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THE NULL DIVERGENCE FACTOR

J. Chavarriga∗, H. Giacomini and J. Giné∗

Abstract
Let (P, Q) be a C1 vector field defined in a open subset
U ⊂ R2. We call a null divergence factor a C1 solution V (x, y) of

the equation P ∂V
∂x

+ Q ∂V
∂y

=
(

∂P
∂x

+ ∂Q
∂y

)
V . In previous works

it has been shown that this function plays a fundamental role in
the problem of the center and in the determination of the limit
cycles. In this paper we show how to construct systems with a
given null divergence factor. The method presented in this paper
is a generalization of the classical Darboux method to generate
integrable systems.

1. Introduction

We consider in this paper two-dimensional autonomous systems of
differential equations of the form

(1) ẋ = P (x, y), ẏ = Q(x, y), · =
d

dt
,

with P (x, y), Q(x, y) ∈ C1(E) and where E is an open subset of R2.
The two fundamental problems of the qualitative theory of system (1)

are the problem of the center and the determination of the number of
limit cycles and their location in phase space.

In recent works it has been shown that a unified method can be used
to study these problems [1], [2], [3], [4], [5], [9], [10], [11], and [12].

The method is based on the determination of a function V (x, y) ∈
C1(E) that satisfies the equation

(2) P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V.
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Let us consider first the center problem for polynomial systems of the
form:

(3) ẋ = −y +X(x, y), ẏ = x+ Y (x, y),

where X(x, y) and Y (x, y) are polynomials without independent and
linear terms.

The problem of the center consists in giving necessary and sufficient
conditions on the coefficients of X(x, y) and Y (x, y) in order to have a
continuous family of periodic orbits in a certain neighbourhood of the
origin. If for system (3) we can find a solution V (x, y) ∈ C1(E) of (2)
that is not zero at the origin, then we can obtain a first integral of (3)
well defined in a neighbourhood of the origin, because M(x, y) = 1

V (x,y)

is an integrating factor of the system. In that case, the origin will be a
center of (3).

For many systems of type (3) having a center at the origin, it has
been shown in [1], [2], [4], [5] and [11] that the function V (x, y) has
very simple properties, being very often a polynomial. By contrary, the
first integral is, in general, a complicated expression that can not be
written in terms of elementary functions.

In particular, when in system (3) X and Y are both quadratic or
cubic homogeneous polynomials the function V (x, y) is a polynomial for
all center cases (see [1]).

In the general case, i.e. for system (1), it has been shown in [3], [9],
[10] and [12] that any solution of (2) plays a fundamental role in the
determination of the limit cycles of the system. Esentially, V (x, y) must
vanish on all limit cycles of (1) (for a precise formulation of these results
see [9]).

In this paper we present a method which enables us to generate (or
construct) systems of type (1) with a known function V (x, y). In this
way, for all systems generated with this method, we know at once all
limit cycles and all centers. These results are presented in sections 2
and 3.

2. Construction of systems with a known function V (x, y)

We generalise in this section the classical Darboux method for con-
structing integrable systems [8].

Based in the Darboux method the next result follows easily from
Christopher results (see [6] and [13]).
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The vector field defined by:

(4)

P =
n∑

i=1

ai




n∏
j=1
j �=i

fj(x, y)


 ∂fi(x, y)

∂y
,

Q = −
n∑

i=1

ai




n∏
j=1
j �=i

fj(x, y)


 ∂fi(x, y)

∂x
,

where fj(x, y) (with j = 1, . . . , n) are arbitrary C2 functions, n ∈ N and
the ai are arbitrary real parameters, has a first integral given by

(5) I(x, y) =
n∏

i=1

fai
i ,

and an integrating factor

(6) M(x, y) =
n∏

i=1

f−1
i .

As it is well known, a system with a Darboux type first integral (5)
can not have limit cycles in the domain of definition of the Darboux first
integral. In particular if ai are rational numbers system (4) can not have
limit cycles.

Instead of giving a vector field with a known first integral, we construct
a system with a known function V (x, y) as follows:

Proposition 1. Let (Pi, Qi), with i = 1, . . . , n, be C1 vector fields
defined in an open subset U ⊂ R2, which have C2 null divergence factors
Vi(x, y), i.e.

(7) Pi
∂Vi

∂x
+Qi

∂Vi

∂y
=

(
∂Pi

∂x
+
∂Qi

∂y

)
Vi,

with i = 1, . . . , n.
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Then, the vector field

(8)

P = λ0
∂(

∏n
i=1 Vi(x, y))
∂y

+
n∑

i=1

λi




n∏
j=1
j �=i

Vj(x, y)


 Pi(x, y),

Q = −λ0
∂ (

∏n
i=1 Vi(x, y))
∂x

+
n∑

i=1

λi




n∏
j=1
j �=i

Vj(x, y)


 Qi(x, y),

has a null divergence factor V (x, y) given by

(9) V (x, y) =
n∏

i=1

Vi(x, y).

Proof: The proof is straight-forward. The first integral of (8) can be
calculated from the integrating factor M(x, y) = 1

V (x,y) .

In general, this first integral will not be defined in the whole domain of
the definition of the differential system and it is possible for system (8)
to have limit cycles.

It is clear that (4) is a particular case of (8), with Vi(x, y) = fi(x, y),
Pi(x, y) = ∂fi

∂y , Qi(x, y) = −∂fi

∂x , λi = ai and λ0 = 0.

In (4) all vector fields (Pi, Qi) used to generate the system (P,Q) are
Hamiltonian, while in (8) they are arbitrary. This is the key point of our
generalization of the classical Darboux method.

It is interesting to note that well-known systems can be constructed
from (8) by using linear systems and Hamiltonian systems (Pi, Qi). Let
us consider several examples:

Example 1. In [14], a quartic system with one center and one limit
cycle has been studied. The system is:

(10)

P = −2y(x2 + y2)(x− 2) + (x− y)(x2 + 2y2 − 1)(x− 2),

Q = x(x2 + y2)(x− 2) + (x+ y)(x2 + 2y2 − 1)(x− 2)

− 7
10

(x2 + 2y2 − 1)(x2 + y2).
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The null divergence factor of this system is:

(11) V (x, y) = (x− 2)(x2 + y2)(x2 + 2y2 − 1).

The limit cycle of (10) is the ellipse x2 + 2y2 − 1 = 0 and the center is
located at the point (3,1). This system can be generated by using (8),
as follows:

(12)
P = P1 V2 V3 + P2 V1 V3 + P3 V1 V2,

Q = Q1 V2 V3 +Q2 V1 V3 +Q3 V1 V2,

where

(P1, Q1) = (−2y, x), with V1(x, y) = (x2 + 2y2 − 1),

(P2, Q2) =
(

0,− 7
10

)
, with V2(x, y) = (x− 2) and(13)

(P3, Q3) = (x− y, x+ y), with V3(x, y) = (x2 + y2).

For this case we have n = 3, λ0 = 0, λ1 = λ2 = λ3 = 1. Sys-
tems (P1, Q1) and (P2, Q2) are Hamiltonian. System (P3, Q3) is a linear
non-Hamiltonian vector field.

Let us recall that the null divergence factor of a linear system

(14)
P = ax+ by,
Q = cx+ dy,

is given by

(15) V (x, y) = cx2 + (d− a)xy − by2.

For a Hamiltonian vector field P = ∂H(x,y)
∂y , Q = −∂H(x,y)

∂x , the null
divergence factor is V (x, y) = f(H(x, y)) where f is an arbitrary func-
tion.

Example 2. The cubic system

(16)

P = y + a20 x2 + a11 xy − 2a20 y2 + a20 b20 x3 + a21 x2y

− a11 a20 xy2 + a220 y
3,

Q = −x− b20 x2 −
(
b21
b20

− a20
)
xy − b21 x2y +

a20b21
b20

xy2,
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with b20 �= 0 and a20b20 + b21 �= 0, has been studied in [11]. It has a
center at the origin and the null divergence factor is:

(17)

V (x, y) = (b20 + b21 y)(−a20 b20(a20 b20 + b21)x3

+ (a21 b20 − a20 b21)x2(1 − a20 y)
+ a11 b20x(1 − a20 y)2 + b20 (1 − a20 y)3).

This system can be expressed as the composition of two sys-
tems (P1, Q1) and (P2, Q2), as follows:

(18)
P = P1 V2 + P2 V1,

Q = Q1 V2 +Q2 V1,

where

(P1, Q1) =
( −1
a20 b20 + b21

, 0
)
, with V1 = b20 + b21 y and

(19)

(P2, Q2) = ((a20 b20 + b21)−1(1 + a11 x+ (a220 + a21)x2 − 2 a20 y

− a11 a20 xy + a220 y
2),

x

b20
(−1 − b20 x+ a20 y)),

with

V2 = −a20 b20(a20 b20 + b21)x3 + (a21 b20−a20 b21)x2(1 − a20 y)
+ a11 b20 x(1 − a20 y)2 + b20(1 − a20 y)3.

System (P1, Q1) is a constant Hamiltonian vector field and (P1, Q1) is
an integrable quadratic system.

Example 3. The cubic system

(20)
P = y,

Q = −x+ k(1 − l)x2 + k2lx3 + a2xy − a2kx2y + kly2− k
2l2

1 + l
xy2,

with l+ 1 �= 0, has been studied in [7]. It has a center at the origin and
its null divergence factor is
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(21) V = 1 + 2k l x+ k2 l2 x2 − a2y − a2k l x y −
k2 l3

1 + l
y2.

This system can be expressed as the composition of two systems, when
kl(l + 1) �= 0, as follows:

(22)
P = P1 V2 + P2 V1,

Q = Q1 V2 +Q2 V1,

with

(23)

(P1, Q1) =
(
y,

(1 + l)
k l2

(1 + k l x− a2y)
)
, with V1 = V and

(P2, Q2) =
(

0,
(−1 − l + k l x)

k l2

)
, with V2 = 1.

Example 4. The quadratic system

(24)
P = −y − bx2 − cxy − dy2,
Q = x+ ax2 +Axy − ay2,

has a center at the origin if and only if one of the following conditions is
satisfied.

(25)

(i) A− 2b = c+ 2a = 0,
(ii) c = a = 0,
(iii) b+ d = 0,
(iv) c+ 2a = A+ 3b+ 5d = a2 + bd+ 2d2 = 0.

In all the cases, system (24) can be descomposed in terms of more
simple systems.
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The case (i) corresponds to a Hamiltonian system and is a particular
case of (8), with n = 1, λ0 = 1 and V1(x, y) = H(x, y), where H(x, y) is
the Hamiltonian of the system.

For the case (ii), with (A+ b) (A+ 2b) �= 0, the system can be written
as

(26)
P =

∂(V1 V2)
∂y

+ P1 V2 + P2 V1,

Q = −∂(V1 V2)
∂x

+Q1 V2 +Q2 V1,

where

(P1, Q1) =
(
− (1 +A3 + 3A2b+ 2Ab2)

(A+ b)(A+ 2b)
, 0

)
, with V1 = 1 +Ay, and

(27)

(P2, Q2) =
(

(1 + 2A2b+ 6Ab2 + 4b3)
(A+ b)(A+ 2b)

(−A− b+ d−Ady − 2bdy),

(1 + 2A2b+ 6Ab2 + 4b3)x
)
,

with

V2 =−A−b+d+b(A+b)(A+2b)x2+2b(A+ b−d)y + bd(A+ 2b)y2.

For the case (iii), without loss of generality, we can take a = 0. In this
case, system (24) can be decomposed as follows:

(28)
P =

∂(V1 V2)
∂y

+ P1 V2 + P2 V1,

Q = −∂(V1 V2)
∂x

+Q1 V2 +Q2 V1,

where A+ b �= 0 and
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(P1, Q1) =
(

1 −A2 −Ab
A+ b

, 0
)
, with V1 = 1 +Ay and

(29)

(P2, Q2) = ((2Ab+ 2b2 − 1 + (Acb+ cb2 − c)x+ (b− 2Ab2 − 2b3)y)

(A+ b)−1, c+ x− 2Abx− 2b2x− cby),

with

V2 = (1 − by)2 + c(1 − by)x− b(A+ b)x2.

For the particular case A + b = 0 the decomposition is different. We
have

(30)
P =

1 + c2

c2
∂(V1 V2)
∂y

+ P1 V2 + P2 V1,

Q = −1 + c2

c2
∂(V1 V2)
∂x

+Q1 V2 +Q2 V1,

where c �= 0 and

(P1, Q1) = (b, c), with V1 = 1 − by + cx and
(31)

(P2, Q2) =
(

3b+ 2bc2 − bcx− 3b2y − c2y − 2b2c2y
c2

,
1 − by
c

)
,

with

V2 = (1 − by)2.

The case A+ b = c = 0 is a particular case of (ii).
Finally, for condition (iv) we find the decomposition

(32)
P =

∂(V1 V2)
∂y

+ P1 V2 + P2 V1,

Q = −∂(V1 V2)
∂x

+Q1 V2 +Q2 V1,
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with ad �= 0 and

(33)

(P1, Q1) =
(
− (1 + 2a4d2 + 2a2d4)

a2d
(1 − ax+ dy),

− (1 + 2a4d2 + 2a2d4)
2ad2

(ax− dy)
)
,

with

V1 = d2 + a2(a2 + d2)x2 + 2d(a2 + d2)y

− 2ad(a2 + d2)xy + d2(a2 + d2) y2 and

(P2, Q2) =
(

(1 − 3a4d2 − 3a2d4)
a2d

(1−ax+ a2x2 + 2dy−2adxy + d2y2),

(1 − 3a4d2 − 3a2d4)
ad2

(a2x2 + dy − 2adxy + d2y2)
)
,

with

V2(x, y) = d2 − a3(a2 + d2)x3 + 3d(a2 + d2)y

− 3ad(a2 + d2)xy + 3a2d(a2 + d2)x2y + 3d2(a2 + d2)y2

− 3ad2(a2 + d2)xy2 + d3(a2 + d2)y3.

The case ad = 0 is a particular case of condition (ii).
In all cases, the vector fields used in the decomposition of (24) are

Hamiltonian or linear systems.
For the four examples that we have shown above, we have decomposed

systems studied by several authors, in terms of more simple vector fields,
by using expression (8).

3. Systems with the same null divergence factor

If two systems have the same null divergence factor, we can construct
a more general system which has such null divergence factor, as it is
shown in the following proposition:
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Proposition 2. Let (P1, Q1) and (P2, Q2) be two C1 vector fields
defined in an open subset U ⊂ R2, which have the same null divergence
factor V (x, y), i.e.

(34)

P1
∂V

∂x
+Q1

∂V

∂y
−

(
∂P1

∂x
+
∂Q1

∂y

)
V = 0,

P2
∂V

∂x
+Q2

∂V

∂y
−

(
∂P2

∂x
+
∂Q2

∂y

)
V = 0,

then the vector field (P1 + λP2, Q1 + λQ2) has also the function V (x, y)
as a null divergence factor, for arbitrary values of the parameter λ.

Proof: It is obvious from the definition of the null divergence factor.

Let us consider several examples in order to illustrate the utility of
this proposition.

Example 1. In [3] we have studied the following cubic system:

(35)
P = λx−y + λm1x

3+(m2−m1+m1m2)x2y + λm1m2xy
2+m2y

3,

Q = x+ λy − x3 + λm1x
2y + (m1m2 −m1 − 1)xy2 + λm1m2y

3,

where λ, m1 and m2 are arbitrary parameters.
This system presents a very rich behaviour, with a great number of

bifurcations when the parameters λ, m1 and m2 are varied.
In [3] we have been able to study in an exact way all these bifurcations,

from the null divergence factor of the system, given by

(36) V (x, y) = (x2 + y2)(1 +m1x
2 +m1m2y

2).

Using Proposition 2, we can write system (35) as the composition of two
more simple cubic systems

(37)
P = P1 + λP2,

Q = Q1 + λQ2,

where

(38)

(P1, Q1) = (y(−1 +m2y
2 + (m2 −m1 +m1m2)x2),

x(1 − x2 − y2 −m1y
2 +m1m2y

2)) and

(P2, Q2) = (x(1 +m1x
2 +m1m2y

2), y(1 +m1x
2 +m1m2y

2)).

These two systems have the same null divergence factor, given by (36).
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System (P1, Q1) has a center at the origin, and system (P2, Q2) has a
curve of critical points, given by 1 +m1x

2 +m1m2y
2 = 0.

These two systems have a simple qualitative behaviour, but their com-
bination given by (37) presents a very complex pattern of bifurcations.

Example 2. Let us consider the two vector fields

(39)
(P1, Q1) = (−y − bx2 − dy2, x+Axy) and
(P2, Q2) = (V1(x, y), V1(x, y)),

where V1(x, y) is the null divergence factor of (P1, Q1), given by:

(40) V1(x, y) = (1 +Ay)W (x, y),

where

(41)
W (x, y) = −A− b+ d+ b (A+ b)(A+ 2b)x2

+ 2b (A+ b− d) y + bd (A+ 2b) y2.

The vector field (P1, Q1) is a quadratic integrable system with a center
at the origin. The system (P2, Q2) is a trivial vector field, which has
also a null divergence factor given by (40). From Proposition 2 we can
generate a cubic system

(42)
P = −y − bx2 − dy2 + λV1(x, y),
Q = x+Axy + λV1(x, y),

which has also a null divergence factor given by (40).

Example 3. Let us consider the two vector fields

(43)
(P1, Q1) =

(
∂H(x, y)
∂y

,
−∂H(x, y)
∂x

)
and

(P2, Q2) = (xf(x, y), yf(x, y)),

where H(x, y) = (x2 +y2)f(x, y) and f(x, y) is an arbitrary C1 function.
These two systems have the same null divergence factor, given by:

(44) V (x, y) = (x2 + y2)f(x, y).

Using Proposition 2 we obtain a new vector field (P,Q)

(45)
P =

∂H

∂y
+ λxf(x, y),

Q = −∂H
∂x

+ λyf(x, y),
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with a null divergence factor given by (44).

The possible limit cycles of (45) must be contained in the set defined
by the condition f(x, y) = 0.

The problem can be in how to find vector fields X = (P1, Q1) and
Y = (P2, Q2), such that both vector fields have the same null divergence
factor.

An answer to this question is contained in the following proposition:

Proposition 3. Let X = (P1, Q1) and Y = (P2, Q2) be two C1 vector
fields defined in an open subset U ⊂ R2. Assume that the local flows de-
fined by the solutions of X and Y commute in the sense of Lie’s bracket,
that is [X,Y ] = 0, then the function V = P1Q2 − P2Q1 is a null diver-
gence factor for both systems.

Proof: Condition [X,Y ] = 0 is equivalent to

(46)

P1
∂P2

∂x
− P2

∂P1

∂x
+Q1

∂P2

∂y
−Q2

∂P1

∂y
= 0,

P1
∂Q2

∂x
− P2

∂Q1

∂x
+Q1

∂Q2

∂y
−Q2

∂Q1

∂y
= 0.

From these two equations it is easy to show that V = P1Q2 − P2Q1

satisfies

(47)

P1
∂V

∂x
+Q1

∂V

∂y
=

(
∂P1

∂x
+
∂Q1

∂y

)
V,

P2
∂V

∂x
+Q2

∂V

∂y
=

(
∂P2

∂x
+
∂Q2

∂y

)
V.

Commuting vector fields have been studied by several authors (see for
instance [15], [16] and references therein). In these works, commuting
systems have been studied in relation to the problem of isochronous
centers, and the transversality condition X∧Y = P1Q2−Q1 P2 = V �= 0
has been imposed.
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In this case, the commuting systems can not have limit cycles (the
limit cycles are contained in the set defined by V = 0, see [9]).

However, if the transversality condition is not imposed, one of the two
commuting systems can have limit cycles, as can be seen in the following
example:

(48)
(P1, Q1) = (−y + x(1 − x2 − y2), x+ y(1 − x2 − y2)) and
(P2, Q2) = (−y, x).

The null divergence factor for both systems is

(49) V (x, y) = (x2 + y2)(1 − x2 − y2).

These two systems commute in R2. The vector field (P1, Q1) has a
unique limit cycle given by x2 + y2 − 1 = 0. The vector field (P2, Q2)
has a global center. The curve x2 + y2 − 1 = 0 is a trajectory for both
systems. For one of these systems, this curve is a limit cycle, while for
the other one it is one closed curve of the center.

In conclusion, commuting systems can have limit cycles. They can be
easily determined from the equation

V = P1Q2 − P2Q1 = 0.
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