorem 3. The origin is a fine focus of maximum order five for
(1.2). It is of order five if

λ = 0, M = L−1(AB − 2AK −KL), N = L−2D−1
1 A(3A− L)F1,

K = 1
2E

−1
2 (−E1 + 2BLR0),

4506A4 − 1140A3L + 149A2L2 + 2AL3 − L4 = 0,

R0 = −6A2(38657056203A3 − 7050603615A2L− 75427866AL2

+39349768L3)/(2961753180A3 − 121564362A2L

−19237927AL2 + 177687L3)
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and NLD1E2S �= 0.

We proceed to show that five limit cycles can be bifurcated in this
instance. First we summarise the Liapunov quantities obtained

L(0) = λ,

L(1) = −AB + 2AK + KL + LM,

L(2) = (2A + L)(L2D1N −A(3A− L)F1)/L,

L(3) = −(2A + L)AC1F1(E2K
2 + E1K + E0)/LD1,

L(4) = (2A + L)(3A− L)C1F1B(SR0 + T )/H1,

L(5) = −(2A + L)(5A− L)(7A + L)(15A + L)H2C1F1(N1B
2 + N2)

/ALSD1H1,

where H1 = 66A2 − 4AL− L2, H2 = 151A2 − 14AL− L2. We consider
φ as a polynomial in A/L; it has two real roots. In particular there is
a root, u∗ say, in the interval I = (−0.06780395,−0.06780393). In I,
C1F1 > 0, 66A2 − 4AL − L2 < 0, 151A2 − 14AL − L2 > 0, S > 0,
T < 0 and D1 < 0. Therefore at u∗, L(5) is positive, so if we perturb
A/L such that L(4) becomes negative, at the same time ensuring that
L(0), L(1), L(2), L(3) remain zero, a limit cycle bifurcates. For this we
require B(SR0 + T ) < 0. At u∗, R0 > 0. In addition R0 is increasing
in I. If B < 0 then we increase A/L, conversely if B > 0 we de-
crease A/L, at the same time adjusting K,N and M appropriately. For
the second limit cycle K is decreased such that L(3) becomes positive,
that is −(2A + L)(E2K

2 + E1K + E0) > 0, at the same time adjusting
N,M so that L(1) = L(2) = 0. If we now increase N then L(2) < 0
and a third limit cycle bifurcates. Next we perturb M such that
L(1) = −AB + 2AK + KL + LM > 0; if L > 0 we increase M , if
L < 0 we decrease M . A fourth limit cycle bifurcates. The fifth and
final limit cycle is obtained by introducing a negative λ.

This example demonstrates the value of Computer Algebra in resolving
the centre-focus problem and in the investigation of limit cycles which
bifurcate from a fine focus. It also shows that the addition of only one
cubic term has a significant effect on both these issues.
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