View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2017

Code coverage and postrelease defects: A large-
scale study On open source projects

Pavneet Singh KOCHHAR

David LO

Julia LAWALL

Nachiappan NAGAPPAN

DOI: https://doi.org/10.1109/TR.2017.2727062

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation

KOCHHAR, Pavneet Singh; LO, David; LAWALL, Julia; and NAGAPPAN, Nachiappan. Code coverage and postrelease defects: A
large-scale study on open source projects. (2017). IEEE Transactions on Reliability. 1-16. Research Collection School Of Information
Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/3838

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/132698488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TR.2017.2727062
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY

Code Coverage and Postrelease Defects: A
Large-Scale Study on Open Source Projects

Pavneet Singh Kochhar, David Lo, Member, IEEE, Julia Lawall, Member, IEEE, and Nachiappan Nagappan

Abstract—Testing is a pivotal activity in ensuring the quality of
software. Code coverage is a common metric used as a yardstick
to measure the efficacy and adequacy of testing. However, does
higher coverage actually lead to a decline in postrelease bugs? Do
files that have higher test coverage actually have fewer bug re-
ports? The direct relationship between code coverage and actual
bug reports has not yet been analyzed via a comprehensive empiri-
cal study on real bugs. Past studies only involve a few software sys-
tems or artificially injected bugs (mutants). In this empirical study,
we examine these questions in the context of open-source soft-
ware projects based on their actual reported bugs. We analyze 100
large open-source Java projects and measure the code coverage of
the test cases that come along with these projects. We collect real
bugs logged in the issue tracking system after the release of the
software and analyze the correlations between code coverage and
these bugs. We also collect other metrics such as cyclomatic com-
plexity and lines of code, which are used to normalize the number
of bugs and coverage to correlate with other metrics as well as use
these metrics in regression analysis. Our results show that coverage
has an insignificant correlation with the number of bugs that are
found after the release of the software at the project level, and no
such correlation at the file level.

Index Terms—Code coverage, empirical study, open-source,
postrelease defects, software testing.

I. INTRODUCTION

ESTING is widely believed to be a cornerstone in en-
T suring software reliability in practice. The increasing size
and complexity of software has necessitated improvements in
software testing. Nevertheless, testing is expensive, and thus
software developers and product managers must constantly ad-
dress the question of how much testing is enough. A commonly
accepted metric is the notion of code coverage. A set of tests is
considered adequate when running the tests causes every line,
branch, condition, or path, depending on the kind of coverage
desired, to be executed at least once. Nevertheless, achieving
adequate coverage does not prove that the code is correct. In-
deed, every programmer knows that a particular sequence of
instructions can produce the expected result on one set of input

Manuscript received July 2, 2016; revised December 9, 2016 and March 21,
2017; accepted April 30, 2017. Associate Editor: T. H. Tse. (Corresponding
author: Pavneet Singh Kochhar.)

P. S. Kochhar and D. Lo are with the School of Information Systems,
Singapore Management University, Singapore 188065 (e-mail: kochharps.
2012 @phdis.smu.edu.sg; davidlo@smu.edu.sg).

J. Lawall is with INRIA, Paris 75012, France (e-mail: julia.lawall@
lip6.1r).

N. Nagappan is with Microsft Research, Redmond, WA 98052 USA
(e-mail: nachin@microsoft.com).

Digital Object Identifier 10.1109/TR.2017.2727062

values and an incorrect result on another. This thus raises the
question of whether coverage is actually an accurate predictor
of the number of postrelease bugs.

Several studies have investigated the correlation between code
coverage and test suite effectiveness, measured in terms of num-
ber of postrelease defects or ability to kill the mutants. Mockus
et al. [30] study the correlation between code coverage and
postrelease bugs on two large industrial projects, Microsoft Win-
dows Vista and a call center reporting system from Avaya. The
results of their study did not show a conclusive relationship be-
tween coverage and quality. Furthermore, these results cannot
be generalized as the projects were developed in a controlled
environment and represent only two large, but real-world, ap-
plications. Recent studies by Inozemtseva and Holmes [18] and
Gopinath ef al. [13] analyze the correlation between coverage
and test suite effectiveness. Both these studies use artificially
injected bugs, also known as mutants, and measure the effec-
tiveness of a test suite by its ability to kill the mutants. However,
empirical research shows that mutants are not representative of
real faults [14].

In order to study the relation between coverage and postre-
lease bugs in a broader range of development contexts, we com-
pare coverage rates and the number of postrelease bugs in open-
source software. Open-source projects are different from closed
source projects in terms of decision making, motivation, en-
vironment, testing processes, and release management [4]. We
want to understand if open source projects exhibit similar or
different results as compared to those observed in closed source
industrial projects. To the best of our knowledge, ours is one of
the largest empirical studies that analyzes the impact of coverage
on postrelease bugs in open-source software.

In this study, we examine 100 large open-source Java projects
that use the JIRA' bug tracking service, that provides support
for bug tracking and project management. We download these
100 projects that are hosted on GitHub and use Maven. GitHub
is one of the largest software repositories, which hosts mil-
lions of software projects including some popular projects such
as spring-roo® from Spring, the WildFly Application server’
(previously JBoss application server) from the WildFly com-
munity, and Maven* from Apache, all of which are present in
our dataset. We execute test cases and calculate coverage for our
100 projects, considering cases where a method is called either

Uhttps://www.atlassian.com/software/jira
Zhttps://github.com/spring-projects/spring-roo
3https://github.com/wildfly/wildfly
“https://github.com/apache/maven

0018-9529 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

directly or indirectly by a test case, and examine the relation
between code coverage and the number of bugs found after the
release of the software. We then assess the projects in terms of
several important software metrics, such as the number of lines
of code (LOC) and the cyclomatic complexity, to understand the
effect of these metrics on the correlation between coverage and
the number of bugs. We chose these software metrics as they are
used to assess the cost of development processes and to evaluate
the quality of software [10].
We investigate these research questions:

RQ1: What is the correlation between code coverage and the number
of postrelease bugs at the project level?

RQ2: What is the correlation between code coverage and the number
of postrelease bugs at the file level ?

‘We make the following contributions:

1) We perform one of the largest studies on open-source
Java projects with the aim of studying the impact of code
coverage on the number of real bugs found after the release
of the software.

2) We measure the test adequacy by executing these test
cases and analyze the correlation between code coverage
and postrelease bugs at the project and file level.

3) We draw on statistical methods and graphs to understand
the impact of metrics such as LOC and cyclomatic com-
plexity on the correlation between code coverage and
postrelease bugs.

4) We make our dataset publicly available for other re-
searchers to replicate our experiments and conduct future
studies.

In this paper, we describe code coverage, and the tools we
use to collect information from our dataset in Section II. We
explain the methodology of our study in Section III. We per-
form several statistical tests on the data to answer the two
research questions and we provide results for these tests in
Section IV. In Sections V and VI, we provide several threats
to validity and related work, respectively. We conclude and
mention future work in Section VII.

II. PRELIMINARIES

In this section, we review the definition of code coverage and
present the tools that are relevant to our chosen software and
our experiments. We use Sonar for collecting software metrics,
Sonar relies on Maven for building packages, and we use JIRA
for collecting postrelease bug information. All of our projects
come from GitHub.

A. Code Coverage

Software testing is used to test different functionalities of a
program or system and to ensure that given a set of inputs the
system produces the expected results. A test adequacy crite-
rion defines the properties that must be satisfied for a thorough
test [12]. Code coverage, which measures the percentage of
code executed by test cases, is often used as a proxy for test
adequacy. The percentage of code executed by test cases can be
measured according to various criteria, including the percentage

IEEE TRANSACTIONS ON RELIABILITY

of executed source code lines (/line coverage), and the percent-
age of executed branches (branch coverage). Sonar combines
these measures into a hybrid measure, referred to as coverage.5
This coverage measure is efficient to compute, while still in-
corporating information about branches, which are important,
because they may lead the program to very different behaviors.
We primarily focus on coverage in our experiments.

B. Sonar

Sonar® is an open-source platform that helps to manage soft-
ware quality of a project. Sonar can either be used as a standalone
web-based application or can be integrated into a Web Applica-
tion Container such as Tomcat. Sonar uses various tools, such
as JavaNCSS,” JaCoCo,® Cobertura,” and Surefire,!” to extract
software metrics such as cyclomatic complexity, LOC, number
of test cases, and code coverage.

In our empirical study, we collect software metrics, such as
cyclomatic complexity, LOC, and code coverage using Sonar.

C. Maven

Maven* is a software project management tool that supports
building and running the software and its test cases. Maven uses
information that is present in the project object model (POM)
file, pom.xml. The POM file contains information about the
project such as its dependences on libraries and the order in
which the different components of the project should be built.
Maven primarily supports Java projects and for such projects it
dynamically downloads all dependences from a central Maven
repository. Sonar makes use of Maven’s project directory struc-
ture to get various information, such as the number of classes,
the number of test cases, the number of packages, and the over-
all LOC. It also uses this structure to run test cases to collect the
coverage of the project.

D. JIRA

JIRA! is a project tracker used for issue tracking, bug tracking,
and efficient project management. To be able to uniformly obtain
bug information for the different projects in our dataset, we focus
on projects that use JIRA for reporting bugs. For each bug,
JIRA records the affected and fixed version of the software,
which represent the version in which bug was found and the
version in which bug was fixed or resolved, respectively. This
information ensures that we are collecting only postrelease bugs,
i.e., those bugs logged after the release of the particular version
of the software. We collect information about all the closed and
resolved bugs for a particular affected version of the software.
JIRA also assigns each bug an identifier that is unique for the
given software project. When developers mention this identifier
in the logs of the commits that fix the bug, we are able to track
the files that were changed to solve the problem.

Shttp://docs.codehaus.org/display/SONAR/Metric+definitions
Shttp://www.sonarsource.org/
Thttp://www.kclee.de/clemens/java/javancss/
8http://www.eclemma.org/jacoco/
9http://cobertura.sourceforge.net/
10http://maven.apache.org/surefire/maven-surefire-plugin/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 3

E. GitHub

GitHub is one of the largest project-hosting platforms and
uses the git!! version control system. GitHub is similar to a social
network, where software developers spread across the globe can
collaborate. Currently, GitHub has more than 11 million users
and over 28 million repositories. We clone the repositories of
software projects using the command git clone {url}. We only
download projects that contain a Maven pom.xml file, implying
that they are compatible with Sonar.

III. METHODOLOGY AND STATISTICS

In this section, we describe the methodology we use to collect
data for this study. Furthermore, we also present several statistics
to describe our dataset.

A. Methodology

1) Project Information: First, we search for open-source
projects that use JIRA issue tracking system and allow public
access to all of the issues filed in the tracking system. We find
several examples of projects using public instances of JIRA'?
such as projects developed by the Apache Foundation, Spring
Project, the WildFly (formerly JBoss) Community, etc. While
these projects are popular and have a large base of contributors,
they also cover a wide variety of programs ranging from build
management, database, big data, etc. For this, we had to manu-
ally find the official web page of each project (>300) and verify
whether the project’s source code is available on GitHub and to
identify their JIRA name. We further restricted the projects to
those that use Maven for project management. We, then, collect
the source code of projects that are hosted on GitHub and use
JIRA issue tracking system. For each project, we visited its web-
site to confirm the major and stable releases and checked out the
latest release of the software that was made at least six months
prior to the month of collection of data (August 2013). For some
of the projects, the stable release was made one or two years
before August 2013, which gave ample time for users to use the
release and report bugs. After collecting the releases, for each
one of them, we run Sonar on these projects to collect metrics
such as LOC, cyclomatic complexity, code coverage, etc. We
filter out projects with less than 5000 LOC as these projects are
small and do not contain many test cases and have even fewer
numbers of bugs. In the end, we select top 100 projects sorted
by size. Our dataset contains projects of different sizes ranging
from 5000 LOC to more than 100 000 LOC.

Initially, to set up the project, we use the command
mun clean install in the root of each project repository. The
clean command removes any files compiled during the prior
builds that might be present in the repository and the install
command builds a dependency tree for all the components spec-
ified in the pom.xml (the root POM). The install command also
compiles the .java files present in the components specified in
pom.xml into corresponding .class files.

Mhttp://git-scm.com/
2https://confluence.atlassian.com/display/JIRAHOST/Examples+of+Public
+JIRA+Instances

After the install phase, we use the command mvn sonar:sonar
to collect coverage and other metrics. Before running this com-
mand, we need to start the Sonar web server, which has its
own Maven repository, data repository, web services, and Sonar
plug-ins. The Sonar web server synchronizes its Maven reposi-
tory with the Maven repository of the user, where all the artifacts
are stored. mvn sonar:sonar is used to make Sonar perform dy-
namic analysis, i.e., running test cases and creating reports.
After the analysis, the reports are published in the repository of
the Sonar server, which can be accessed at the default address
http://localhost:9000/.

a) Bug collection (Project Level): For each bug, JIRA
records the affected version of the software. We collected all
of the closed and resolved bugs for the checked out version of
the software. We perform this step manually for each software
project, as each project has a unique name used by JIRA and
each project has a different checked out version. We obtained the
JIRA name of each project by searching the project’s website.
For example, the project Twitter4J' in our dataset, for which
we use version 3.0.0, has JIRA name TFJ.

b) Bug collection (File Level): For each bug at the project
level, we collect the bug key assigned by JIRA, which is unique
for given repository. For example, one of the bugs in Twitter4dJ
has a key TFJ-730. Then, we search the git logs to find all the
commits associated with the bug key, and from these commits,
we collect the changed files. A single commit can also fix mul-
tiple (n > 1) bugs. In this case, the number of bugs for the file
affected by that commit is n.

2) Statistical Tests: We use commonly accepted statistical
analysis to find the correlation between the collected software
metrics and the code coverage.

a) Spearman’s rho: Spearman’s rank correlation coeffi-
cient (p) is a nonparametric test that is used to measure the
strength of monotonic relationship between sets of data [34].
The value of rho ranges from —1, which signifies a perfect
negative correlation, to +1, which signifies a perfect positive
correlation. The value O shows that there is no correlation be-
tween the variables. To calculate Spearman’s rho, the raw values
from the datasets are arranged in ascending order and each value
is assigned a rank equal to its position in the list. The values that
are identical in two sets are given a rank equal to the average
of their positions. Equation (1) then shows the formula for the
calculation:

)= (@i —T) (i —7)
Vi@ =2/ (i —)

In this equation, z; and y; represent the ranks of input ele-
ments X and Y, while = and ¥ represent the averages of the
ranks. We use the following values to interpret correlation [17]:
0<p<0.1=None, 0.1 <p<03=Small,03<p<05=
Moderate, 0.5 < p < 0.7 = High, 0.7 < p < 0.9 = Very High,
0.9 < p < 1.0 = Perfect.

b) Kendall’s tau: Kendall’s rank correlation coefficient
(7) is a non-parametric test for statistical dependence between
two sets of data [21]. Similar to Spearman’s rho, the value of

ey

Bhttps://github.com/yusuke/twitter;

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

tau ranges from +1 to —1, with O signifying no correlation. To
calculate Kendall’s tau, let (z1, y1), (2, ¥2), ..., (Tn, Yy) be a set
of observations for variables X and Y. A pair (x;, y;) and (x;, y;)
is concordant if ranks for both elements agree, i.e., z; > x; and
y; >y, orif x; < x; and y; < y;. The pair is discordant if
x; > x; and y; < y; orif x; < x; and y; > y;. Equation (2)
shows the formula for calculating tau:

r = (e) @)

N

where
n. = number of concordant pairs;
ng = number of discordant pairs;
n, = number of pairs with different x values;
n, = number of pairs with different y values.

We use the following ranges to interpret Kendall rank corre-
lation: 0 < 7 < 0.1 =None, 0.1 <7 <03 =Weak,03< 1<
0.5 = Moderate, 0.5 < 7 < 1.0 = Strong. Same scale has been
used in past software engineering studies [5].

¢) P-value: The p-value is the probability of obtaining a
result equal to or more extreme than what was actually observed,
when the null hypothesis (H) of a study question is true. The
significance level («) refers to a preselected value of probabil-
ity. If p-value is less than the significance level («), then we can
reject the null hypothesis, i.e., our sample gives reasonable ev-
idence to support the alternative hypothesis (H). In this study,
we select the value of a as 5% or 0.05 and if the p-value is less
than 0.05, we reject the null hypothesis.

All the statistical analysis was performed using R, which is
a programming language and software environment for statis-
tical computing that is widely used in academia and industry.
To compute Spearman’s p, we use the equation, cor.test(x,y,
method = “spearman’”), where cor.test is provided by the stats
package in R, and x and y are numeric vectors of data values of
the same length. To compute Kendall’s 7, we use the equation
Kendall(x,y), where Kendall is provided by the Kendall package
in R, and x and y are numeric vectors of data values of the same
length.

B. Statistics

In this section, we present some statistics describing the data
we collected for this study. We also provide the values of the
project-level statistics characterizing our dataset.

1) Lines of Code (LOC): We used Sonar to count the to-
tal number of LOC in each project. Sonar excludes blank lines,
comments, and test cases while calculating LOC. Fig. 1(a) shows
the distribution of the LOC for the projects in our dataset. Thir-
teen projects have between 5000 and 10 000 LOC, 36 projects
have between 10 000 and 25 000 LOC, 24 have projects between
25 000 and 50 000 LOC, 13 projects have between 50 000 and
100 000 LOC and 14 projects have more than 100 000 LOC.
The largest project in our dataset contains 237 938 LOC.

2) Cyclomatic Complexity (CC): Cyclomatic complexity
measures the number of linearly independent paths in the source
code of a software application [29]. This measure increases by 1
whenever a new method is called or when a new decision point

IEEE TRANSACTIONS ON RELIABILITY

is encountered, such as an if, while, for, &&, case, etc. Cyclo-
matic complexity is often useful in knowing the number of test
cases that might be required for independent path testing [38]
and a file or project with low complexity is usually easier to
comprehend and test [11].

Fig. 1(b) shows the distribution of cyclomatic complexity.
Our dataset has 45 projects with complexity between 1000 and
5000, 29 projects with complexity between 5000 and 10 000,
17 projects with complexity between 10 000 and 25 000, and
9 projects with complexity above 25 000. The highest value of
complexity is 55 940.

3) Test Cases: Sonar also gives information about the total
number of test cases in each project, which includes the number
of test cases that passed and the test cases that failed. Sonar
also provides the number of test cases that were skipped. A test
case could be skipped due to missing dependences, compilation
errors, etc.

Fig. 1(c) shows the distribution of test cases in our dataset.
The graph shows all the test cases present in the project including
the skipped and failing tests. Sixteen projects have fewer than
100 test cases, 44 projects have between 100 and 500 test cases,
19 projects have between 500 to 1000 test cases, and 21 projects
in our dataset have more than 1000 test cases. The number of
test cases in our dataset varies from 1 to 9390. The mean and
the median number of test cases per project are 907.1 and 359.5,
respectively.

4) Developer Contributions: We use git log, which contains
the commit history of the project, to get the number of devel-
opers who have contributed to the project. Fig. 1(a) shows the
distribution of the number of developers. Our dataset has 24
projects with >1 and <10 developers and the same number of
projects with 25 and 50 developers. Forty-seven projects have
10 or more but less than 25 developers and 5 projects have
more than 50 developers. The mean and median numbers of
developers are 19.9 and 32, respectively.

5) Coverage: Sonar provides information of the overall cov-
erage for the project. Fig. 1(e) shows the distribution of coverage
across all the projects in our dataset. Thirty-seven projects have
less than 25% coverage, 32 projects have coverage between 25%
and 50%, 23 projects have coverage between 50% and 75%, and
8 projects have greater than 75% coverage.

6) Efferent Couplings (EC): Efferent couplings is a measure
of the number of classes used by a specific class. Coupling
between classes can occur through method calls, field accesses,
inheritance, arguments, return types, and exceptions. A large
value of efferent coupling indicates that the stability of one
class is dependent on the stability of other classes and makes the
software a tightly coupled system, which is difficult to maintain,
test, and reuse [35].

7) Delta: Delta represents the number of changes made to
the files during the development of the particular version of the
software. Classes that are changed more often have a higher
value of delta and are usually unstable [39]. Delta has been
found to be a better predictor of the number of faults than other
metrics such as LOC [16]. We use git tags to find all the tags
of a repository and check the website of the project to find the
stable version immediately preceding the version that we have

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 5
31 81 3

30
30

Number of Projects
Number of Projects

10
10

\Gg

o2
\cg(“ \»\Q ?

‘33‘#\ '\QQQ\ QQ\(\
g8 \cad*‘ 2

(@

Number of Projects

S\ S\ O\
\\f\ \»\Qfl' @653 7
(d

2

Fig. 1.

selected for our dataset. Then, we collect all of the commits
between the previous stable version and the chosen one. Based
on these commits, we collect all the files that were changed
between these two versions. The number of changes to a file
is then the number of times the file is checked in by different
commits. Finally, we normalize the number of changes to a file
(or the number of commits that touch a file) by the number of
months between current version and previous stable version.
We do this in order to remove any biasing in a project since
each project has a different time gap between the current and
the previous version.

IV. FINDINGS

In this section, we investigate our research questions and
present the results.

A. RQI: Coverage and Defects (Project Level)

In this question, we investigate the correlation between code
coverage and postrelease defects at the project level.

1) Motivation: Code coverage gives us an idea of the thor-
oughness of testing by providing information about the amount
of code that is tested. Increasing coverage, however, requires
more work in terms of test case development, and may also
increase the test suite running time. Thus, it is useful to under-
stand whether an increase in code coverage is likely to lead to a
decrease in postrelease bugs.

Number of Projects

Number of Projects

2
\Q'}

60\

19 G
AR A

(e)

Distribution of projects. (a) Number of lines of code. (b) Cyclomatic complexity. (c) Test cases. (d) Number of developers. (e) Coverage (in %).

TABLE 1
DISTRIBUTION OF BUGS, TEST CASES, AND COVERAGE

Lines of Number of Number of Number of Code
Code (LOC) Projects Bugs Test Cases Coverage
(Average) (Average) (Average)
>5000 — < 10 000 13 5.769 236.000 40.654
>10 000 — < 25 000 36 14.250 484.361 44.389
>25 000 — < 50 000 24 16.958 450.500 35.425
>50 000 — < 100 000 13 44.615 957.077 32.792
>100 000 14 49.357 3354.214 26.714

2) Methodology: We calculate LOC, coverage, cyclomatic
complexity, and efferent couplings values by running Sonar
for every release. We analyze the projects’ JIRA bug reposi-
tories to calculate the number of postrelease bugs. The detail
on how the number of postrelease bugs is computed by analyz-
ing JIRA repositories is provided in Section III-A. We derive
additional metrics such as number of bugs/LOC, number of
bugs/complexity and coverage/complexity. We then compute
correlations between coverage and various metrics to answer
this research question.

3) Findings: First, we report the total number of bugs
present in the projects segregated based on the LOC (see Ta-
ble I). We can observe that the number of bugs increases with
the size of the projects. The 13 projects having size between
5000 and 10 000 LOC have 75 reported bugs, whereas the 13

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY
3
g 1 ° h ™ *
p= . 221 . .
) . 8o - 3 |
83 S8 ; o .
52 ¢ @ O QO
Qo 2 o . O S A °
3 . 4
5 © |2 . ; 5°| . . '
3 . 5 " d .o g | " o
£ 5O = . .
. = o . .
28". % - . 'gg_ % . e % . S 58_ * .o.’ . . ~.
P . . . 3506 |« . . . e 2 o .
* I z . LS E N
. L . 7 oo * . o é b : ot e e :
Sooeliima s et Sds o Wapla vl . car 0
o 4 :.’. -'..’ .":.:...'.°° '..’. . * §7 -. % o . ; . - §7 .’::'..'. '.’.’ . E .
0 20 40 60 80 S o 20 60 80 © 0 20 40 60 80
Coverage Coverage Coverage
(a) (b) ©
3= 8
A o
P .
. O - 7 . :
53 . 3§
a~| 59
B ' 2% = -
o . 5 1" . s
e} .
E o | we 32 s .
ém‘o'“ . -28—..0..... R . .
N ERARY .
0 b ':. T e H ¢
PRI S U S g [. *
P §?"~ .
000 001 002 003 004 S000 001 002 003 004
Coverage/Complexity Coverage/Complexity
(d) (e
Fig. 2. Spearman’s (p) and Kendall’s (7) correlations with p-values at the project level: (a) Coverage versus number of bugs p = —0.059, p-value = 0.559 7

= —0.043, p-value = 0.531. (b) Coverage versus number of bugs/LOC p = 0.157, p-value = 0.117 7 = 0.105, p-value = 0.124. (c) Coverage versus number of
bugs/complexity p = 0.139, p-value = 0.168 7 = 0.086, p-value = 0.203. (d) Coverage/complexity versus number of bugs p = —0.359, p-value = 0.0002 7 =
—0.253, p-value = 0.0002. (e) Coverage/complexity versus number of bugs/LOC p = 0.175, p-value = 0.082 7 = 0.116, p-value = 0.089.

projects present in the range 50 000—100 000 LOC have 580
reported bugs. The 14 projects having size above 100 000 LOC
have the largest number of reported bugs, 691.

Next, we analyze the correlation between the amount of code
coverage and the number of bugs. We want to determine whether
the number of postrelease bugs decreases with an increase in
the coverage of the software. Our null hypothesis is that there is
no significant correlation between the coverage and number of
bugs, whereas the alternate hypothesis is that there is a signif-
icant correlation between these two variables. Fig. 2(a) depicts
the correlation between code coverage and the number of bugs.
The coverage levels for all the projects span from 0.1% to 93%
with an average value of 37.76%. From the figure, we can ob-
serve that as the coverage increases, there is no reduction in the
number of bugs. The Spearman’s p value is —0.059 (p-value
= 0.559) and Kendall’s 7 value is —0.043 (p-value = 0.531),
which shows that there is a statistically insignificant correlation
(p-value > 0.05) between code coverage and the number of
bugs. As such, we cannot reject the null hypothesis.

Since our dataset consists of projects that are of varying size
and complexity, we divide the number of bugs by the number
of LOC and complexity to more fairly compare the different
projects. We perform a correlation to analyze the impact of cov-
erage on the number of bugs normalized by metrics (LOC and
complexity). The null hypotheses are that there are no signifi-
cant correlations of coverage with the number of bugs/LOC and
the number of bugs/complexity, while the alternate hypotheses

state that there are significant correlations between coverage and
these metrics. Fig. 2(b) and (c) shows the correlation between
coverage and these metrics. The Spearman’s p and Kendall’s
7 for coverage versus the number of bugs/LOC (p = 0.157,
p-value = 0.117; 7 = 0.105, p-value = 0.124) and the number
of bugs/complexity (p = 0.138, p-value = 0.168; 7 = 0.086,
p-value = 0.203) show insignificant correlations between the
number of bugs/LOC and the number of bugs/complexity with
code coverage. Thus, we cannot reject the null hypotheses.
Furthermore, we define a new metric called normalized cover-
age where we divide the coverage level of a project by its cyclo-
matic complexity. This allows more fairly comparing projects
having the same coverage but different complexity values. Our
previous study [26] shows that larger as well as more com-
plex projects exhibit low coverage, whereas smaller and less
complex projects have higher coverage. As projects with higher
complexity are commonly considered to be more difficult to
test, if two projects have the same coverage level, their relative
complexity reflects the amount of effort put in by developers
during testing to achieve that coverage value. We define null hy-
potheses in this case as there are no significant correlations be-
tween the coverage/complexity with the number of bugs and the
coverage/complexity with the number of bugs/LOC. The alter-
nate hypotheses are that there are significant correlations be-
tween the coverage/complexity with the number of bugs and the
coverage/complexity with the number of bugs/LOC. Fig. 2(d)
and (e) shows the correlation of normalized coverage with the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 7

TABLE II
SPEARMAN’S (p) AND KENDALL’S (7) CORRELATIONS BETWEEN COVERAGE AND DIFFERENT METRICS AT THE PROJECT
LEVEL FOR THREE CATEGORIES: SMALL SIZE, MEDIUM SIZE, AND LARGE SIZE PROJECTS

Correlations p p-value T p-value
Small Size Projects (<13 562 LOC) Coverage versus Number of bugs 0.084 0.691 0.038 0.814
Coverage versus Number of bugs/LOC 0.170 0.418 0.101 0.497
Coverage versus Number of bugs/Complexity 0.124 0.554 0.061 0.691
Coverage/Complexity versus Number of bugs —0.143 0.496 —0.127 0.397
Coverage/Complexity versus Number of bugs/LOC ~ —0.009 0.965 —0.034 0.833
Medium Size Projects (>13 562 & <52 890 LOC) Coverage versus Number of bugs 0.005 0.973 0.007 0.953
Coverage versus Number of bugs/LOC 0.049 0.733 0.040 0.688
Coverage versus Number of bugs/Complexity 0.024 0.870 0.017 0.867
Coverage/Complexity versus Number of bugs —0.039 0.790 —0.030 0.769
Coverage/Complexity versus Number of bugs/LOC 0.115 0.425 0.079 0.422
Large Size Projects (>52 890 LOC) Coverage versus Number of bugs 0.135 0.521 0.097 0.513
Coverage versus Number of bugs/LOC 0.205 0.323 0.127 0.388
Coverage versus Number of bugs/Complexity 0.243 0.241 0.160 0.272
Coverage/Complexity versus Number of bugs —0.020 0.926 0.017 0.926
Coverage/Complexity versus Number of bugs/LOC 0.348 0.088 0.267 0.065
TABLE III
SPEARMAN’S (p) AND KENDALL'’S (7) CORRELATIONS BETWEEN COVERAGE AND DIFFERENT METRICS
AT THE PROJECT LEVEL FOR LOW AND HIGH COMPLEXITY PROJECTS
Correlations p p-value T p-value

Low Complexity Projects (<5713) Coverage versus Number of bugs 0.005 0.974 —0.001 1.000

Coverage versus Number of bugs/LOC 0.074 0.611 0.053 0.598

Coverage versus Number of bugs/Complexity 0.030 0.835 0.007 0.953

Coverage/Complexity versus Number of bugs —-0.231 0.107 —0.175 0.080

Coverage/Complexity versus Number of bugs/LOC ~ —0.059 0.682 —0.043 0.663

High Complexity Projects (>5713) Coverage versus Number of bugs —0.025 0.865 —-0.014 0.893

Coverage versus Number of bugs/LOC 0.137 0.341 0.085 0.389

Coverage versus Number of bugs/Complexity 0.136 0.348 0.092 0.353

Coverage/Complexity versus Number of bugs —-0.274 0.054 —0.185 0.061

Coverage/Complexity versus Number of bugs/LOC 0.123 0.394 0.080 0.417

number of bugs and the number of bugs/LOC, respectively. The
graph shows that the number of bugs decreases with the in-
crease in the value of normalized coverage. The Spearman’s
p and Kendall’s 7 values are —0.359 (p-value = 0.0002) and
—0.253 (p-value = 0.0002), respectively, which shows a mod-
erate negative correlation between normalized coverage and
the number of bugs. However, there is an insignificant cor-
relation between the normalized coverage and the number of
bugs/LOC (p = 0.175, p-value = 0.081; 7 = 0.116, p-value
= 0.089). Thus, we can reject the null hypothesis for cov-
erage/complexity and the number of bugs, but cannot reject
the null hypothesis for coverage/complexity and the number of
bugs/LOC.

To understand the correlations between coverage and various
metrics for projects of different sizes, we divide the dataset into
different categories based on the project size. We compute quar-
tiles to divide the projects into three categories: Those whose
size is less than the lower quartile (25% of the projects), those
whose size is between the lower and upper quartile (50% of
the projects), and those whose size is above the upper quar-
tile (25% of the projects). We name these three categories as
small (<13 562 LOC), medium (>13 562 LOC & <52 890
LOC), and large (>52 890 LOC), respectively. We then compute
correlations for each category separately. The null hypotheses

are that there are no significant correlations between cover-
age and various metrics for projects of different sizes, while
the alternate hypotheses state that there are significant correla-
tions between coverage and various metrics. Table II shows the
Spearman’s and Kendall’s correlations between coverage and
different metrics for the three categories. We observe that the
correlations are insignificant (p-value > 0.05) for all the cat-
egories. Thus, we cannot reject the null hypothesis for all the
correlations.

To understand the correlations between coverage and vari-
ous metrics for projects of different cyclomatic complexities,
we divide our dataset into two categories based on the me-
dian value of cyclomatic complexity: low complexity (<5713)
and high complexity (>5713). We then compute correlations
between coverage and different metrics for each of the two
categories. The null hypotheses state that there are no signif-
icant correlations between coverage and various metrics for
low and high complexity projects. Our alternative hypothe-
ses are that there are significant correlations between coverage
and various metrics for projects with low and high complexity.
Table III shows the different correlations. From the results, we
observe that all the correlations are insignificant (p-value >
0.05) for all the categories. As such, we cannot reject the null
hypotheses.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY

. eI, . o O o c0s ¢ come wwwm wemews
o -~ =
OO . €°q_ @ |
o8- 2° o°].
Jo: . & r .
? : 5 @
=) . O 9 Do |
284, B3 C | F-iC)
».60' M . : =3 . . . 5 e e o oo mmeseem me ses o o @ o mmes oo
b 2 < o Y.
2o 5 © R-We]
€ o b . . . € o so o e o @ ees wm ees somess o
3 g | . 5 @ o] By le eemeve b owe 2 amie e
28 ES. Nlh s eome o gym soom’ smses o
S 5 : . RS A
2 i E Feo P Al
. et ettt et
3 o | . o |k~ - o Setetent
[=) o - oL T T T T T
0 20 40 60 80 100
Coverage Coverage Coverage
(a) (b) ©
w0 e .
=)
(=}
< 4. @) M
173 o8]
- S . .
j=2) = O
2wl ot
5 284,
— = O .
g 5 . . .
EN—... Eg_ . .
S (=} .
= EN sl .
— - eommsememe o o . . o e s
[S] 2
o - - o 8— : Se
T : T T r T c Y T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Coverage/Complexity Coverage/Complexity

(d

Fig.3. Spearman’s (p) and Kendall’s (7) correlations with p-values at the file |
—0.021, p-value = 1.648¢795. (b) Coverage versus number of bugs/comp

Coverage versus number of bugs/EC p = —0.023, p-value = 1.783¢ %7 = —
—0.030, p-value = 4.034e Y87 = —0.026, p-value = 4.026e "% (e) Coverage/Complexity versus number of bugs/LOC p = —0.029, p-value = 4.453¢ 8+

—0.026, p-value = 4.904¢ 798,

(©

evel: (a) Coverage versus number of bugs/LOC p = —0.023, p-value = 1 .7]06_’05 T
lexity p = —0.023, p-value = 1.691e %7 = —0.021, p-value = 1.626¢ 2. (c)
0.021, p-value = 1.761e795. (d) Coverage/Complexity versus number of bugs p

At the project level, code coverage has an insignificant corre-
lation with the number of bugs as well as with the number of
bugs per LOC and the number of bugs per complexity. Cov-
erage/complexity has a moderate negative correlation with the
number of bugs and an insignificant correlation with the number
of bugs/LOC. By categorizing projects based on size and com-
plexity, we observe an insignificant correlation between cover-
age and other metrics.

B. RQ2: Coverage and Defects (File Level)

Here, we investigate the correlation between the coverage
level of each file and the number of bugs associated with that
file. We also assess the number of bugs in terms of other metrics
such as cyclomatic complexity, LOC, and efferent couplings.

1) Motivation: The coverage level provides information
about the testedness of a project. However, a project may con-
sist of many source code files with diverse properties. Thus, we
want to analyze the correlation between coverage and postre-
lease bugs at the file level. Analyzing this correlation can en-
hance our understanding of the impact of coverage on the bugs
reported after the release of the software and exhibit which files
are adequately tested.

2) Methodology: We calculate LOC, coverage, cyclomatic
complexity, and efferent couplings values by running Sonar for

every release. Sonar provides these values for all the files within
a release. We analyze the projects’ JIRA bug repositories to
calculate the number of postrelease bugs for each file. The detail
on how the number of postrelease bugs per file is computed
by analyzing JIRA repositories is provided in Section III-A.
Similar to the project level, we derive additional metrics such
as the number of bugs/LOC, number of bugs/complexity and
coverage/complexity. We then compute correlations between the
coverage and various metrics to answer this research question.

3) Findings: We normalize the number of bugs by three
metrics: LOC, cyclomatic complexity, and efferent couplings.
Fig. 3(a), (b), and (c) shows the correlation between the cover-
age and the normalized metrics number of bugs/LOC, number
of bugs/Complexity, and number of bugs/EC, respectively. All
three graphs are fitted to the same scale for comparison. We can
observe that all the graphs show a similar trend, i.e., there is no
correlation between coverage and the other metrics. With the
increase in the coverage value, we do not observe a reduction in
the number of bugs.

To confirm the behavior observed in Fig. 3(a)—(c), we use
Spearman’s and Kendall’s correlations between the coverage
and the number of bugs/LOC, number of bugs/CC, and number
of bugs/EC. Our null hypotheses are that there are no significant
correlations between the coverage and the number of bugs/LOC,
number of bugs/CC, and number of bugs/EC, whereas the al-
ternative hypotheses state that there are significant correlations

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 9

TABLE IV
SPEARMAN’S AND KENDALL’S CORRELATIONS BETWEEN COVERAGE AND
SOFTWARE METRICS AT THE FILE LEVEL

Number of Number of Number of
bugs/LOC bugs/CC bugs/EC
Spearman p —0.023 —0.023 —0.023
p-value 1.710e7%° 1.691e 9% 1.783¢70%
Kendall T —0.021 —0.021 —0.021
p-value 1.648¢70° 1.626e 0% 1.761e795

between the coverage and the number of bugs/LOC, number of
bugs/CC, and number of bugs/EC. Table IV shows the corre-
lations among these variables. We can observe that there is no
correlation between the coverage and any of the other three met-
rics, however, all the correlations are significant. Thus, we can
reject the null hypothesis for all the correlations. This confirms
that the coverage has no impact on the number of postrelease
bugs at the file level.

Table V shows the distribution of files segregated based on
the different coverage levels and several metrics, such as cyclo-
matic complexity, LOC, and efferent couplings added over all
the files. The values in parentheses specify the average values
of the respective metrics. The total number of bugs/file for the
files having coverage level 0%—30% is 2.23 times more than the
number of bugs/file present in files having coverage over 80%,
since the number of files in the range 0%-30% is very high
(2.8 times files with coverage over 80%). The largest number
of bugs per file (mean value), largest value of complexity per
file, and largest value of LOC per file are in the coverage level
30%—60%,1i.e.,0.031,33.38, and 140.48, respectively. The max-
imum value of efferent couplings per file is 5.04 (60%—-80%). We
can observe that with the increase in coverage above 30%, the
average values of LOC, complexity and couplings decrease. On
the other hand, files having 0%—30% coverage have lower values
of LOC per file, complexity per file, and couplings per file than
the corresponding values in other coverage levels (30%—60%
and 60%-80%). This could be due to very large number files
having 0%-30% coverage, i.e., 20 212 which is much higher
than the number of files present in other coverage levels.

Tables VI and VII show the Spearman’s and Kendall’s corre-
lations among the variables collected for all the files. The null
hypotheses are that there are no significant correlations between
various metrics such as LOC and line coverage, etc. Our al-
ternative hypotheses in this case are that there are significant
correlations between various metrics. We can observe that

1) the p value for line coverage versus the number of bugs is

—0.023 (p-value = 2.732¢7"%);
2) the p value for branch coverage versus the number of bugs
is —0.003 (p-value = 0.590).

Similar values are observed for Kendall’s correlation. This
shows that the number of bugs has no correlation with line
coverage and an insignificant correlation with branch coverage.
The number of bugs has a small correlation with delta (number
of file changes), i.e., 0.121 (p-value < 2.2¢716), whereas the
number of bugs has no correlation with cyclomatic complexity

and efferent couplings. We can reject the null hypothesis for
all the correlations except cyclomatic complexity versus line
coverage and the number of bugs versus branch coverage. Our
results are contrary to what was observed by Mockus et al. [30].
They found that coverage has a small negative correlation with
the postrelease defects for the Avaya project and a positive
correlation with the postrelease defects for Microsoft project.
Furthermore, their results show that the number of failures has
a strong correlation with LOC, delta, efferent couplings (which
they called FanOut [30]), and cyclomatic complexity, whereas
our results show no such correlation between these metrics, ex-
cept between the number of bugs and efferent couplings, where
the correlation is also very small.

A project contains files with different values of complexity
and coverage. If we combine complexity and coverage, there
can be four different cases: high complexity and low coverage,
low complexity and low coverage, high complexity and high
coverage, and low complexity and high coverage. In the first
case, the high complexity suggests that it is difficult to test
the file and thus the low coverage means this file should have
more bugs. Second, when the coverage is low, the file should
have a lower number of bugs as compared to first case since the
complexity is low. Although the complexity is high in the third
case, the files having these characteristics should contain fewer
bugs than the files in the first two cases, since the coverage is
high. In the last case, complexity is low and higher coverage
means that these files should have the fewest bugs.

Similar to the project level, we normalize the coverage val-
ues of the files with their respective complexity values. Our
null hypotheses are that there are no significant correlations
between coverage/complexity with the number of bugs and
coverage/complexity with the number of bugs/LOC. The al-
ternate hypotheses are that there are significant correlations be-
tween coverage/complexity with the number of bugs and cover-
age/complexity with the number of bugs/LOC. Fig. 3(d) shows
the correlation between coverage/complexity and the number
of postrelease bugs found in the class files. We can observe
that there is no correlation even after we normalize the cov-
erage by complexity. The Spearman’s p is —0.030 (p-value =
4.034e79%) and Kendall’s 7 is —0.026 (p-value = 4.026e %)
confirming that there is no correlation between these two met-
rics. Furthermore, we normalize the number of bugs by LOC,
to make it easier to compare files of different sizes. Fig. 3(e)
shows the correlation between the number of bugs per LOC and
normalized coverage. The Spearman’s p value is —0.029 (p-
value = 4.453e¢°%) and Kendall’s 7 value is —0.026 (p-value =
4.904¢79%), which shows that there is no correlation. The cor-
relations are significant, thus, we can reject the null hypotheses
for both the cases.

Furthermore, to understand the impact of factors such as cov-
erage, cyclomatic complexity, delta, and efferent couplings on
the number of postrelease bugs, we use a negative binomial re-
gresssion (NBR) model, which is a type of generalized linear
model for modeling count variables. NBR is appropriate for our
study as it can handle overdispersion, for example, cases where
the variance of the response variable is greater than the mean [9].
We learn a regression model with similar predictor variables as

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY
TABLE V
COUNTS ADDED OVER ALL THE CLASS FILES
Coverage >0%, <30% >30%, <60% >60%, <80% >80%
Number of Bugs 588 (0.029) 84 (0.031) 78 (0.021) 91 (0.013)
Lines of Code (LOC) 2186998 (108.20) 384 073 (140.48) 502981 (138.03) 633 969 (87.95)
Cyclomatic Complexity (CC) 487 234 (24.11) 91 270 (33.38) 118 305 (32.47) 139952 (19.42)
Efferent Couplings (EC) 83101 (4.11) 13 066 (4.78) 18 361 (5.04) 32972 (4.57)
Files 20212 2734 3644 7208
TABLE VI
SPEARMAN’S CORRELATIONS AMONG THE VARIABLES
Number of Bugs Lines of Code Delta Efferent Couplings Cyclomatic Complexity Line Coverage Branch Coverage
Number of Bugs 1 0.105* 0.141% 0.061* 0.098* —0.023* —0.003
Lines of Code 1 0.262* 0.457* 0.927* —0.013* 0.279*
Delta 1 0.172* 0.260* 0.033* 0.106*
Efferent Couplings 1 0.433* 0.079* 0.184*
Cyclomatic Complexity 1 0.002 0.318*
Line Coverage 1 0.713*
Branch Coverage 1
*p < 0.05.
TABLE VII
KENDALL’S CORRELATIONS AMONG THE VARIABLES
Number of Bugs Lines of Code Delta Efferent Couplings Cyclomatic Complexity Line Coverage Branch Coverage
Number of Bugs 1 0.086* 0.132* 0.053* 0.081* —0.020* —0.003
Lines of Code 1 0.205* 0.339* 0.795* —0.010* 0.209*
Delta 1 0.142* 0.206* 0.027* 0.091*
Efferent Couplings 1 0.325% 0.061* 0.149*
Cyclomatic Complexity 1 0.002 0.241*
Line Coverage 1 0.656*

Branch Coverage

1

*p < 0.05.

those used by Mockus et al. [30], i.e., delta, efferent couplings,
and branch coverage. The regression equation is shown in (3).
In the equation, (31, 32, (33, and 34 are the regression coefficients
of the predictor variables. They represent the difference in the
logs of expected number of bugs for one-unit difference in any
one of the predictor variables when all others are held constant.
The intercept value («) shows the expected number of bugs if
the predictor variables (i.e., cyclomatic complexity, delta, effer-
ent couplings, and branch coverage) are all zero. However, for
our case, the predictor variables are never all zeroes, and thus
the intercept value has no intrinsic meaning. It does not tell us
any relationship between the predictor variables and the num-
ber of bugs. We learn the coefficients of the model by using R,
in particular we use glm.nb function provided by the MASS'*
package.

To check for excessive multicollinearity, we compute the vari-
ance inflation factor (VIF) of each dependent variable in our
model. We compare the VIF value computed from our data with
the commonly used value of VIF equal to 5 [9]. We find that
including LOC and complexity in the model leads to a very high

4https://cran.1-project.org/web/packages/MASS/MASS.pdf

value of VIF. Thus, we remove LOC from the model. Similarly,
line and branch coverage are strongly correlated with each other,
and therefore, we only include branch coverage. Thus, in all, we
use the four predictor variables: branch coverage, complexity,
efferent couplings, and delta to estimate the value of the re-
sponse variable, i.e., the number of postrelease bugs. We also
performed a Vuong test to compare NBR with other models
such as Poisson and find that NBR has a significant improve-
ment over Poisson (p-value = 0.000). Thus, we use the NBR
model to analyze our data

Number of postrelease bugs = a + ; Cyclomatic Complexity
+ (2 Delta
+ (33 Efferent Couplings
+ 3, Branch Coverage + .
3)

Table VIII shows the result of the NBR model. The null hy-
pothesis for regression is that coverage has no significant effect
on the number of postrelease bugs when all other variables are
held constant, whereas the alternative hypothesis is that cover-
age has an effect on the number of postrelease bugs. The values

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 11

TABLE VIII
NEGATIVE BINOMIAL REGRESSION MODEL AIC = 7567.55, BIC = 7618.11,
LOG LIKELIHOOD = —3777.77, DEVIANCE = 4313.76, NUMBER OF
OBSERVATIONS = 33 798

Estimate Std. Error z-value Pr(>|z])
(Intercept) —3.983 0.048 —82.991 < 2¢716
Cyclomatic Complexity 0.003 0.000 6.340 229710
Delta 0.072 0.004 16.050 < 2e716 o
Efferent Couplings 0.017 0.004 3.828 0.000 o
Branch Coverage —0.003 0.001 —2.739 0.006 o

“p < 0.001,"p < 0.01.

under the Estimate column show the impact of all four factors
on the number of postrelease bugs. The intercept value (also
called as constant) is the expected mean value of response vari-
able, i.e., the number of postrelease bugs when all the predictor
variables are zero. We can read the coefficients as that for one
unit change in the predictor variable, with all other predictor
variables held constant, the difference in the logs of expected
counts of the response variable is expected to change by the
value given by the regression coefficient. For example, one unit
increase in the value of branch coverage is expected to reduce
the logs of the expected count values by 0.003. Thus, one unit
increase in branch coverage will lead to a decrease in the num-
ber of bugs by €’-°3 = 1.003 or 0.3% change. Our regression
results are similar to the findings of Mockus et al. [30], who
find that higher coverage is associated with lower number of
bugs, however, the effect is very small. Our results show a small
yet significant effect of coverage on the number of postrelease
bugs. Thus, we can reject the null hypothesis.

To understand the correlations between coverage and various
metrics for files, we divide the dataset into different categories
based on the size of the project they belong to. We club files
based on the corresponding project size: small (<13 562 LOC),
medium (>13 562 LOC & <52 890 LOC) and large (>52 890
LOC). We then compute correlations for each category sepa-
rately. Table IX shows the correlations between coverage and
different metrics for the three categories. The null hypotheses
in this case are that there are no significant correlations between
coverage and various metrics for files present in projects of dif-
ferent sizes, while the alternate hypotheses state that there are
significant correlations between coverage and various metrics.
We observe that for files present in projects of small and large
sizes, the correlations between coverage and different metrics
are insignificant. For files in medium projects, we observe no
correlation between coverage and different metrics. From the
p-values, we can reject the null hypothesis for files in medium
size projects, however, we cannot reject the null hypotheses for
files in small and large size projects.

To understand the correlations between coverage and various
metrics for files of projects with different cyclomatic complexi-
ties, we group files based on project complexity. We divide our
dataset into two categories based on the median value of project
cyclomatic complexity: low complexity (<5713) and high com-
plexity (>5713). We then compute correlations between cover-
age and different metrics for each of the two categories. The null

hypotheses in this case are that there are no significant correla-
tions between coverage and various metrics for files present in
low- and high complexity projects, while the alternate hypothe-
ses state that there are significant correlations between coverage
and various metrics in these two categories. Table X shows that
there is a small correlation between coverage/complexity and
the number of bugs, and coverage/complexity and the number
of bugs/LOC for files present in projects with low complexity.
For all other metrics, we observe no correlation between cov-
erage and each metric. On the other hand, for files present in
projects with high complexity, we observe that correlation be-
tween coverage and each metric is insignificant. Thus, we can
reject the null hypothesis for files in low complexity projects,
however, we cannot reject the null hypotheses for files in high
complexity projects.

At the file level, coverage has no correlation with the num-
ber of postrelease bugs, number of bugs/LOC, number of
bugs/complexity and number of bugs/efferent couplings. Furthe-
more, coverage/complexity has no correlation with the number of
bugs as well as number of bugs/LOC. From the regression model,
we find that the number of bugs decreases with the increase in
the value of coverage, although the impact is very small. By
categorizing files based on size of the project they belong to, we
observe no correlation between coverage and other metrics for
files in medium-sized projects and insignificant correlation for
files in small and large projects. For files present in low and high
complexity projects, we observe no and insignificant correlation
between coverage and various metrics, respectively.

V. THREATS TO VALIDITY

In this section, we describe several threats to validity for our
empirical study.

A. External Validity

These threats relate to the generalizability of the results. In
this study, we have investigated 100 large and popular open-
source Java projects from GitHub. GitHub is one of the largest
repositories and hosts millions of projects of different sizes and
from various domains. We have tried to ensure that our dataset
consists of projects of substantial size (>5K LOC).

B. Internal Validity

These threats are related to the environment under which
experiments were carried out. We use Sonar to calculate sev-
eral metrics such as LOC, cyclomatic complexity, number of
test cases, and code coverage. Sonar uses Maven’s directory
structure to calculate these metrics. In this study, we do not con-
sider projects that do not use Maven, i.e., they do not contain a
pom.xml file. It is possible that projects that do not entirely fol-
low Maven’s structure may be interpreted wrongly. This could
lead to Maven wrongly calculating certain metrics such LOC
or miss test cases in the project, which can affect the coverage
value. We have manually checked a few projects and they fully
conform to the Maven directory structure. While counting the
delta (number of times a file is changed), we use a major version

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY

TABLE IX
SPEARMAN’S (p) AND KENDALL’S (7) CORRELATIONS BETWEEN COVERAGE AND DIFFERENT METRICS AT THE FILE LEVEL
FOR THREE CATEGORIES: SMALL SIZE, MEDIUM SIZE, AND LARGE SIZE PROJECTS

Correlations p p-value T p-value
Files in Small Size Projects (<13 562 LOC) Coverage versus number of bugs 0.004 0.843 0.004 0.843
Coverage versus number of bugs/LOC 0.004 0.843 0.004 0.841
Coverage versus number of bugs/complexity 0.004 0.848 0.004 0.847
Coverage/Complexity versus number of bugs —0.026 0.237 —0.023 0.237
Coverage/Complexity versus number of bugs/LOC —0.026 0.239 —0.022 0.240
Files in Medium Size Projects (>13 562 & <52 890 LOC) Coverage versus number of bugs —0.053 2.435¢79% —0.047 2.494¢08
Coverage versus number of bugs/LOC —0.053 1.808¢7 "% —0.047 1.770e 0%
Coverage versus number of bugs/complexity —0.053 1.630e7 "% —0.047 1.578¢0%
Coverage/Complexity versus number of bugs —0.067 1.612¢7*2 —0.059 1.720e 2
Coverage/Complexity versus number of bugs/LOC —0.067 1.477e7'2 —0.059 1.459¢ 12
Files in Large Size Projects (>52 890 LOC) Coverage versus number of bugs —0.004 0.546 —0.004 0.546
Coverage versus number of bugs/LOC —0.004 0.545 —0.004 0.545
Coverage versus number of bugs/complexity —0.004 0.553 —0.004 0.554
Coverage/Complexity versus number of bugs —0.006 0.409 —0.005 0.408
Coverage/Complexity versus number of bugs/LOC —0.006 0.427 —0.005 0.444
TABLE X
SPEARMAN'’S (p) AND KENDALL'’S (7) CORRELATIONS BETWEEN COVERAGE AND DIFFERENT METRICS
AT THE FILE LEVEL FOR LOW AND HIGH COMPLEXITY PROJECTS
Correlations p p-value T p-value
Files in Low Complexity Projects (<5713) Coverage versus number of bugs —0.093 1.495¢7!'2 —0.081 1.696e7!3
Coverage versus number of bugs/LOC —0.093 1.00le"'®* —0.081 1.00le”'?
Coverage versus number of bugs/complexity —0.094 7.75le”'* —0.082 7.342¢7 !4
Coverage/Complexity versus number of bugs —0.113 <2.2¢716 —0.098 <2216
Coverage/Complexity versus number of bugs/LOC ~ —0.113 <2.2¢716 —0.098 <2.2¢7'6
Files in High Complexity Projects (>5713) Coverage versus number of bugs —0.007 0.245 —0.006 0.245
Coverage versus number of bugs/LOC —0.007 0.240 —0.006 0.239
Coverage versus number of bugs/complexity —0.007 0.244 —0.006 0.243
Coverage/Complexity versus number of bugs —0.010 0.099 —0.009 0.098
Coverage/Complexity versus number of bugs/LOC ~ —0.010 0.103 —0.009 0.107

previous to the current checked out version because it is diffi-
cult to find the exact previous version in the repository. So, we
may have wrongly identified the number of times the files have
changed. Furthermore, while collecting bugs at the file level, we
used bug keys, which were collected at the project level from
JIRA. Some of these bug keys were not mentioned in any of
the git logs, so we could not identify the files that were changed
in order to solve those bugs. That may have led to nonidentifi-
cation of files which were buggy. However, we believe this is
a common problem when working with open-source systems
since developers are not forced to tag bug fixes according to the
bug key.

VI. RELATED WORK

In this section, we describe several past studies on software
testing, code coverage, and analysis of open-source projects.
Our survey is by no means complete.

A. Studies on Testing and Code Coverage

Past studies have analyzed the importance of testing on the
overall quality of the software. Our work is closely related to the
study conducted by Mockus et al. [30], where they investigate

two industrial software projects from Microsoft and Avaya with
the goal of understanding the impact of coverage on test effec-
tiveness. They also calculate the amount of test effort required
to achieve different coverage levels. Their results show that in-
creasing test coverage reduces field problems but increases the
amount of effort required for testing.

Ahmed et al. analyze a large number of systems from GitHub
and Apache and propose a novel evaluation of two commonly
used measures of test suite quality: statement coverage and mu-
tation score, i.e., the percentage of mutants killed [1]. They
compute test suite quality by correlating testedness of a program
element (class, method, statement, or block) with the number
of bug-fixes. They define testedness as how well a program el-
ement is tested, which can be measured using metrics such as
coverage and mutation score. They find that statement cover-
age and mutation score have a weak negative correlation with
bug-fixes. However, program elements covered by at least one
test case have half as many bug-fixes compared to elements not
covered by any test case. Cai and Lyu use coverage and muta-
tion testing to analyze the relationship between code coverage
and fault detection capability of test cases [7]. Cai performs an
empirical investigation to study the fault detection capability of
code coverage and finds that code coverage is a moderate indi-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 13

cator of fault detection when used for all the test set [6]. The
author also develops two reliability models that use execution
time and code coverage to analyze the effect of coverage on
reliability.

Zhu et al. survey several research studies to examine test
adequacy criteria and their role in dynamic testing [41]. Leon
and Podgurski empirically compare four techniques for their
effectiveness in finding defects: test suite minimization, prior-
itization by additional coverage, cluster filtering with one-per-
cluster sampling, and failure pursuit sampling [28]. They show
that a combination of distribution-based (based on distribution
of tests’ execution profiles) and coverage-based filtering tech-
niques is effective in prioritizing test cases and reveals more
defects than using the either one alone. Andrews et al. use four
different types of coverage (block, decision, C-Use, and P-Use)
and mutants to examine the relationship between test suite size,
fault detection, and coverage [2]. They show that effectiveness is
correlated with all the coverage types. In this study, we analyze
a different problem, i.e., whether there is a correlation between
coverage and the number of bugs found after the release of the
software.

Inozemtseva et al. study five large Java systems to analyze
the relationship between the size of a test suite, coverage, and
the test suite’s effectiveness [18]. They measure different types
of coverage such as decision coverage, statement coverage, and
modified decision coverage and use mutants to evaluate the test
suite effectiveness. The results of their study show that the cov-
erage has a correlation with the effectiveness of a test suite when
the test suite’s size is ignored, whereas the correlation becomes
weak when the size of the test suite is controlled. They also
find that the type of coverage has little effect on the strength of
correlation. Gopinath et al. analyze thousands of projects from
GitHub to identify which coverage criteria is the best estimation
of fault detection [13]. They examine tests written by developers
as well as tests generated by the automated testing tool Randoop
to understand the ability of a test suite to kill mutants. They find
that statement coverage is the best coverage criteria to predict
the test suite quality. Kochhar et al. study two large open source
systems to analyze the relationship of coverage and its effective-
ness with real bugs logged in an issue tracking system [25]. They
use Randoop, an automatic test-generation tool, to generate test
suites on the fixed version and run those suites on the buggy
version to analyze the effectiveness of a test suite in killing
bugs. They find that coverage is moderately correlated with the
effectiveness of a test suite for one project, while strongly cor-
related for the other one. Namin and Andrews analyze a similar
problem on few small systems to see if higher coverage leads
to an increase in effectiveness [31]. They find that coverage is
related to effectiveness when size is controlled for, whereas size
and coverage both used together can lead to better prediction
of effectiveness. While the above studies analyze the effective-
ness of test suites and coverage in findings bugs, in this study,
we analyze the impact of code coverage on the number of real
bugs found after the release of the software for large software
systems.

Past studies have analyzed mutants, i.e., artificially injected
bugs and their suitability to be used as replacement for real bugs.

Andrews et al. use eight well-known C programs and run test
cases on real faults and mutants to compare the fault detection
ability of test suites on these two versions [3]. They use differ-
ent mutation operators such as deleting a statement, negating
the condition in an if or while statement etc. Their results show
that generated mutants are similar to the real faults but different
from hand-seeded faults and hand-seeded faults are harder to
detect than real faults. In another study, Just ez al. study whether
mutants are valid substitute for real faults, i.e., a test suite’s
ability to detect mutants is correlated with its ability to detect
real faults fixed by developers [20]. They use 5 open-source
programs having 357 real faults and find that there is a sta-
tistically significant correlation between mutant detection and
real fault detection, independent of code coverage. While the
above studies show that mutants are representative of real bugs,
however, other studies contradict the above argument. Gopinath
et al. analyze a large number of projects written in four lan-
guages, i.e., C, Java, Python, and Haskell [14]. They show that a
significant number of changes are larger than the common mu-
tation operators and different languages have different mutation
patterns. Namin and Kakarla show that mutation used in testing
experiments is highly sensitive to external threats such as test
suite size, mutation operators, and programming languages [32].
They suggest that generalization of findings based on mutation
should be justified by the factors involved.

In a previous study [26], we analyze the correlation between
code coverage and several software metrics such as LOC, cy-
clomatic complexity, and number of developers at the project
and file level. We find that a large number of projects exhibit
low coverage and when the size and complexity increases, cov-
erage decreases at the project level but increases at the file level.
In two other studies, we examine the correlation between the
number of test cases in a project with several metrics such as
programming languages, the number of bugs, the number of bug
reporters, and the number of developers [22], [23]. To count the
number of test cases, we used a heuristic, i.e., all the files that
contain the “test” in their file name. In this paper, we investi-
gate 100 large open-source projects from GitHub to analyze the
impact of code coverage on the number of postrelease bugs at
the project and file level. We use Sonar to calculate the number
of test cases and also to run test cases to analyze the impact of
coverage on real bugs.

B. Large-Scale Studies on GitHub

Jiang et al. collect thousands of forks from GitHub to under-
stand why and how developers fork what from GitHub [19].
They conduct surveys, analyze programming languages and
owners of forked repositories. They have several interesting
findings

1) developers forks repositories to submit pull requests, fix

bugs, add nee features, etc., and they use various sources
such as search engines, external sites (e.g., Twitter, Red-
dit), social relationships to find repositories to fork;

2) developers are more likely to fork repositories written in

their preferred language;

3) developers mostly fork repositories from creators.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhang et al. propose an approach to detect similar repositories
on GitHub [40]. They make use of GitHub stars and readme files
and use three heuristics:

1) repositories with similar readme file content are likely to

be similar;

2) repositories starred by users having similar interests are

likely to be similar;

3) respositories starred within a short period of time are likely

to be similar.

Based on these heuristics, they build a recommendation sys-
tem named RepoPal and compare it with state-of-the-art ap-
proach CLAN using 1000 repositories on GitHub. Sharma ez al.
collect 10 000 popular projects on GitHub and propose a cat-
aloging system to group similar projects into categories [33].
They automatically extract descriptive segments from readme
files and apply LDA-GA, a state-of-the-art topic modeling al-
gorithm that combines latent Dirichlet allocation (LDA) and
genetic algorithm (GA), to identify categories. Their approach
can identify new categories to complement existing GitHub cat-
egories and also identify new projects for existing categories.

Casalnuovo et al. study 69 C and C++ projects to understand
the correlation between asserts and defect occurrence and how
assertion use is related to ownership and experience of methods
by developers [8]. They find that assertions are widely used in
these projects and adding asserts has a small yet significant rela-
tionship with defect occurrence. They also find that asserts tend
to be added to methods with higher ownership and developers
with more experience have higher likelihood of adding asserts.
Kochhar and Lo perform a partial replication of Casalnuovo
et al. study [8] to understand the correlation between assert us-
age and defect occurrence on a large dataset of 185 Java projects
from GitHub [24]. They collect several metrics such as number
of asserts, number of defects, number of developers, and num-
ber of lines changed to a method and also perform an in-depth
qualitative study on 575 distinct methods, each containing at
least one assert statement to understand assert usage patterns.
They find similar results as Casalnuovo et al. that asserts have
a small yet significant relationship with defect occurrence. Fur-
thermore, they find that asserts are used for several purposes
such as null check, process state check, initialization check,
resource check, resource lock check, minimum and maximum
value constraint check, collection data and length check, and
implausible condition check.

Vasilescu et al. analyze 246 projects from GitHub to inves-
tigate the impact of usage of Continuous Integration (CI) on
quality and productivity [37]. Their results show that teams us-
ing CI have more pull requests accepted from core contributors
and fewer rejections from external contributors. Gousios et al.
analyze pull-based software development model on a dataset
on 291 projects from GitHub [15]. They find that only 14%
of the active projects use pull-requests and 60% of the pull-
requests are processed in a day. Kochhar et al. analyze a large
dataset of 628 projects from GitHub to understand the impact of
using multiple languages on software quality [27]. They build
multiple regression models to study the effect of different lan-
guages on the number of bug fixing commits after controlling

IEEE TRANSACTIONS ON RELIABILITY

for factors such as project age, project size, team size, and the
number of commits. They find that using multiple languages
increases defect proneness and popular languages, such as C++,
Objective-C, Java, etc., are more defect prone when used in
multilanguage setting. Vasilescu et al. use mixed-methods ap-
proach by surveying thousands of developers and analyzing
thousands of projects to investigate how gender and tenure di-
versity relate to team productivity and turnover [36].

Different from above studies, we investigate the correlation
between code coverage and postrelease defects on a dataset of
100 large projects from GitHub. We collect real bugs instead
of using artificially injected mutants. We analyze correlation
between coverage and defects at the project and file level and
employ several statistical measures.

VII. CONCLUSION AND FUTURE WORK

Test cases are an integral part of any software project as they
allow developers to test their code and improve software quality.
Code coverage is an important metric that gives information
about how much of the code is not covered by test cases, and thus
can be a potential source of bugs. Previous research has focused
on the number of mutants identified using code coverage. We
have conducted a large-scale study to analyze the code coverage
of test cases and studied its correlation with the number of
postrelease bugs logged in the issue tracking system. We used
standard statistical analysis and regression to measure the degree
of correlation.

The findings of our study are as follows.

1) At the project level, code coverage has an insignificant
correlation to the number of bugs as well as to other
metrics such as number of bugs/LOC and number of
bugs/complexity found after the release of the software.
By categorizing projects based on size and complexity,
we observe an insignificant correlation between coverage
and other metrics.

2) At the file level, there is no correlation between cover-
age and metrics such as number of bugs/LOC, number of
bugs/cyclomatic complexity, and number of bugs/efferent
couplings. Coverage/complexity has no correlation with
the number of bugs nor with the number of bugs/LOC. By
categorizing files based on the size of the project they be-
long to, we observe no correlation between coverage and
other metrics for files in medium-sized projects and in-
significant correlation for files in small and large projects.
For files present in low and high complexity projects, we
observe no and insignificant correlation between coverage
and various metrics, respectively.

Our findings highlight that although coverage is commonly
used as yardstick for test adequacy, their impact should not
be overestimated. For most of the settings considered in this
work, the relationship between test coverage and postrelease
bugs are either nonexistent or unclear (i.e., statistically insignif-
icant). Designing test cases for the sole purpose of increasing
coverage may or may not translate to higher bug finding rate. In
the future, we plan to analyze datasets from other open-source

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOCHHAR et al.: CODE COVERAGE AND POSTRELEASE DEFECTS: A LARGE-SCALE STUDY ON OPEN SOURCE PROJECTS 15

platforms to mitigate the external validity threats. Furthermore,
we plan to collect a larger dataset of projects having significant
representation across low, medium, and high coverage levels to
investigate the impact of different coverage levels on the number
of postrelease bugs.

DATASET

Our dataset is publicly available on GitHub: https://github.
com/smusis/coverage-defects.

[1]

[2]

[3]

[4]

[5]

[10]

(11]

(12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen, “Can
testedness be effectively measured,” in Proc. ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2016, pp. 547-558.

J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation anal-
ysis for assessing and comparing testing coverage criteria,” IEEE Trans.
Softw. Eng., vol. 32, no. 8, pp. 608—624, Aug. 2006.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proc. 27th Int. Conf. Softw. Eng., 2005,
pp. 402-411.

S. Androutsellis-Theotokis, D. Spinellis, M. Kechagia, and G. Gousios,
“Open source software: A survey from 10,000 feet,” Found. Trends Tech-
nol., Inf. Oper. Manage., vol. 4, nos. 3/4, pp. 187-347,2011.

A. Bachmann and A. Bernstein, “When process data quality affects
the number of bugs: Correlations in software engineering datasets,”
in Proc. 7th IEEE Working Conf. Mining Softw. Repositories, 2010,
pp. 62-71.

X. Cai, “Coverage-based testing strategies and reliability modeling for
fault-tolerant software systems,” Ph.D. dissertation, Chinese Univ. Hong
Kong, Hong Kong, 2006.

X. Cai and M. R. Lyu, “The effect of code coverage on fault detection
under different testing profiles,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1-7, 2005.

C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray, “Assert use
in github projects,” in Proc. 37th Int. Conf. Softw. Eng., 2015, pp. 755-766.
J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple Re-
gression/Correlation Analysis for the Behavioral Sciences. Evanston, 1L,
USA: Routledge, 2003.

N. E. Fenton and M. Neil, “Software metrics: Roadmap,” in Proc. Conf.
Future Softw. Eng., 2000, pp. 357-370.

G. Gill and C. Kemerer, “Cyclomatic complexity density and software
maintenance productivity,” IEEE Trans. Softw. Eng., vol. 17, no. 12,
pp. 1284-1288, Dec. 1991.

J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data selec-
tion,” in Proc. Int. Conf. Reliable Softw., 1975, pp. 493-510.

R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation
by developers,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 72-82.

R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?” in Proc. IEEE 25th Int. Symp. Softw. Rel. Eng., 2014,
pp. 189-200.

G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in Proc. 36th Int. Conf. Softw.
Eng., 2014, 2014, pp. 345-355.

T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence
using software change history,” IEEE Trans. Softw. Eng., vol. 26, no. 7,
pp. 653-661, Jul. 2000.

W. G. Hopkins. “A new view of statistics, Internet Society for Sport
Science,” Sportscience, 2000. [Online]. Available: http://sportsci.org/
resource/stats/

L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proc. 36th Int. Conf. Softw. Eng., 2014,
pp. 435-445.

J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why and
how developers fork what from whom in github,” Empirical Softw. Eng.,
vol. 22, no. 1, pp. 547-578, 2017.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in Proc.
22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 654—665.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

(371

[38]

[39]

[40]

[41]

M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
nos. 1/2, pp. 81-93, 1938.

P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “Adoption of software
testing in open source projects-a preliminary study on 50,000 projects,”
in Proc. 17th Eur. Conf. Softw. Maintenance Reeng., 2013, pp. 353-356.
P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in Proc. 13th Int.
Conf. Quality Softw., 2013, pp. 103-112.

P. S. Kochhar and D. Lo, “Revisiting assert use in github projects,” in
Proc. 21st Int. Conf. Eval. Assessment Softw. Eng., 2017, pp. 298-307.

P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effec-
tiveness: Empirical study with real bugs in large systems,” in Proc. 22nd
Int. Conf. Softw. Anal. Evol., Reeng., 2015, pp. 560-564.

P. S. Kochhar, F. Thung, D. Lo, and J. L. Lawall, “An empirical study on
the adequacy of testing in open source projects,” in Proc. 21st Asia-Pacific
Softw. Eng. Conf., 2014, pp. 215-222.

P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in Proc. 23rd Int. Conf. Softw.
Anal., Evol., Reeng., 2016, pp. 563-573.

D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases,” in
Proc. 14th Int. Symp. Softw. Rel. Eng., 2013, pp. 442-453.

T. McCabe, “A complexity measure,” I[EEE Trans. Softw. Eng., vol. SE-2,
no. 4, pp. 308-320, Dec. 1976.

A. Mockus, N. Nagappan, and T. Dinh-Trong, “Test coverage and post-
verification defects: A multiple case study,” in Proc. 3rd Int. Symp. Em-
pirical Softw. Eng. Meas., 2009, pp. 291-301.

A. S. Namin and J. H. Andrews, “The influence of size and coverage on
test suite effectiveness,” in Proc. 18th Int. Symp. Softw. Test. Anal., 2009,
pp. 57-68.

A. S. Namin and S. Kakarla, “The use of mutation in testing experiments
and its sensitivity to external threats,” in Proc. 2011 Int. Symp. Softw. Test.
Anal., 2011, pp. 342-352.

A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo, “Cataloging
github repositories,” in Proc. 21st Int. Conf. Evaluation Assessment Softw.
Eng., 2017, pp. 314-319.

C. Spearman, “The proof and measurement of association between two
things,” Amer. J. Psychol., vol. 15, no. 88—103, 1904.

D. Spinellis, Code Quality: The Open Source Perspective (Effective Soft-
ware Development Series). Reading, MA, USA: Addison-Wesley, 2006.
B. Vasilescu et al., “Gender and tenure diversity in github teams,”
in Proc. 33rd Annu. ACM Conf. Human Factors Comput. Syst., 2015,
pp. 3789-3798.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proc. 2015 10th Joint Meeting Found. Softw. Eng., 2015, pp. 805-816.
A. H. Watson, T. J. Mccabe, and D. R. Wallace, “Structured testing: A
software testing methodology using the cyclomatic complexity metric,”
National Inst. Standards Technol. Spec. Publication 500-235, 1996.

F. Zhang, F. Khomh, Y. Zou, and A. Hassan, “An empirical study of the
effect of file editing patterns on software quality,” in Proc. 19th Working
Conf. Reverse Eng., 2012, pp. 456-465.

Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on GitHub,” in Proc. 24th Int. Conf. Softw. Anal.,
Evol. Reeng., 2017, pp. 13-23.

H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and
adequacy,” ACM Comput. Surveys, vol. 29, no. 4, pp. 366427, 1997.

Pavneet Singh Kochhar is currently working toward
the Ph.D. degree in the School of Information Sys-
tems, Singapore Management University, Singapore,
working with Associate Professor David Lo and As-
sistant Professor Lingxiao Jiang.

In 2015, he was an intern at Microsoft Research
and prior to that he completed an exchange pro-
gram at Carnegie Mellon University. His research in-
terests include empirical software engineering, soft-
ware testing, bug localization, and mining software
repositories.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16

David Lo received the Ph.D. degree from the School
of Computing, National University of Singapore, Sin-
gapore, in 2008.

He is currently an Associate Professor in the
School of Information Systems, Singapore Manage-
ment University, Singapore. He has close to 10 years
of experience in software engineering and data min-
ing research and has more than 200 publications in
these areas.

Dr. Lo received the Lee Foundation Fellow for Re-
search Excellence from the Singapore Management
University in 2009, and a number of international research awards including
several ACM distinguished paper awards for his work on software analytics.
He was a General and Program Co-Chair of several prestigious international
conferences (e.g., IEEE/ACM International Conference on Automated Software
Engineering), and an editorial board member of a number of high-quality jour-
nals (e.g., Empirical Software Engineering).

Julia Lawall is currently a Senior Research Scien-
tist at Inria-Paris, Paris, France. Her research inter-
ests include the use of programming language and
software engineering technology to improve the de-
velopment and evolution of systems code. She leads
the development of the Coccinelle program matching
and transformation system and contributes regularly
to the Linux kernel based on the tools developed in
her research.

Ms. Lawall is on the editorial board of the journal
Science of Computer Programming, and has been the
Program Chair of PEPM, GPCE, and ICFP.

IEEE TRANSACTIONS ON RELIABILITY

Nachiappan Nagappan received the Ph.D. degree in
computer science from North Carolina State Univer-
sity, Raleigh, NC, USA.

He is currently working as a Principal Researcher
in the Empirical Software Engineering Research
Group (ESE), Microsoft Research. He has published
more than 80 conference publications of which seven
have received distinguished or best paper awards.

Dr. Nagappan has been a member of National
Academies’ Computer Science and Telecommunica-
tions Board sponsored by the Defense Information
Systems Agency committee on “Improving Processes and Policies for the Ac-
quisition and Test of Information Technologies in the Department of Defense”
and a member of the National Academies’ Committee on National Statistics
committee on “Theory and Application of Reliability Growth Modeling to De-
fense Systems.” Since 2009, he has been on the editorial board of Springer’s
journal Empirical Software Engineering. He was the Program Co-Chair of the
two main research conferences in his research area, the empirical software en-
gineering and measurement conference, and the International Symposium on
Software Reliability. He is an ACM Distinguished Scientist.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2017

	Code coverage and postrelease defects: A large-scale study on open source projects
	Pavneet Singh KOCHHAR
	David LO
	Julia LAWALL
	Nachiappan NAGAPPAN
	Citation

	untitled

