
Publicacions Matemàtiques, Vol 41 (1997), 135–148.

HOPF-LIKE BIFURCATIONS
IN PLANAR PIECEWISE LINEAR SYSTEMS

Emilio Freire, Enrique Ponce and Francisco Torres

Abstract
Continuous planar piecewise linear systems with two linear zones
are considered. Due to their low differentiability specific tech-
niques of analysis must be developed. Several bifurcations giving
rise to limit cycles are pointed out.

1. Introduction and preliminary results

We are interested in nonlinear planar oscillators of the form

(1)
ẋ = f(x) − y,
ẏ = x− by,

where b ∈ R and the function f gives account of the nonlinearity. Sys-
tem (1) exhibits a structure very common in the oscillator’s field: the
x-dynamics could be viewed, under an adequate selection of f(x), as
a bistable system with a negative feedback represented by the y-state,
which in turn has a linear first order dynamics. Examples of systems
modelled by equation (1) appear in different domains: van der Pol-
Duffing oscillators in mechanics and electronics, Fitzhugh [1]-Nagumo
[2] equations of nerve conduction, Boissonade-De Kepper [3] equations
of chemical oscillating reactions, among others.

In the study of such oscillators, one finds some situations where the
nonlinearities involved are correctly modelled by piecewise linear func-
tions with three linear pieces [4], [5]. To understand the corresponding
dynamics, it is important to first consider the two linear pieces case, be-
cause some phenomena encountered in this configuration are inheritated
by the more general case of three pieces [6].

Thus, we are naturally led to consider continuous planar piecewise
linear systems with two linear zones, hereafter denoted 2CPL systems.
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In this situation, by means of rigid motions, we can consider without loss
of generality that the boundary between the two zones coincides with the
vertical axis. So we write

ẋ = F(x) =
{

ALx + cL, if x1 ≤ 0,
ARx + cR, if x1 > 0,

where x = (x1, x2) ∈ R2, AL, AR are 2 × 2 matrices and cL, cR ∈
R2. Here the dot denotes derivatives with respect to τ . The continuity
requirement implies that cL = cR = c and the matrices AL, AR must
have the same second column, i.e. our systems become

(2)

ẋ = F(x) =
{

AL x + c, if x1 ≤ 0,
AR x + c, if x1 > 0,

AL =
(
l11 a12
l21 a22

)
,

AR =
(
r11 a12
r21 a22

)
.

By using scalar equations, we have equivalently

(3)
ẋ1 = ϕ1(x1) + a12x2 + c1,
ẋ2 = ϕ2(x1) + a22x2 + c2,

with

ϕi(x1) =
{
li1x1, if x1 ≤ 0,
ri1x1, if x1 > 0,

and i = 1, 2.

For system (2), we are mainly interested in the bifurcations giving
rise to limit cycles. If we define the parameters tL = trace(AL) and
tR = trace(AR) and denote by int(.) the interior region of a closed
Jordan curve in the plane, then a first result concerning periodic orbits
is the following. It can be easily deduced from Green’s formula.

Proposition 1. If Γ is a closed orbit of system (2) then∫∫
intL(Γ)

tLdx1dx2 +
∫∫

intR(Γ)

tRdx1dx2 = tL · SL + tR · SR = 0,

where intL(Γ) = int(Γ) ∩ {x1 < 0}, intR(Γ) = int(Γ) ∩ {x1 > 0},
SL = area(intL(Γ)), SR = area(intR(Γ)).

From Proposition 1, the following result about necessary conditions
for the existence of isolated closed orbits, that is limit cycles, can be
stated.
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Proposition 2. If Γ is a limit cycle of system (2) then Γ lives in the
two zones, and the conditions tL · tR < 0 and a12 	= 0 hold.

Proof: Within each zone, system (2) is linear and linear systems can-
not have limit cycles, therefore Γ lives in both zones.

If tL · tR > 0, from Proposition 1, system (2) cannot have periodic
orbits (this is an analogous of Bendixson’s criterion). As Γ lives in the
two zones and so SL · SR > 0, if one of the traces is zero, then the other
trace value is also zero. This leads to a conservative system where no
limit cycles are possible, getting a contradiction.

As is well known [7], every periodic orbit in a continuous planar vec-
tor field must contain at least one equilibrium in its interior. Then, if
a12 = 0, system (2) is uncoupled and the equilibrium in the interior of Γ
should have an associated invariant vertical straight line, which precludes
the existence of periodic orbits.

We now give a canonical form to which all 2CPL systems capable of
presenting limit cycles can be reduced.

Proposition 3. If a 2CPL system has a limit cycle, then the system
can be transformed into the following canonical form

(4) ẋ = f(x) − y,
ẏ = x− by − a, where f(x) =

{
µL x, if x ≤ 0,
µR x, if x > 0,

and the dot now denotes derivatives respect to a new variable s.

Proof: From Proposition 2, we can assume that tL 	= tR and a12 	= 0.
Now, if we do in (3) a change of variables of the form

u = x1,

v = αx1 − a12x2 − c1,

then the vertical boundary is preserved. In the new variables, we have

(5)
u̇ = ϕ1(u) + αu− v,
v̇ = αϕ1(u) − a12ϕ2(u) + (α− a22)(αu− v) + a22c1 − a12c2.

Considering the second equation piecewise linear term,

αϕ1(u) − a12ϕ2(u) =
{

(αl11 − a12l21)u, if u ≤ 0,
(αr11 − a12r21)u, if u > 0,
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if we select
α =

l21 − r21
l11 − r11

a12 =
l21 − r21
tL − tR

a12,

the second equation in (5) is linear. We get a system of the form

(6) u̇ = g(u) − v,
v̇ = ρu+ σv + ξ, where g(u) =

{
m · u, if u ≤ 0,
n · u, if u > 0,

and m − n = tR − tL. If ρ ≤ 0, a simple computation shows that the
possible equilibria have real eigenvalues and, consequently, the system
has invariant straight lines and no periodic orbits. Thus, we can assume
ρ > 0 in (6) and from the change,

x =
√
ρu, y = v, τ =

s√
ρ
, a = − ξ√

ρ
, b = − σ√

ρ
, µL =

m√
ρ
, µR =

n√
ρ
,

the conclusion follows.

We remark that canonical form (4) is, modulo a translation of the
variables, a system of form (1) which constitutes the main motivation
of this work. Thus, system (1) includes all the systems with two-zones
piecewise linear nonlinearities which can exhibit limit cycle behaviour.

In this paper, we aim to study for the canonical form (4) its Hopf-
like bifurcations, that is bifurcations that involve an equilibrium and a
limit cycle. To do so, we introduce the parameters for the trace and the
determinant in each zone,

tΛ = µΛ − b,
dΛ = 1 − bµΛ,

where Λ = L,R, standing for left or right, respectively.
We will assume dL, dR > 0, which implies that system (4) has only

one equilibrium point. Also, we will restrict ourselves to the case where

DΛ = dΛ − t
2
Λ

4
> 0, for Λ = L,R,

that is, we have linear focus dynamics in both zones. This case will be
named the focus-focus case. Other cases will appear elsewhere.

In the next section, we include the main results about Hopf-like bi-
furcations of codimension one in a certain three parameter space, show-
ing four surfaces associated to three different kind of such bifurcations.
These codimension one bifurcations surfaces are arranged around four
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codimension two curves emanating from one codimension three bifurca-
tion point.

The study of periodic oscillations in piecewise linear planar system
traces back to the Andronov’s school. In fact, part of this work closely
follows Andronov et al. [8], but we fill some gaps there, and we give,
under the previous assumptions, the general bifurcation set for two-zones
piecewise linear oscillators.

2. Hopf-like bifurcations

In this section, we give for the focus-focus case the main results of the
paper about the bifurcations which are associated to changes of stabil-
ity of an equilibrium point along with the appearance of a limit cycle.
We call these phenomena Hopf-like bifurcations because they have the
qualitative ingredients of differentiable Hopf bifurcations but, as it will
be seen, there arise some dissimilarities.

We need to write the solutions for each zone, under our assumptions
of having only one equilibrium point and linear focus dynamics in both
zones. Namely,

(7)



x(s) − a

dΛ

y(s) − µΛ
a

dΛ


 = es

tΛ
2 C(s)



x(0) − a

dΛ

y(0) − µΛ
a

dΛ


 ,

where the matrix C(s) is

(8)

C(s) =




cos(ωΛs) +
(b+ µΛ) sin(ωΛs)

2ωΛ
− sin(ωΛs)

ωΛ

sin(ωΛs)
ωΛ

cos(ωΛs) −
(b+ µΛ) sin(ωΛs)

2ωΛ




and ωΛ =
√
DΛ, for Λ = L,R, standing for left or right zone, respectively.

We also introduce two parameters which are crucial for the following
analysis, namely the weighted traces

(9)

γL =
µL − b
2ωL

=
tL

2ωL
,

γR =
µR − b
2ωR

=
tR

2ωR
.

If a = 0, then the equilibrium is at the origin and so in the boundary
between the two linear zones. Its topological type is determined in the
next proposition.
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Proposition 4. Considering system (4) under the assumptions
DL, DR > 0, and a = 0, the following statements hold.

(a) If γR + γL > 0, the origin is a globally repulsive nonlinear focus.
(b) If γR + γL = 0, the origin is a global nonlinear center.
(c) If γR + γL < 0, the origin is a globally atractive nonlinear focus.

Proof: It suffices to compute a Poincaré return map P on the half-
straight line S+ = {x = 0, y ≥ 0}. The map P is built by a composition
of the mapping PL, which applies points of S+ into points of S− =
{x = 0, y ≤ 0} using the orbits in the region x < 0, and the mapping
PR : R+ → R+, which applies points of S− into points of S+ using the
orbits in the region x > 0, see Figure 1a.

Taking in (7) and (8) the values a = 0, x(0) = 0, y(0) = p, and
working in the left zone, for sL = π/ωL we obtain q = −y(sL) = PL(p) =
p exp(γLπ).

In an analogous way, putting a = 0, x(0) = 0, y(0) = −q and work-
ing in the right zone, it turns out for sR = π/ωR that r = PR(q) =
q exp(γRπ). Hence,

P (p) = e(γL+γR)πp,

and statements (a)-(c) follow easily.

When a 	= 0 in (4) the equilibrium point is located in the interior of
one zone. The flow in this zone is linear, but the global flow is nonlinear
and, as we will see now, a limit cycle can appear when tL · tR < 0. The
next result closely follows the ideas used in Andronov et al. [8], which
also appeared in Ye [9]. However, in both references there are some little
gaps and so we include its complete proof.

r = PR(q) = P (p)
y

p

p̂ = P−1
L (0)

x

q = PL(p)

ϕ

−2π −π π

τ̂

2π
τ

(a) (b)

Figure 1. (a) Poincaré maps used through the paper. (b) Graph of func-
tion ϕ for γ > 0.
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Theorem 5. Consider system (4) with DL, DR > 0, a 	= 0, and
tL · tR < 0. Then there is only one equilibrium point and the following
statements hold.

(a) If γL + γR > 0 and sign(a) = sign(γL), then the equilibrium is
asymptotically stable, and it is surrounded by a unique unstable
limit cycle.

(b) If γL + γR ≤ 0 and sign(a) = sign(γL), then the equilibrium is
globally asymptotically stable and no limit cycles exist.

(c) If γL + γR ≥ 0 and sign(a) = sign(γR), then the equilibrium is
unstable and no limit cycles exist.

(d) If γL + γR < 0 and sign(a) = sign(γR), then the equilibrium is
unstable and it is surrounded by a unique stable limit cycle.

Moreover, when one limit cycle exists, its amplitude depends linearly
on the parameter “a” and its period does not depend at all on that pa-
rameter.

Proof: Note that the equilibrium is in the left zone for a < 0 and when
a > 0 it is in the right zone. We shall begin the proof by choosing a < 0
and considering only assertions (a) and (b). Thus we have that γL < 0.
So tL < 0, and the equilibrium is an asymptotically stable focus located
in the left zone.

To study the existence of limit cycles we now compute a Poincaré
map P , which will be obtained in parametric form by means of certain
phase angles. To this end let us introduce the auxiliary function,

ϕγ(τ) = 1 − eγτ (cos τ − γ · sin τ)

with the symmetry properties

ϕ−γ(−τ) = ϕγ(τ),
ϕ−γ(τ) = ϕγ(−τ),

∀ γ, τ ∈ R

and the graph of Figure 1b. Note that for γ > 0, the function ϕγ has
a first positive zero for a certain value τ̂ = τ̂(γ) ∈ (π, 2π), and relative
maxima at τ = −π, τ = π.

Taking now (x(0), y(0)) = (0,−q), with q > 0 (that is, a point of S−,
as defined before) as initial point of an orbit, it is concluded that the
trajectory evolves in the rigth zone until it eventually reaches the left
zone. Note that the flow on S− (respectively, S+) is pointing to the right
(respectively, to the left) and so the trajectory leaves the right zone in
a point (0, r) of S+, after a time sR. From (7) and (8) for s = sR and
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solving for q and r, we can write,

(10)

q(τR) = −aωRe
−γRτRϕγR

(τR)
dR · sin τR

r(τR) = −aωRe
γRτRϕ−γR

(τR)
dR · sin τR

,

where τR = ωRsR, and τR ∈ (0, π). When τR varies from 0 to π, the
functions q(τR) and r(τR) increase monotonically from 0 to ∞.

From (10) we can implicitely define the half-return map on the rigth
zone as the C∞ map PR : R+ → R+, with PR(q) = r, and PR(0) = 0,
see Figure 1a.

Integrating backwards from the point (0,−q) on S−, we analogously
obtain a first intersection point (0, p) ∈ S+ after a time −sL. Again from
(7) and (8) and s = −sL, we can solve for p and q and write,

(11)

p(τL) =
aωLe

−γLτLϕγL
(τL)

dL · sin τL

q(τL) =
aωLe

γLτLϕ−γL
(τL)

dL · sin τL
,

where τL = ωLsL ∈ (π, τ̂ ]. Note that ϕ−γL
(τ̂) = 0, and so q(τ̂) = 0.

We will denote p̂ = p(τ̂). When τL decreases from τ̂ to π, the function
p(τL) increases monotonically from p̂ to ∞ and the function q(τL) from 0
to ∞.

For representing the half-return map with time reversal on the left
zone, we define the C∞ map P−1

L : R+ → R+, where P−1
L (q) = p > p̂

and P−1
L (0) = p̂, see Figure 1a.

Elementary calculations show that the function p = P−1
L (q) has the

following derivatives,

(12)

dp

dq
=
ϕ−γL

(τL)
ϕγL

(τL)
,

d2p

dq2
= −2dL

[
1 + (γL)2

]
sin3 τL

aωL [ϕγL
(τL)]3

[sinh(γLτL) − γL sin τL] .

Now using that τL ∈ (π, τ̂ ] and the properties of the function ϕγ , the
function p(q) is increasing with

limq→∞p
′(q) = e−γLπ and p′′(q) > 0, for q ≥ 0.
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So we have that 0 ≤ p′(q) < e−γLπ for q ≥ 0 and consequently, the
inverse map PL is well defined and differentiable in the interval (p̂,∞).

The expressions of the derivatives of the function r = r(q) are identical
to (12) if we change all subscripts from R to L. So taking into account
that τR ∈ (0, π), the function r(q) turns out to be increasing with

limq→0r
′(q) = 1, limq→∞r

′(q) = eγRπ and r′′(q) > 0, for q ≥ 0.

We deduce that 1 < r′(q) < eγRπ.
We can define the Poincaré map r = P (p) = PR(PL(p)), where P is

defined from [p̂,∞) to [0,∞), with P (p̂) = 0. Accordingly we obtain by
using (10)-(12),

(13)
dP

dp
=
ϕγL

(τL)
ϕ−γL

(τL)
ϕγR

(τR)
ϕ−γR

(τR)
=

p

P (p)
e2(γLτL+γRτR) =

p

P (p)
e2ν(q),

where ν(q) = γLτL+γRτR, and τL, τR are the phase angles of half-return
maps through q.

Note that when p → p̂+, then τL → τ̂ and τR → 0. If p → ∞, then
τL → π and τR → π. Therefore from (13) we have

(14)

limp→p̂+
dP

dp
= ∞,

limp→∞
dP

dp
= e(γR+γL)π.

We remark that if p̄ is a fixed point of the map P , then (13) reduces
to (

dP

dp

)
p=p̄

= e2ν(q̄), where q̄ = PL(p̄).

Moreover, as the functions r(q) and p(q) verify r(0) = 0 < p̂ = p(0), by
continuity we have r(q) < p(q) for q < q̄. It can be deduced that

(15) 1 ≤ r′(q̄)
p′(q̄)

=
(
dP

dp

)
p=p̄

= e2υ(q̄)

and so ν(q̄) ≥ 0.
In our working case, the function ν(q) is strictly increasing because

to a larger q corresponds a larger τR and a smaller τL. Therefore, this
function can vanish only in one fixed point, at most. As a consequence,
a continuum of fixed points cannot happen and the fixed points, if any,
are isolated.
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Now, we will study the existence of fixed points of the map P under the
hypotheses of statement (a), by considering the function h(p) = P (p)−p
for p ∈ [p̂,∞). We know that h(p̂) = −p̂ < 0, and from (14) there exists
k > 0 such that for p big enough we have h′(p) > k > 0, because we are
assuming γR+γL > 0. Hence, using adequately the mean value theorem,
we deduce that h(p) > 0 when p is big enough. From the intermediate
value theorem, a value p̄ with h(p̄) = P (p̄)− p̄ = 0, exists. Consequently,
the map P has at least one fixed point, i.e. system (4) has at least one
limit cycle.

Suppose now that for the Poincaré map P there exist two fixed points
p̄1 and p̄2, corresponding to q̄1 < q̄2 and no fixed points in the interval
(p̄1, p̄2). We must necessarily have

ν(q̄1) = 0,
(
dP

dp

)
p̄1

= 1 <
(
dP

dp

)
p̄2

,

because two consecutive fixed points with derivatives greater than 1 are
not allowed. In this situation, for points p to the left of p̄2 and sufficiently
close to it, we have p > P (p) and the same must be true for all p ∈
(p̄1, p̄2). The second factor of (13) is also greater than 1, so P ′(p) > 1
for all p ∈ (p̄1, p̄2), that leads to a contradiction with the mean value
theorem. Therefore, the graph of the map P has only one crossing with
the bisector of the first quadrant that corresponds with an unstable limit
cycle. Statement (a) is then true for a < 0.

We study now the existence of fixed points of the map P under the
hypotheses of statement (b), keeping the assumption a < 0. Thus, γL <
0 and the equilibrium is also an asymptotically stable focus. Suppose
that the corresponding Poincaré map P has a fixed point p̄1. From (15)
we must have P ′(p̄1) ≥ 1, that is v(q̄1) ≥ 0. But in this case, we have

v(q̄1) = γLτL + γRτR ≤ γL(τL − τR) < 0,

because γL + γR ≤ 0 and τL > π > τR. We obtain a contradiction, and
so the map P has no fixed points and statement (b) is shown for a < 0.

Statements (a) and (b) for a > 0 and statements (c) and (d) for a 	= 0
can be reduced to some of the cases just studied, by using the symmetry
properties of the system.

When the limit cycle exists, it can be determined by solving the equa-
tions

(16)
q(τR) = q(τL),
r(τR) = p(τL),
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where τR ∈ (0, π) and τL ∈ (π, τ̂). Note that, from (10) and (11),
the solution of above equations does not depend on the value of param-
eter a. In fact, keeping equal the other parameters, phase planes for two
different values of a with the same sign are homothetic. So, the final
statement of the theorem is proved.

From Proposition 2, when tL ·tR ≥ 0, the existence of limit cycles is not
possible, but we can have limited zones where a continuum of periodic
orbits exists, as we will see in the next result. These configurations will
be named zonal linear centers.

(a) a < 0 (b) a = 0 (c) a > 0

γR

γL

γR

γL

γR

γL

Figure 2. Bifurcation sets in the plane (γL, γR) for: (a) a < 0, (b) a = 0
(c) a > 0. We sketch the different phase planes in each region.

Theorem 6. Consider system (4) with DL, DR > 0 and a 	= 0. Then
it has only one equilibrium point and the following statements hold.

(a) If tL · tR > 0 and the traces are negative (respectively, positive),
then the equilibrium is a globally attractive (respectively, repulsive)
focus.

(b) If tL ·tR = 0 and both values are not zero, then the following cases
arise.
(b1) When the equilibrium lies in a zone with negative (respec-

tively, positive) trace, then it is a globally attractive (respec-
tively, globally repulsive) focus.

(b2) When the equilibrium lies in the zone with trace zero and
the other trace is negative (respectively, positive), system (4)
has a globally attractive (respectively, repulsive) zonal linear
center.

Proof: (a) The only equilibrium is locally a linear focus and in the
two cases considered the traces in each zone have the same sign. From
Proposition 2 no limit cycles can exist and the Poincaré map of the proof
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of Theorem 5 is well defined for every point p > p̂ of S+. Then the local
stability character of the focus coincides with its global character.

(b1) The arguments of the proof of statement (a) are also valid for
this case.

(b2) The equilibrium is a linear center and the closed orbits of the
center configuration included in the zone with non-zero trace end with
one closed orbit tangent to the y-axis at the origin. Using the Poincaré
map of the proof of Theorem 5, it is easily concluded that P (0) = 0.
Studying the stability of this fixed point, the conclusion follows.

Always assuming DL, DR > 0, we can summarise the information
supplied by Proposition 4 and Theorems 5 and 6 in Figures 2 and 3.

(a) (b)

γR

γL = 0

a = 0

γL + γR = 0

γL

γR = 0

a
γL + γR = 0

γR

Hsub

Hinf γR = −γL

Hsup

Hzlc

a

Hinf

Figure 3. (a) Bifurcation set for γL < 0 in the plane (a, γR). (b) Bifur-
cation set in the space (a, γL, γR). The origin constitutes a codimension
three bifurcation point.

We want to emphasize that three different kinds of Hopf bifurcations
arise from the developed analysis. Consider first, for instance, the sit-
uation when γL < 0, γR > 0, and γL + γR < 0, see Figure 3a. If we
select a as the bifurcation parameter and move it from a negative value
to a positive value, then a supercritical Hopf bifurcation takes place at
a = 0. Effectively, when a < 0, from statement (b) of Theorem 5 the
equilibrium is globally asymptotically stable. For a > 0 it is unstable
and a stable limit cycle exists, according to statement (d) of the same
theorem. Analogously, when γL < 0, γR > 0, and γL +γR > 0, a subcrit-
ical Hopf bifurcation happens at a = 0 because then from statement (a)
we have, for a < 0, a stable equilibrium surrounded by a unstable limit
cycle, and for a > 0 the equilibrium is globally unstable, according to
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statement (c). These bifurcations are different from Hopf bifurcations
for differentiable systems since here the amplitude of the limit cycle in-
volved depends linearly on the bifurcation parameter and its period is
constant.

A second kind of Hopf bifurcations occurs when a limit cycle is born
from a zonal linear center. For instance, select fixed values a > 0 and
γL < 0 and then move γR from negative to positive values, see Fig-
ures 2c and 3a. From statement (b2) of Theorem 6, at γR = 0 we have
an atractive zonal linear center that gives rise to a stable limit cycle
for 0 < γR < −γL, according with statement (d) of Theorem 5. This
bifurcation is characterized by a jump transition to an oscillatory state
of significative amplitude.

The third kind of Hopf bifurcation arises for a fixed value of a 	= 0 at
the parameter values such that γL + γR = 0, by considering either the
transition between the hypotheses of statements (a) and (b) of Theo-
rem 5, or that corresponding to statements (c) and (d) of the same theo-
rem. See Figures 2a, 2c and 3a. Then a limit cycle appears or dissapears
without any change of stability of the equilibrium. This phenomenon
corresponds to a Hopf bifurcation at infinity.

Four situations of codimension two appear. First, for a 	= 0 the points
(γL, γR) = (0, 0). Second, every point (a, γR) = (0,−γL) with γL 	= 0. A
third situation of codimension two arises for the points a = γR = 0, γL 	=
0. Finally, the points a = γL = 0 with γR 	= 0 are also of codimension
two.

We can describe all the possible situations in the three parameter
space (a, γL, γR), see Figure 3b. As indicated before, we find several
surfaces of codimension one bifurcation points, namely, the quadrants of
plane a = 0 with γLγR < 0, the plane γL + γR = 0, and the half-planes
γL = 0 for a < 0 and γR = 0 for a > 0. These surfaces intersect in
the four lines of codimension two points which emanate from the point
(a, γL, γR) = (0, 0, 0), and so the origin of this parameter space represents
a codimension three bifurcation point.
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