
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection Dissertations and Theses

11-2017

Uncovering user-triggered privacy leaks in mobile
applications and their utility in privacy protection
Joo Keng Joseph CHAN
Singapore Management University, joseph.chan.2012@msis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll_all

Part of the Databases and Information Systems Commons, and the Information Security
Commons

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
CHAN, Joo Keng Joseph. Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection.
(2017). Dissertations and Theses Collection.
Available at: https://ink.library.smu.edu.sg/etd_coll_all/39

https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

MSc Dissertation

by
Joseph Chan Joo Keng

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Master of Science in Information Systems

Dissertation Committee:

Lingxiao JIANG (Chair)
Assistant Professor of Information Systems
Singapore Management University

Archan MISRA (Committee Member)
Associate Professor of Information Systems
Singapore Management University

Baihua ZHENG (Committee Member)
Associate Professor of Information Systems
Singapore Management University

Singapore Management University
2016

Copyright (2016) Joseph Chan Joo Keng

Uncovering User-Triggered Privacy Leaks in Mobile
Applications and their Utility in Privacy Protection

Joseph Chan Joo Keng

Abstract

Mobile applications are increasingly popular, and help mobile users in many aspects

of their lifestyle. Applications have access to a wealth of information about the user

through powerful developer APIs. It is known that most applications, even popular

and highly regarded ones, utilize and leak privacy data to the network. It is also

common for applications to over-access privacy data that does not fit the function-

ality profile of the application. Although there are available privacy detection tools,

they might not provide sufficient context to help users better understand the privacy

behaviours of their applications.

In this dissertation, I present the design, implementation and evaluation of an

Automated Privacy Testing System called MAMBA for uncovering the causes of

user-triggered leaks in Android applications (’leak causes’) as well as their paths

taken to reach the leaks. Privacy ’leak-causes’ refer to privacy usage and leak char-

acteristics of applications as well as user-actions and activities with privacy impli-

cations. Paths refers to page transition paths as well as the sequence of user actions

required to cause these transitions. This solution is based on hybrid application

of dynamic/static analysis of Android applications, and it involves improving au-

tomated testing of applications for run-time verification of the ’leak causes’. The

automated testing is based on directed testing, and automatically traverses appli-

cations from initial to resulting activities with potential leak behaviours, based on

paths obtained from static analysis of the Android callback control flows.

I demonstrate the advantages of my automated testing system through stand-

alone evaluations as well as comparisons with another automated testing system -

Automated Model Checker (AMC) [39]. The results show that MAMBA has large

improvements in terms of less testing time required, with only a small reduction in

coverage. MAMBA also has good privacy data access accuracy (Precision=79.84%

, Recall=68.90%), and moderate privacy data leak accuracy (Precision=35.66% ,

Recall=56.10%) - (Recall values were measured relative to AMC). Privacy detec-

tors of ProtectMyPrivacy (PMP) and TaintDroid were utilized for runtime measure-

ments.

I also show how the resulting outputs of privacy ’leak causes’ can be utilized

together with a privacy message overlay mechanism for warning users of privacy

triggers interactively during application uses. I have conducted field and lab user

studies to show that the privacy messages can aid users to utilize applications in a

way that uses less of their privacy data, if they do not agree with the privacy usages.

I also found that there are other factors which influence message effectiveness.

Table of Contents

1 Introduction 1

1.1 Thesis Statement . 4

1.2 Approach . 5

1.3 Research Contributions . 7

1.4 Summary of Thesis Results . 8

1.5 Existing Work (Literature Review) 10

1.5.1 Mobile Privacy Detection & Protection Systems 11

1.5.2 Automated Testing Systems 12

1.5.3 Privacy Notification Mechanisms 14

2 Uncovering Causes and Paths of User-Triggered Privacy Leaks 16

2.1 Privacy Analysis Solution Framework 17

2.1.1 Components of Framework 17

2.2 Hybrid Static/Dynamic Analysis Solution (MAMBA System) 19

2.2.1 Association of App Activities/Views with Privacy Sensitive

APIs . 21

2.2.2 Analysis of Control-Flow Between Android Callbacks . . . 22

2.2.3 Reports on Activity Transition Paths and Results of Static

Analysis . 26

2.2.4 Automated Runtime App Testing 27

2.2.5 Analysis of Causes of User-Triggered Leaks & Characteristics 29

2.2.6 Scaling up App Testing By Parallelized Test Instances . . . 33

i

2.3 Notifying Users with Privacy Outputs 37

2.4 Initial Feasibility Study on Uncovering User-Triggered Privacy Leaks

and Characteristics of Apps . 39

2.4.1 Accuracy of Association Rules Mining 41

2.4.2 Feasibility in Creation of a ’Leak-Cause’ Database 43

2.5 Scaled-Up Testing Experiment with Parallelized App Testing System 44

3 Evaluation Results of MAMBA System 49

3.1 The Automated Model Checker (AMC) 49

3.2 Small-Scale Evaluation of MAMBA using GATOR’s Callback Anal-

ysis . 51

3.2.1 Results of AMC Comparison with MAMBA-GATOR 51

3.3 Large-Scale Evaluation & Comparison of MAMBA with Automated

Model Checker (AMC) . 56

3.3.1 Conduct of the Experiment 56

3.3.2 Results of Comparison of MAMBA with AMC 58

3.3.3 Discussion . 63

4 Understanding Utility of User-Triggered Privacy Leak Messages 65

4.1 Small-Scale Lab-Study . 66

4.1.1 Conduct of Lab-Study . 66

4.1.2 Results of Small-Scale Lab Study 68

4.2 Large-Scale Field-Study . 71

4.2.1 Conduct of Field-Study . 71

4.2.2 Results of Field-Study . 77

4.2.3 Discussion & Factors Influencing Usage Behaviours 79

5 Conclusion 81

5.1 Future Work . 82

5.1.1 Extensions to MAMBA System 82

ii

5.1.2 Privacy User Studies . 84

A Appendix 93

iii

List of Figures

2.1 Diagram of Privacy Analysis Solution Framework Consisting of

Subsystems: (i)Large-Scale App Testing (LSAT) Engine, (ii) Leak-

Cause Analysis (LCA) and (iii)Privacy Guidance Mechanism (PGM). 17

2.2 System Diagram of Proposed Hybrid Static/Dynamic Analysis Sys-

tem for Uncovering User-Triggered Causes and Paths of Privacy

Leaks in Android Apps (MAMBA System) 20

2.3 Example: Format of Fully-Directed Test Cases Built from Callback

Function Analysis For Automated Testing 24

2.4 Example: Format of Semi-Directed Test Cases Built from Callback

Function Analysis For Automated Testing 25

2.5 Snippet of Human-Readable Report in Text Format on Results of

Static Analysis (MAMBA System) 27

2.6 Node & Edge Representations in ATG, containing Callback Infor-

mation (Represented with GATOR tool’s CCFG class, which was

utilized as a stub) . 28

2.7 Example of Transformed WEKA Table from Raw Logs 31

2.8 Human-Readable Final Report in Text Format of MAMBA’s Run-

time Verification . 32

2.9 Architecture of Parallelized Automated Application Testing System 33

2.10 Visual Overlay of Coloured Boxes on top of Leaky Widgets in App

Screen-Captures by Leak-Cause Analysis Tool 38

2.11 Distribution of Various Leak Causes 40

iv

2.12 Distribution of Types of Leaked Data 42

2.13 Distribution of Leak-Cause Accuracies 43

2.14 Distributions in Application Activity Coverage (Percentage) 46

2.15 Proportions of Leak-Characteristics 48

2.16 Types of Privacy Leaks Found . 48

3.1 Coverage of Target Activities (%) over Total Testing Time (Sec-

onds) for 3 Example Apps - (Left- App #1: ”Album Cover Finder”;

Middle- App #4: ”African American Quotes” ; Right- App #20:

”Space War APK”) . 55

3.2 Distribution Plot of Total Testing Time (Mins) against App Num-

ber (#1-#230) for (i) Apps with at least one Privacy-Related API:

MAMBA (Red) - (Mean=21.52 mins/app, Std. Dev.=21.91) ; AMC

(Blue) - (Mean=57.11 mins/app, Std. Dev.=58.93) 59

3.3 Distribution Plot of Total Testing Time (Mins) against App Number

(#231-#500) for (ii) Apps with No Privacy-Related API: MAMBA

(Red) - (Mean=6.08 mins/app, Std. Dev.=8.16) ; AMC (Blue) -

(Mean=47.40 mins/app, Std. Dev.=55.35) 60

3.4 Distribution Plot of Coverage of Target Activities against App Num-

ber Coverage for AMC (Blue) - (Mean=70.33%) and MAMBA (Red)

- (Mean=63.95%) . 61

4.1 (a) Notification App displaying leaky widgets and characteristics

obtained from the leak-cause database. (b) Privacy Message dis-

playing the leak of GPS Location on a clickable view (Flashes and

disappears after a 3 second period) 67

4.2 Percentage of Leaky Widgets Clicked on by Users in Experiment 1

(No Instructions Provided) for ’Sony TrackID’ and ’Linpus Weather’

Apps . 68

v

4.3 Percentage of Leaky Widgets Clicked on by Users in Experiment 2

(More Detailed Instructions) for ’Telemaque Horoscope’ and ’Su-

per Backup: SMS’ Apps . 69

4.4 (Messages Circled) Left: Privacy Message warning of phone book

and GPS Location Access ; Right: Privacy message appearing over

a button warning of access of phone identifiers on clicking the but-

ton. Bottom: A Blow-Up of a Privacy Message 73

4.5 Questions in Post-Study Survey Form posed to each user asking

them how surprised they were with the privacy leakages of each

application, as well as to rate the appropriateness of the data access

on a 7-Point Likert Scale . 74

A.1 Pre Study Survey Form . 101

A.2 Post Study Survey Form (Example: Facebook App) 102

vi

List of Tables

2.1 Example of Content Fields in Leak-Cause Database 44

2.2 Run-Time Statistics in Automated Testing Experiment 45

2.3 Distribution of Numbers of User-Triggered Leak Rules Found . . . 47

3.1 Results of Automated Testing - (Model-Checking) AMC vs. Graph-

Directed Tester (MAMBA) . 52

4.1 List of applications used in lab-study 67

4.2 List of Applications used in Field-Study 72

4.3 Description of Independent Variables in Multiple Regression 76

4.4 Results: Multiple Linear Regression of Field Study (***99%, **95%,

*90% Confidence Intervals) . 78

A.1 Comparison Table of Privacy Detection & Protection Systems . 97

A.2 Comparison Table for Automated Testing Systems 98

A.3 Comparison Table for Privacy Notification Systems 99

vii

Chapter 1

Introduction

Mobile applications (apps) are ubiquitous in the modern age of smart devices, and

have become an indispensable part of life. They help to manage many aspects

of urban lifestyle, e.g. from looking for locations of nearby restaurants and re-

tails venues, to helping users’ keep track of their expenditure and health. A robust

ecosystem exists in the mobile application stores, such as in Google Playstore and

Apple iTunes Store, where millions of apps are downloaded everyday.

It is important for good methods to be available for notifying and educating

the user on apps that may inappropriately infringe on their privacy. There is an

increasingly urgent need to be able to detect and profile privacy usage characteristics

of mobile apps. While a great asset to users, mobile apps have access to a wealth of

information about the user through powerful Application Programming Interfaces

(APIs) provided by the operation system platforms. Many apps might not follow

good practices in privacy design [45]. It is well known that many apps, even popular

and highly regarded ones, access and leak privacy data to the network.

To aid in resolving these problems, various privacy detection tools have been

created by the research community [24, 61, 3] as well as platform developers [6, 56]

for detection and control of applications’ uses of privacy data. There has also been

various work in designing usable interfaces that make it easier for users to configure

privacy decisions [5, 12].

1

Privacy leak detection tools [24, 6] are geared towards the monitoring of pri-

vacy infringements rather than on effective notifications to the user. The tools in-

form users whenever privacy infringements take place during run-time, but do not

provide sufficient context or summarized insights on these infringements or app be-

haviours. Various works have sought to address this by improving mechanism for

privacy notification [12], using and improving visual framing (e.g. icons next to

text, ratings etc.) [2], as well as by the improvement of textual outlook [16], linguis-

tic properties [32] and timing [60] of privacy messages. An aspect that is missing

from current work is on providing users with additional context or insights into the

privacy characteristic of apps. Doing this can potentially improve the value of pri-

vacy notifications and aid users in improving their privacy. It also might allow them

to set better privacy policies in privacy data managers [6] available in current mobile

OSes.

Hence, privacy detection tools might not provide sufficient context information

on app behaviours (e.g. they do not show which app views actually utilize data, or

whether privacy leaks are caused by user actions or system events etc.), and they also

present notices in a manner that might not be easily digestible by users. Providing

these additional privacy contexts in the form of tailored privacy notices could aid

users to better understand their apps privacy usage and improve their privacy.

In addition, a characteristic of these tools is that the detection of privacy leak-

s/accesses are performed in real-time during uses by the mobile user [24, 61, 14, 3,

61, 33]. Test inputs have to be generated for traversal of app states before the pri-

vacy detectors can effectively detect privacy behaviours. This relies on the mobile

user, who usually has to run through applications before notifications (e.g. Scroll-

downs, Pop-ups or from within a Permission Management List etc.) appear from

the privacy detector running in the background, warning the user of privacy leak or

access caused by the application.

Besides real-time systems, static leak detection systems such as FlowDroid [9]

and PiOS [23] are able to analyze privacy infringements in mobile apps as well.

2

However, these systems also do not provide sufficient context information on app

behaviours, and are also not geared towards the presentation of notifications to users

in an easily digestible and understandable manner.

The objectives of my work are thus to be able to accurately, efficiently and scal-

ably output the causes of user-triggered privacy leaks and privacy characteristics of

mobile apps, after which, to provide effective notifications to users by superimposi-

tion of privacy notices on top of culprit app buttons/views to improve users privacy

behaviours and understanding of their apps privacy characteristics, and to evaluate

the notification mechanism alongside existing mechanisms of other privacy notifi-

cation systems.

In this dissertation, I present a novel hybrid static and dynamic analysis solu-

tion and system for automatically uncovering and testing the causes and paths of

user-triggered privacy leaks (’leak causes’) in Android applications (MAMBA Sys-

tem). Paths refers to page transition paths as well as the sequence of user actions

required to cause these transitions. These privacy ’leak causes’ serve to function as

an additional context to help users better understand their apps’ privacy behaviours.

My approach first utilizes static analysis to obtain causes of user-triggered pri-

vacy data accesses in applications as well as the view transitional paths that users

would take towards these activities. A dynamic testing stage is then performed for

runtime verification of the privacy accesses. The dynamic testing stage helps to im-

prove on the outputs of static analysis, by verifying that the privacy accesses and

leaks occur during app runtime.

App binaries are first analyzed statically to identify the Android activities that

are linked to privacy sensitive APIs in the control flow. The paths towards these

activities, from the initial activities, are then obtained by the analysis of control

flow between call-back functions of the app, so that an activity-transition graph

can be obtained. This activity-transition graph is then used to direct the transition

of the app towards the privacy-related activities at run time. The testing process

produces test logs which can be analyzed to uncover specific user-actionable app

3

components on activities that cause privacy leaks. This information can be stored

in a ’leak-cause’ database for customizable notifications to users by a lightweight

mobile app. The mobile app overlays privacy messages on top of culprit buttons

and views during app usage.

I evaluate my MAMBA system against a prominent automated app testing so-

lution - Automated Model Checking (AMC) [39] for over 500 apps. My evaluation

criteria is based on the average testing time required (latency), coverage of activities

that are required to be reached as well as the precision of uncovering privacy-related

behaviours in these activities.

I also investigate the effects of providing the analysis outputs to real users in lab

and field studies involving users on their personal devices over a period of weeks. I

demonstrate the effectiveness of the outputs in changing user behaviors by showing

reduced frequency of app accesses and duration of app uses for users who disagree

with the app privacy behaviours. In the next sections, I detail my thesis statement,

approach and contributions.

1.1 Thesis Statement

My thesis statement is as follows:

Providing the additional context on the causes and characteristics of user-

triggered privacy leaks in mobile apps can help users to change behaviours

that impact their privacy. These causes and characteristics can be efficiently

and accurately uncovered by a hybrid application of static analysis of callback

functions and runtime traversal of the apps towards targeted pages with privacy

implications. This method also has advantages over the other automated app

testing approaches in terms of significantly less testing time.

As stated above, the main objectives in my dissertation are to output causes and

4

characteristics of user-triggered app privacy leaks accurately and efficiently from

hybrid static and dynamic analysis of apps. The processing of apps should be done

in a scalable and accurate manner, and with high coverage so that specific areas of

the apps can be reached in practical amount of testing time. I evaluate and compared

my automated testing system and approach against another prominent automated

testing solution, Automated Model Checking (AMC). The outputs from the system

can then be utilized to notify users about privacy issues.

I also aim to present these outputs in a manner that will help mobile users to

improve their privacy. The improvement in their privacy will be measured in terms

of decrease in their app-usage metrics (usage frequency, duration and no. of buttons

clicked) for apps with privacy behaviours that they are in disagreement with.

1.2 Approach

My approach is based on the following areas, (i) A Novel Hybrid Static/Dynamic

Analysis System, (ii) Evaluation of the System and (iii) User Studies to Investigate

Utility of the System Outputs:

(i) Novel Hybrid Static/Dynamic Analysis System: Static analysis is used to cap-

ture activity/page transition paths of Android apps, as well as identify target activi-

ties that leak privacy data. Obtaining such transition paths require the construction

of the control flows among Android call-back functions. Android call-backs are

event-driven function calls within the Android framework that may be enacted by

the user (via event listeners) or centrally called by the system during the Android

life-cycle or occurrence of system-related events.

Due to the event-driven nature of the Android framework, the control flow

among call-back functions are not available from a standard control-flow graph. To

overcome this problem, I have formulated and implemented algorithms that build

the control flows among call-back methods of Android activities and the unique GUI

5

components linked to these call-back methods, from Android bytecode representa-

tions. The sequence of user actions from the control flows can then be used to build

test cases for an automated tester to direct the executions of the apps towards privacy

related activities, so that causes of privacy leaks can be tested at run-time. This is

different from prior work, in that user-triggered activity transition paths leading to-

wards privacy related app activities and GUI components are produced as additional

context, in addition to privacy leak points.

The automated app testing part of my solution aims to test and verify privacy

leaks. While a number of automated testing solutions exist [18, 43, 42, 39, 51],

automated app testing remains a time and resource intensive process. My automated

directed app traversal technique aims to reduce the testing time required for each

app, while maintaining coverage and accuracy in uncovering user-triggered leaks.

(ii) Evaluation of the System: I conduct evaluations to compare my system with

another automated testing system, Automated Model Checker (AMC) on a sizeable

set of over 500 apps crawled from popular categories from the Google PlayStore.

The metrics for evaluation are average app testing times required (latency),

coverage of target activities and accuracy of uncovering privacy accesses and leaks.

I investigate average performance as well as look at the performance distributions

across the apps. I determine what advantages, trade-offs and other performance

concerns my proposed system have against the other app testing system.

(iii) User Studies to Investigate Utility of the System Outputs: I aim to provide

deeper context and insights into the characteristic of apps in privacy notices by dis-

playing the causes and characteristics of user-triggered leaks in privacy notices for

apps. These notices are overlaid on top of privacy invasive app buttons and views,

on reaching certain in-app activities, as well as on starting up the app. To the best

of my knowledge, the display of causes of user-triggered privacy leaks to users has

not been studied before.

6

I investigate how real users in the field react in response to these notices, as well

as how their mobile behaviours can be changed from knowledge obtained from the

notices. In addition, I investigate and demonstrate improvements in users’ recol-

lection and understanding of apps’ uses of their privacy when they are presented

with notices from my mechanism. I perform such measurements by studying users’

privacy-related inclinations after using applications with and without the notices.

1.3 Research Contributions

My research contributions are as follows:

• Design and implement a novel hybrid static/dynamic tool for outputting

causes and paths of user-triggered privacy leaks in Android apps

• Formulate algorithms for analyzing the control flows among call-back func-

tions that are involved in activity and page transitions in Android apps, to

create an activity-transition graph

• Utilize the activity-transition graph to direct traversal of applications towards

privacy-related activities for automated testing and verification at run time

• Evaluate the automated testing solution on a sizeable number of over 500

Android apps to demonstrate its scalability and performance; Also perform a

comparison of the automated testing solution and algorithm against another

testing system to demonstrate its advantages/trade-offs in terms of improved

testing time, and relatively acceptable coverage and accuracy in privacy de-

tection.

• Investigate the effectiveness of providing additional context of causes of pri-

vacy leaks to mobile users under real-world conditions.

• Demonstrate that users privacy behaviours are improved when notified on the

causes of privacy leaks as well as app privacy characteristics, and investi-

7

gate users inclinations when presented with the privacy notices, as well as

the factors affecting users’ privacy decisions (e.g. Prior app usage history,

Agreement with privacy of app, Type of app etc.).

1.4 Summary of Thesis Results

A summary of my key thesis results is as follows:

Empirical Study on Taxonomy of User-Triggered Privacy Leaks

Based on an empirical study of 226 Androids apps from popular categories of the

Google PlayStore:

• 46.5% (105) of apps were found to leak privacy data.

• Apps were found to possess a taxonomy of privacy leak behaviours of (i)

User-Triggered Leaks, (ii) Start-up Leaks and (iii) Periodic Leaks.

• More than half of the apps with privacy leaks (64 apps) was found to leak due

to user triggers on app widgets/buttons.

• Using Association Rules Mining, an overall knowledge database on the app

views/buttons that cause user-trigger leaks can be built. Information from this

knowledge database can be utilized by an Interactive Privacy Leak Reporter,

for the display of privacy notices to users during app usage.

Evaluation of MAMBA Privacy System

Based on a comparison of MAMBA Privacy System with the Automated Model

Checker (AMC) on a set of 500 apps:

• MAMBA has an advantage over AMC in terms of less testing time required

overall (13.18 mins/app for MAMBA compared to 51.86 mins/app for AMC),

8

with only a small reduction in activity coverage (63.96% for MAMBA com-

pared to 70.33% for AMC).

• MAMBA has good privacy data access accuracy (Precision=79.84%, Re-

call=68.90%) and moderate privacy data leak accuracy (Precision=35.66%,

Recall=56.10%) - (Recall values were measured relative to AMC)

• Overall, MAMBA was almost 4 times faster than AMC (13.18 mins/app com-

pared to 51.86 mins/app) in detecting and verifying privacy-related activities.

For apps with privacy behaviours, MAMBA was 2.7 times faster than AMC

(21.52 mins/app compared to 57.11 mins/app). And for apps with no privacy

behaviours, MAMBA had the largest advantage in being almost 8 times faster

than AMC (6.08 mins/app comapred to 47.4 mins/app).

User Studies on Utility of System Outputs

The following results were found from lab and field studies, using outputs of user-

triggered causes of privacy leaks:

• For the lab study, it was found that there was a 0% to 80% drop in users

avoiding privacy leak causing widgets/buttons for the 4 test apps. Usability

was maintained for apps with and without privacy messages, based on Likert

Scores.

• For the field study conducted with 42 users over a 2 week period, users who

received privacy messages, disapproved of the app’s data use as well as had

(i) User education stimulus, (ii) High levels of privacy consciousness and (iii)

High levels of surprise at message contents, were shown to have reduced du-

ration of app usage, reduced frequency of app start ups as well as a reduction

in the number of leak-causing buttons clicked upon.

• Users’ Prior App Usage Time (Familiarity) had the highest statistical strength

in influencing app usage behaviours. This implied that users who have been

9

utilizing the apps for a longer period of time were less likely to decrease

utilization of apps, in spite of receiving privacy messages.

Resulting Publications

The following publications resulted from this work:

1. J. C. J. Keng, T. K. Wee, L. Jiang, and R. K. Balan. ”The case for mobile

forensics of private data leaks: towards large-scale user-oriented privacy

protection.” In Proceedings of the 4th Asia-Pacific Workshop on Systems

(APSys 2013), page 6. ACM, 2013.

2. J. C. J. Keng, L. Jiang, T. K. Wee, and R. K. Balan. ”Graph-aided di-

rected testing of android applications for checking runtime privacy be-

haviours.” In 11th IEEE/ACM International Workshop on Automation of

Software Test (AST 2016), (Co-located with ICSE 2016), 2016.

3. J. C. J. Keng, L. Jiang, T. K. Wee, and R. K. Balan. ”Leveraging Auto-

mated Privacy Checking For Design of Mobile Privacy Protection Mech-

anisms.” In 1st Workshop on Bridging the Gap Between Privacy By Design

and Privacy in Practice, (Co-located with CHI 2016), 2016.

1.5 Existing Work (Literature Review)

In this section, I highlight some existing work on the analysis of mobile app pri-

vacy and make some comparisons in relation to my work. I focus on 3 aspects of

mobile app privacy related work: (i) Mobile Privacy Detection & Protection Sys-

tems, (ii) Automated Testing Systems and (iii) Privacy Notification Mechanisms.

The comparisons serve to bucket the different dimensions such as techniques uti-

lized, characteristics, capabilities, usable outputs and performance measures of the

various systems.

10

1.5.1 Mobile Privacy Detection & Protection Systems

(Please refer to Appendix A (Table A.1): Comparison Table of Mobile Privacy

& Detection Systems) A detailed comparison list of some privacy systems devel-

oped in recent years by the research community is displayed [65, 50, 26, 41, 25, 9,

7, 40, 59, 23, 52]. The dimensions for comparisons are: ’Privacy-Related Behaviour

Analyzed’, ’Usable Outputs’, ’Techniques’, ’Latency’, ’Coverage’ and ’Accuracy’.

From the table, the Privacy-Related Behaviours analyzed by these systems in-

clude malicious behaviours of apps, privacy leaks, app network and data transmis-

sion characteristics, privacy-risk levels, sensitive user inputs and personally identi-

fiable information.

Usable Outputs provided by these systems range from flagging of apps which

display malicious behaviours, providing privacy analysis reports/risk assessment,

identification of program source/sinks of privacy leaks, additional contextual in-

formation for enabling better privacy understanding, as well as leak detection of

sensitive data fields.

Techniques utilized by these systems are mainly static/dynamic analysis, as well

as machine-learning and network flow detection.

Latency refers to the average length of time to process each app, and ranged

from just a few minutes per app to more than 1 day per app. Coverage refers to the

extent by which the apps are covered. While Accuracy is the level of correctness of

the systems’ outputs.

Comparison with my Approach & System: The goals of my system are to un-

cover the causes and paths leading to user-triggered privacy leaks in mobiles apps,

to act as additional form of contextual information to aid users in protecting their

privacy. It does so by analyzing the control flows among callback functions that

are involved in activity and page transitions in Android apps, to create an activity

transition graph. This representation can then be utilized to improve app coverage

11

and testing time during automated testing. It does so by directing executions of the

app from root (main) to targeted activities within the app for testing and verification

of privacy leaks. The knowledge obtained from the process can then be utilized as

a form of additional contextual information to improve user privacy, as well as to

allow them to set better privacy policies for controlling their privacy data.

For the dimension of ’Privacy-Related Behaviour Analyzed’ in the comparisons,

my system falls under detection of privacy leaks. The ’Usable Outputs’ are provid-

ing additional contextual informational for enabling better privacy understanding.

While the techniques utilized are static/dynmaic analysis.

1.5.2 Automated Testing Systems

(Please refer to Appendix A (Table A.2): Comparison Table of Automated Test-

ing Systems) An integral part of my privacy analysis solution consists of automated

app testing to achieve good runtime coverage of mobile apps, for verification of

the outputs of static analysis for improved accuracy. In this section, I provide a

comparison of currently available automated testing solutions and systems.

From Appendix B, the dimensions for comparison are: ’Exploration Strategy’,

’Exploration Target’, ’Exploration Technique’, ’Inputs Simulated’ and ’Purpose’.

There are 4 main types of Exploration Strategies, (i) Random, (ii) Systematic Event

Selection, (iii) Model-Based (Built On-the-Fly at Runtime) and (iv) Model-Based

(from Static Analysis).

(i) Random exploration is based on the generation and simulation of random

user inputs in order to enact app state and activity/page changes. For example, the

simplest and most frequently used Monkey [18] generates random UI events for

black-box testing. (ii) Systematic Event Selection is still based on random explo-

ration, but have more systhematic selection methods of simulated user inputs. For

example, Dynodroid [43] has a series of exploration strategies, Frequency, Uni-

formRandom and BiasedRandom that helps to improve coverage. (iii) Model-based

12

(On-the-Fly at Runtime) exploration strategy builds a model of the runtime app

states and user events encountered during exploration, and utilizes the model to tra-

verse the app and keep track of states already explored. AMC [39] and DECAF [42]

extracts the DOM trees from the apps at runtime to build UI models, and performs

its exploration of the models.

The automated testing strategy employed in my hybrid static/analysis privacy

analysis system falls under the category of (iv) Model-Based (from Static Analy-

sis), where a model for exploration is built prior to runtime. A3E [10] has a targeted

exploration strategy based on following a Static Activity Transition Graph. While

this approach is similar to my system, it is based on a simplified intent analysis of

sources and sinks in activity startups, and does not analyze event handlers of GUI

objects or their identifiers. A closer inspection at its targeted exploration algorithm

reveals that it still requires extraction and iteration over the runtime GUI elements

obtained from the Android Hierarchyviewer. ORBIT [64] utilizes static analysis

for detection of event handlers of the apps, but does not analyze activity transition

paths. The exploration model is still built from dynamic analysis. Further more,

the source code of the app is required for exploration. Brahmastra [15] utilizes a

similar concept to my system, in that it uses static analysis to map transition paths

of Android activities for exploration. However, these transition paths do not model

GUI widgets, app layout views or listener objects. Instead, Brahmastra relies on

re-writing of apps to force activity transitions (’self-execution’). This has disadvan-

tages as the paths might not be entirely representative of those triggered by a real

user. The path transitions employed in my solution involves transition paths that are

reachable by real users, with no artificial forcing of app activity and state transitions.

’Exploration Target’ refers to the prioritization by the tester to cover specific

parts of the app. For example, whether the app will try to cover all pages within the

app indiscriminately, or only cover some distinct pages. ’Inputs Simulated’ refers

to the types of inputs that the tester uses (UI Events and/or System Inputs). While

’Purpose’ refers to the reason that each system was built for. For example, for Stress

13

Testing or General Testing etc.

For ’Exploration Target’, my MAMBA system prioritizes app pages with pri-

vacy implications. The ’Inputs Simulated’ are UI Events and the ’Purpose’ is for

privacy analysis.

1.5.3 Privacy Notification Mechanisms

(Please refer to Appendix A (Table A.3): Comparisons Table of Privacy No-

tification Systems) One of my main thesis components involve the usage of the

outputs of my privacy analysis system to improve user privacy. As detailed in Sec-

tion 2.3, my privacy notifications mechanism involves highlighting the causes/paths

of privacy leaks as well as privacy leakage characteristics of mobile apps. It does

so by privacy message overlays on top of leak-cause buttons/widgets, as well as

the display of messages whenever the user navigates to associated app views and

activities.

In this section, I perform a comparison of the various privacy notification sys-

tems and their notification mechanisms employed in these systems [61, 44, 65, 6,

48, 29, 38, 14, 5, 55, 52, 24]. As displayed in the table of Appendix C, these system

are compared in the dimensions of ’Notification Content’, ’Notification Interface’,

’Frequency’, ’Action’, ’Timing’ as well as ’Granularity’.

From Appendix C, the Notification Contents range from real-time privacy data

accesses, additional install time permissions control & options, summarized privacy

access-control lists of all apps installed, statistics of data usage (Frequency of ac-

cesses, Categories of apps etc.) as well as additional context of app privacy usages

(e.g. Network IP, Screen-capture sequences). The ’Notification Interfaces’ utilized

are Dialog Boxes, Install-time lists, background Android messages, standard An-

droid Scroll-down Notifications, as well as summarized Privacy Manager Lists.

In terms of ’Notification Contents’, my notification mechanism can best be cate-

gorized under providing users with Additional Context of app Privacy Usages, while

14

’Notification Interfaces’ employed are Android Toast Messages.

’Frequency’ refers to how often the privacy notifications appear, and can be at

every privacy instance or configurable etc. ’Action’ refers to the notifications be-

ing either ’Blocking’ or ’Non-Blocking’. ’Blocking’ notifications are accompanied

by a screen freeze, with choices required to be made by users before app usage

can continue. While ’Non-Blocking’ notifications do not have any screen freezes.

’Timing’ refers to the time period where notifications appear (Before or after pri-

vacy event). And ’Granularity’ refers to the detail level of information contained by

the notifications.

For ’Frequency’, my MAMBA system notifies the user at every privacy ac-

cess/leak instance. For ’Action’, my privacy messages are of the ’Non-Blocking’

type. The ’Timing’ of notifications are before each privacy event. And the ’Granu-

larity’ of MAMBA is at the Data level.

15

Chapter 2

Uncovering Causes and Paths of

User-Triggered Privacy Leaks

In this chapter, I present my framework for privacy analysis of mobile apps at the

back-end and utilization of the results to build a knowledge base to help improve

user privacy. I detail some preliminary findings on the feasibility of uncovering user-

triggered privacy leaks, as well as present an empirical study on the taxonomies of

privacy behaviours of Playstore apps.

I describe my hybrid static/dynamic analysis solution and system (MAMBA

System) for analysis and uncovering of the causes of user-triggered privacy leaks in

Android apps. The system identifies Android activities that have privacy related API

calls (Target Activities) and outputs their activity transition paths by static analysis.

These paths are then provided to a directed automated runtime tester to transit the

app towards these Target Activities, where they are verified by privacy access/leak

detectors.

16

Leak &

Event

Logs

Leak

Pattern

Mining &

Validation

Leak-

Cause

Database

Apps

Local/Cloud-

Based Relay

Privacy Guidance
Mechanism (PGM)

Static

Analyzer

Coordinator &

Event Logger

Leak-Cause Analysis (LCA)

Privacy

Detectors

Automated

Tester

Interactive

Notifications

Mobile User

PGM Client

Large-Scale
App Testing

(LSAT) Engine

Figure 2.1: Diagram of Privacy Analysis Solution Framework Consisting of Subsys-
tems: (i)Large-Scale App Testing (LSAT) Engine, (ii) Leak-Cause Analysis (LCA)
and (iii)Privacy Guidance Mechanism (PGM).

2.1 Privacy Analysis Solution Framework

2.1.1 Components of Framework

The framework of my privacy analysis solution is as shown in Figure 2.1. It is based

on automated analysis of mobile app binaries on back-end machines, prior to instal-

lation and release by the app store. Useful privacy-related behaviour information

can then be mined and passed on to mobile users for them to make more informed

and educated choices, and improve their privacy protection. The framework con-

sists of 3 main sub-systems: the (i) Large-Scale App Testing (LSAT) Engine, (ii)

Leak-Cause Analysis (LCA) and (iii) Privacy Guidance Mechanism (PGM).

(i) Large-Scale App Testing (LSAT) Engine: This sub-system is for mass dy-

namic/static analysis for the purpose of uncovering runtime privacy behaviours for a

large number of apps. It consists of the Automated Tester, Static Analyzer, Privacy

Detectors and the Coordinator & Event Logger components. The Automated Tester

17

performs automated exploration of the app, with the aim of covering all possible UI

windows that users would reach. The Static Analyzer performs static analysis on

decompiled mobile app binaries, for the purposes of utilizing knowledge obtained

from static analysis to aid in automated testing. This is so that testing times required

can be reduced, by pruning the search space required for testing. In addition, static

analysis allows the uncovering of a subset of activities that are suspected to leak

or access user privacy data. Such information might be useful to users for privacy

protection.

The Privacy Detectors component of LSAT detects if any privacy data on the

test device is being leaked to the network, and outputs timestamped leak reports to

test logs for offline analysis. I utilized the TaintDroid [24] and ProtectMyPrivacy

(PMP) [48] privacy detectors to generate leak reports for privacy leaks and accesses

respectively in this work.

The last component, the Coordinator & Event Logger, performs 2 roles in the

system. The 1st is to coordinate testing activities on parallelized testers, and the 2nd

is to capture and log all useful usage traces from automated testing for subsequent

analysis. The usage traces include information on UI activities reached, window

views, widgets clicked upon and app screen-captures. Such usage traces were

obtained by instrumenting and extending the Android Framework and customizing

the operating system (OS) image [20]. These traces allow the deduction and

reconstruction of app states that occurred during automated testing. These traces

are analyzed in the Leak-Cause Analysis described next.

(ii) Leak-Cause Analysis (LCA) Subsystem: The Leak-cause analysis subsys-

tem’s purpose is to mine test logs for useful privacy characteristics of mobile apps

tested by the Large-Scale App Testing (LSAT) Engine, in particular privacy leak-

causes of apps. It does so by the process of Frequent Item-set mining, to output

leakage patterns of tested apps with sufficiently high support values. These leakage

patterns include the sequences of user-events that cause privacy leaks, as well as

18

the privacy leakage characteristics (whether privacy leaks are user-triggered, and/or

occur at start-up or in a periodic fashion).

In addition to leak patterns, the LCA also performs superimposition of app

screen captures with button/widget overlay boxes. This functions as a visual aid

in user education. The validation process of LCA is fully automated, and records

leak patterns and behaviours into a ’Leak-Cause Database’ for a knowledge-base

reference to users.

(iii) Privacy Guidance Mechanism (PGM) Subsystem: The Privacy Guidance

Mechanism (PGM) Subsystem serves to utilize the ’Leak-Cause Database’ gener-

ated by the LCA to provide interactive notifications to the user. The notifications

can be utilized in a variety of ways with good flexibility: For example in a pri-

vacy manager containing a summarized list for users to refer to privacy behaviours

of apps. Or in the form of privacy messages which appear to the user during app

operation.

Information from the ’Leak-cause Database’ can be transmitted locally from the

user device itself or by HTTP from a cloud-based reporter. Privacy notifications

is performed by a notifications PGM client, which is a customized light-weight

Android app that runs in the background as an Android service and detects the app

usage state of the user, performing notifications at the required moments.

2.2 Hybrid Static/Dynamic Analysis Solution

(MAMBA System)

The overall system diagram for my proposed Hybrid Static/Dynamic Analysis sys-

tem is displayed in Figure 2.2 - MAMBA System [35]. This can be considered the

design and solution for the ’Large-Scale App Testing (LSAT) Engine’ of my Privacy

Analysis Framework of Section 2.1.1.

19

Figure 2.2: System Diagram of Proposed Hybrid Static/Dynamic Analysis System
for Uncovering User-Triggered Causes and Paths of Privacy Leaks in Android Apps
(MAMBA System)

From Figure 2.2, an Android .apk is decompiled into its the Jimple [58] byte-

code representation. An analysis is first performed to uncover the targeted Android

activities that should be reached. This is done by backwards callgraph traversal

from the invocation points of Sensitive Data API calls in the bytecode.

A data/control-flow analysis is then performed on Callback functions to output

an Activity Transition Graph (ATG). The ATG contains path transition information

that allows the activity transitions from starting to any Android activity within the

app. Information on the user events required (clickable buttons/widgets) to enable

these transitions are also contained in the ATG. Knowledge on target activities is

then used to filter the ATG paths, so that test cases can be built for a runtime tester to

transit the app from root to any of the target activities, where the privacy access/leak

behaviours are verified at runtime.

I describe the components of my solution in the following sub-sections:

20

2.2.1 Association of App Activities/Views with Privacy Sensitive

APIs

The solution starts with identifying Android App Activities/Views that are associa-

tion with privacy-related API calls. (The algorithm for association of app activities

with privacy sensitive APIs is in Algorithm 1 of Appendix A.) From Figure 2.2,

the binary .apk file of the Android app is first decompiled using SOOT’s Android

Dalvik bytecode conversion to the Jimple Representation [13]. All privacy sensitive

data API invocation points which obtain some form of user data (e.g. GPS location,

Contact List, Phone No., Identifiers etc.) are located. These APIs were sourced

from the Android API documentation [46]. (Please refer to Appendix A for the list

of APIs) My system performs a back-ward callgraph traversal from these invoca-

tion points, and identifies the app activities which have methods along the callgraph.

Such activities are then designated as Target Activities that my Automated Runtime

App Testing Solution should reach.

From Algorithm 1, 2 types of target activities are outputted: ’Target Activities

to Reach’ τ1, as well as ’Target Activities to Test’ τ2. For τ1 activities, it is suf-

ficient to perform runtime testing only to the point of reaching the activity, before

the privacy accesses/leaks occur. This is because the privacy sensitive APIs exist

under methods which are part of the Android creation lifecycle. For τ2 activities,

privacy sensitive APIs exist under ’User-Input’ handling methods (e.g. onClick). It

is thus required for runtime testing to reach as well as perform testing (by enacting

clickable buttons/widgets) on the activities.

Android activities that have privacy sensitive API invocation points that are nei-

ther under Android creation lifecycle or ’User-Input’ handling methods are desig-

nated under the τ2 activity group.

21

2.2.2 Analysis of Control-Flow Between Android Callbacks

The next step in my solution involves analysis of the control flow between Callback

Functions of the Android Framework to build an Activity Transition Graph (ATG)

representation for guiding automated runtime testing. Android Callback Functions

are event-driven. They can be driven by the user (e.g. by the user performing an ac-

tion), or coordinated and driven by the system (e.g. on Activity creation/destruction,

on closing of windows etc.). Because of this event-driven nature, the control-flow

between Callback functions will not be available from a normal control-flow graph

analysis.

To solve the problem, Yang et al. [63] performed modelling of Android call-

back functions, and made their work available as a tool- GATOR tool [53]. Initial

versions of my system were built on top of the GATOR tool and its modelling of

Android Callback functions and GUI objects. However, it was discovered that the

GATOR tool suffers from generalizability issues whereby the number of apps which

could be successfully analyzed was low. On performing a larger-scale evaluation,

only about 80 of 600 (13.3%) Android apps could be successfully analyzed. I hence

implemented my own analysis of callback functions.

A possible reason for GATOR’s generalizability problems is that it tries to do

very detailed modelling of control flows (e.g. The exact sequences of control flows,

as well as the types and characteristics of the views being inflated). Hence it might

not have been able to handle the complexities with different app implementations.

My analysis outputs Fully-Directed as well as Semi-Directed Activity Transi-

tional Graphs (ATG) and test cases for automated testing. These are described as

follows:

22

Fully-Directed Activity Transitional Graph (ATG)

In the Fully-Directed ATG, exact widget identifier information is contained in the

activity transitional edges. The automated runtime testing thus only requires stimu-

lating a single user-input to cause an activity transitions in each ATG edge. I formu-

lated and implemented an algorithm for callback function analysis over SOOT to

generate these ATG edges. The algorithm is based on the analysis of Android User-

Input Listener Invocation Points and the dataflow tracking of listener objects across

Android callback functions to identify the corresponding GUI element involved, as

well as source and target activities. (Please refer to Algorithm 2 in Appendix A)

Figure 2.3 illustrates examples of resulting Fully Directed test cases for ex-

ample activities of 2 apps: 2 different paths were found for ’.PremiumActivity’,

the 1st shorter path being a single user-action on the widget with identifier ’ac-

tion premium’, and the 2nd longer path involving transition with 2 user-actions

(’action info’ and ’premiumUpgradeButton’). The other example for the activity

’.koisettings’ found 4 different possible paths from root to the activity, the 1st path

requiring 2 user-actions, and 2nd-4th paths requiring 3 user-actions.

Target Activity: com.bitsmedia.android.quitpro.activities.PremiumActivity

(App: com.bitsmedia.android.quitpro.apk)

Test Case #1 : [action premium]

Test Case #2 : [action info, premiumUpgradeButton]

Target Activity: com.interestingcoolerfreegoimbh.app.koisettings

(App: com.interestingcoolerfreegoimbh.apk)

Test Case #1 : [settings, button1unlock]

Test Case #2 : [settings, RelativeLayout04, gridview]

Test Case #3 : [settings, RelativeLayout05, gridview2]

Test Case #4 : [settings, RelativeLayout03, gridviewback]

23

Figure 2.3: Example: Format of Fully-Directed Test Cases Built from Callback
Function Analysis For Automated Testing

To increase accessibility and improve testing time, multiple paths for each ac-

tivity were ordered according to length of shortest to longest, and executed shortest

paths first before trying out longer paths if the shorter paths were found to be in-

feasible. The automated tester executes shorter paths before moving to try out the

longer paths if it is unable to reach the resulting activity.

While a Fully-Directed ATG is highly efficient in guiding automated runtime

testing, the generalizability of the analysis is still imperfect in uncovering paths

for all apps. For apps in which fully-directed ATG cannot be obtained, the Semi-

Directed ATG is utilized to generate test cases. This is described in the following

sub-section.

Semi-Directed Activity Transitional Graph (ATG)

In the Semi-Directed ATG, the Android callback function analysis does not directly

output exact button/widget identifier information. Semi-Directed test cases have a

much higher successful generation rate (> 70%) than fully directed test cases due

to the simpler analysis involved. The analysis is performed over Android intents to

identify activity transitions using a source-sink concept [10]. A simple listener anal-

ysis is performed to identify actionable GUI elements within each activity. The lists

of actionable widgets are provided in the ATG information for use by the automated

runtime tester. (Please refer to Algorithm 3 in Appendix A)

Automated runtime testing proceeds by trying each potential widget identifier

associated with the current activity, and determining if the resulting activity reached

corresponds to the target node of the current ATG edge. if the target node of the

current edge is not reached, a ’back track’ command is issued to bring the app back

to the source activity. The next potential widget is then tried until the next activity

in the ATG edge is reached.

24

Upon reaching the target node in the ATG, the remaining actionable button-

s/widgets identifiers in the source node of the edge is discarded and replaced with

that of the target node. In this way, activity transitions proceed until the target ac-

tivity containing privacy sensitive APIs is reached.

Figure 2.4 displays the format of the semi-directed test cases for 2 target

activities of apps. The transiting activities are in bold, with the widget identifiers

contained within the brackets.

Target Activity: com.interestingcoolerfreegoimbh.app.koisettings

(App: com.interestingcoolerfreegoimbh.apk)

Test Case:

[com.interestingcoolerfreegoimbh.app.menuicon{settings,imageView1,morefreapps

,setwallpaper}; com.interestingcoolerfreegoimbh.app.GalleryWallpaperSettings{image

View1,butt2a,butt1,button1unlock,tvSeekBar11};com.interestingcoolerfreegoimbh.app

.koisettings{unlockbuttommain,backone,textapp}]

Target Activity: com.lyrebirdstudio.promodialog.PromoActivity

(App: com.lyrebirdstudio.montagenscolagem.apk)

Test Case:

[com.lyrebirdstudio.montagenscolagem.SelectPhotoActivity{my awesome toolbar,

montagens show case, montagens main ad id};com.lyrebirdstudio.promodialog

.PromoActivity{}]

Figure 2.4: Example: Format of Semi-Directed Test Cases Built from Callback
Function Analysis For Automated Testing

In the example of Figure 2.4, the test case directs the app towards

target activities called ’com.interestingcoolerfreegoimbh.app.koisettings’

and ’com.lyrebirdstudio.promodialog.PromoActivity’. In order for

’com.interestingcoolerfreegoimbh.app.koisettings’ to be reached, it has to

25

transit through 2 other activities, ’com.interestingcoolerfreegoimbh.app.menuicon’

and ’com.interestingcoolerfreegoimbh.app.GalleryWallpaperSettings’. It does so

by filtering and only stimulating user action on the widget identifiers within the

brackets (e.g.{settings, imageView1, morefreapps, setwallpaper}), and discarding

the rest which are not involved in enabling transitions.

2.2.3 Reports on Activity Transition Paths and Results of Static

Analysis

To facilitate reporting of static analysis results, human-readable reports in text for-

mat were outputted in addition to the test cases. Figure 2.5 illustrates the report

outputs of an example app. As can be seen from the report, the information pro-

vided includes:

• Total number/names of activities

• Main (Root) activity of app

• Widget identifiers in directed test cases required to reach each of the activities

• Privacy infringing APIs found

• Target activities that have callgraph links to privacy APIs

• ATG map containing the required activity transitions of each of the activities

in the app

• Widget identifiers corresponding to the ATG map

It should be highlighted that the MAMBA system outputs the results of static

analysis including the ATG and paths of all app activities in the report, but filters

results to generate test cases for automated runtime testing to reach only the target

activities.

26

Figure 2.5: Snippet of Human-Readable Report in Text Format on Results of Static
Analysis (MAMBA System)

2.2.4 Automated Runtime App Testing

As mentioned, the Activity Transition Graph (ATG) generated from the analysis in

the previous Subsection 2.2.2 is used to guide traversal of the app from root (main)

activity to any targeted activity within the app. In my model, the ATG nodes are ac-

tivities and graph edges are the directed edges between each activity. Directed edges

contain callback function information of activities, which include widget identifiers

of the GUI components that will cause transitions between any 2 activities defined

in the app. Widget identifiers are utilized for edges because Android’s Hierarchy

Viewer [47] provides visibility on clickable Android UI components from these

identifiers. The ATG representation is shown in Figure 2.6. GATOR’s CCFG class

was utilized as a stub to generate the ATG abstraction.

27

From Figure 2.6, the callback function contained by the ATG node as

well as the activity name is highlighted in bold. In the example, the callback

function of the node is ’onCreate’, which represents the starting up of an

Android activity. While the activity containing this callback is of the name

’com.bitsmedia.android.quitpro.activities.PremiumActivity’. The edge contains a

source as well as a target node, and also illustrates the callback functions as well as

activity names in bold. A descriptor is present at the start of the node, indicating

the type of node. In this particular example of the ATG edge, the start node is of an

Android view inflation type, represented by ’Inflate Node’ while the target node is

of an activity start type.

Node (Activity with Callback Functions):

[START] Node 〈Activity[com.bitsmedia.android.quitpro.activities.PremiumActivity],〈com.bitsmedia.android.quitpro.activities.

PremiumActivity: void onCreate(android.os.Bundle) 〉 ,implicit lifecycle event,Activity[com.bitsmedia.android.quitpro.activities.

PremiumActivity] 〉

Edge (Source and Target Activities together with Their Callback Function):

Node〈Inflate Node[android.widget.Button,WID[premiumUpgradeButton]],〈com.bitsmedia.android.quitpro.activities.InfoActivity$1:

void onClick (android.view.View)〉, click, ACT[com.bitsmedia.android.quitpro.activities.InfoActivity]〉 -> [START]

Node〈Activity[com.bitsmedia.android.quitpro.activities.PremiumActivity],〈com.bitsmedia.android.quitpro.activities.PremiumActivity:

void onCreate (android.os.Bundle)〉,implicit lifecycle event,Activity[com.bitsmedia.android.quitpro.activities.PremiumActivity]〈

[normal, start activity, [window must start]]

Figure 2.6: Node & Edge Representations in ATG, containing Callback Information
(Represented with GATOR tool’s CCFG class, which was utilized as a stub)

I built an automated walking tool on top of AMC, which utilizes test cases gen-

erated from the ATG as inputs to guide its testing. Each test case is made up of

the user actions that are required to be sent to the UI to cause activity transitions,

which are executed in sequence one after another. The testing thus proceeds by

28

’walking’ the application from the initial root activity to a target activity, before ter-

minating and restarting from the root activity again for the next test case. Testing

now proceeds in a more deterministic and guided fashion, which improves testing

efficiency.

Multiple Paths & Path Feasibility: The analysis encountered cases whereby there

were multiple paths from an activity back to the root activity. While my solution

logs all possible paths, it does not identify which paths are actually feasible or can be

reached during run-time. Infeasible paths might occur if some condition is required

before the next resulting activity can be started. For example, an activity might only

be accessible if the user is on WiFi. Another example could be in a shopping app,

in which a checkout activity might only be accessible if the user had checked on

certain items in a list.

2.2.5 Analysis of Causes of User-Triggered Leaks & Character-

istics

As mentioned, MAMBA’s automated runtime testing produces log files that con-

tain execution traces of the automated tester, information on Android activities and

buttons/widgets that are reached as well as privacy access and leak reports from Pro-

tectMyPrivacy (PMP) [48] and TaintDroid [24]. MAMBA processes the resulting

leak and event log files to obtain useful outputs on the privacy behaviours of apps.

Analysis on App Usage Logs without Static Analysis Outputs

An early version of the tool [37] was based on manual/automated testing without

knowledge from static analysis, and relied on uncovering user-triggered causes of

privacy leaks (leak-cause analysis [36]) using Association Rule Mining [4]. In this

leak-cause analysis, I established linkages between user actions to privacy leaks

using WEKA [30]. The tool converts raw log files to .csv format for input and

processing, and outputs the results into a ’Leak-cause Database’ for storage.

29

Association Rule Mining [4] identified correlation based on how frequently two

concerned events (a particular user-action and a particular leak report) occured to-

gether within a chosen time window (5 seconds). The assumption and intuition for

applying this technique is as follows: the leaking behaviour of an application stays

constant with time, similar behaviour is expected to occur repeatedly if sufficient

logs are collected. Thus patterns can be extracted to identify causes of various leak-

ing behaviour. For example, if a news app is reported to leak IMEI as many times

as the ”Load More News” button was touched by the user, it can be inferred that the

user-action of touching this button is highly correlated with the leak of the IMEI in

this app.

The outputs of the analysis are expressed as association rules whose left sides

indicate the causes of the leaks on the right sides. For example: Click of ”Load

More News”→ Leak of IMEI. I utilized the Apriori algorithm available in WEKA

to obtain such association rules with absolute support and confidence thresholds of

2 and 0.5 respectively. The thresholds were tuned based on samples of 20 apps,

and fitted reasonably well with the test logs. For utilization with WEKA, my tool

transforms raw logs into a tabular format as displayed in Figure 2.7. In this format,

each clickable component in the app has a column representing co-occurrence with

leak within the 5 second time window. If yes, it is indicated by a ’True’, otherwise

a ’FALSE’ appears in the tab.

Non user-triggered privacy behaviours (Start-up/Periodic leaks) are also

uncovered by the mining process. For Start-up leak behaviours, instances of app

launches were co-located with leak events within the 5 second window. While

an app was deemed to have periodic privacy leak behaviours when there were

consistent occurrences of leak events at every minute time interval.

30

Figure 2.7: Example of Transformed WEKA Table from Raw Logs

MAMBA’s Output of Runtime Verified Privacy Causes

MAMBA outputs a text format human-readable report of runtime verified privacy

causes from the static analysis (Please refer to Figure 2.8). The report lists the

number and names of target activities (activities with privacy-related APIs), target

activities that automated testing managed to reach and coverage percentages, veri-

fied runtime paths towards target activities, the button/widget identifiers acted upon

at runtime to reach these target activities as well as their screen coordinates, privacy

access/leak reports associated with activities, as well as their privacy data types.

Figure 2.8 displays an example of a final report of runtime verification by

MAMBA for an app (com.urbandroid.babysleep.apk). The report lists that all of the

3 target activities (’MainActivity’, ’TutorialActivity’ and ’RecordActivity’) were

reached by automated testing, and had privacy accesses of device identifiers as well

as microphone sensor. The button/widget identifiers and their corresponding on-

screen coordinates which were verified to reach each of these activities are displayed

under the tag ’Widget Clicked’. In this example, the buttons with the ’id/help’ and

’id/record’ identifiers were clicked upon to reach activities ’TutorialActivity’ and

’RecordActivity’ respectively. Each of these identifiers had on-screen display coor-

dinates of ’672 , 106’ and ’209 , 342’.

The verified runtime paths towards these target activities are also displayed in

the example Figure 2.8 under the tag ’Verified Path’. The example shows that the

31

Figure 2.8: Human-Readable Final Report in Text Format of MAMBA’s Runtime
Verification

target activities had user-triggered activity transition paths from the main activity

’MainActivity’.

The identifer and coordinate information can be utilized by the customized In-

teractive Privacy Notifications App described in Section 2.3. Whenever the Noti-

fications App detects that the button/widget/view with identifier and coordinates is

being displayed on the user device, it fires off a privacy message which overlays

itself on top of the button. The privacy message displays the data type as well as

privacy implication (data access or leak) of user action. In this manner, users can be

provided with better and more in-depth context of the privacy implications of using

their apps.

32

Google Play

Store

App Crawler

Apps

Intent Mining

Testing Instance N
Testing Instance #3

Testing Instance #2
Test Machine #1

Test Coordinator

Automated Model

Checker (AMC)

Process Monitor

Event Recorders

Sensor Mocking

Test Logs

Leak-

Characteristics

Leak-Cause

Analysis

Leak-Cause

Analysis

Log Mining & Analysis

Refined

Patterns

Refined

Patterns

Targeted

Retesting

Parallel Instrumented

Emulators with TaintDroid

Instrumented Android Devices

with TaintDroid & Loggers

…

Leak-Cause

Database

Figure 2.9: Architecture of Parallelized Automated Application Testing System

2.2.6 Scaling up App Testing By Parallelized Test Instances

In order to scale up application testing, I leveraged on parallelization over multiple

Android emulator test instances on commercial clouds (Amazon EC-2) and physi-

cal test phones. Figure 2.9 displays the system architecture for the automated app

testing system.

A Test Machine is a single CPU running either on the Amazon EC-2 cloud or a

physical CPU tethered to physical test phones. Each Test Machine runs a test co-

ordinator program for control and coordination of multiple Testing Instances. Each

Testing Instance is a customized Android OS image, that runs the Android Frame-

work and leak detection instrumentations. These instrumentations allow output of

information about various app states (e.g. app starts, widget draw events, listeners

etc.) and actions of the user (click, key events). From Figure 2.9, each Test Machine

33

also runs Process Monitors, Automated Model Checker (AMC), Event Recorders

as well as Sensor Mockers to enable Mobile Forensics testing on the emulator. The

Parallelized Automated Testing System runs on each Test Machine, and has a role

of ensuring smooth and continual testing of mobile apps in a sequential fashion. It

contains fault handling routines for the Android emulator, which is known to suffer

from stability issues [31].

The resulting event logs obtained from the Test Machines are processed by the

Log Mining & Analysis Sub-system. Leakage patterns associates the data leaks to

the actions captured in the logs. Patterns are obtained and stored in a Leak-Cause

Database.

The following component modules of the Parallelized Automated App Testing

System, displayed in Figure 2.9, are described as follows:

1) Application Crawler & Intent Miner: I utilized an existing Android Market

API [17] to create a crawler that discovers and downloads a large number of Android

apps (.APK) from the Google Play Store. With the term search API, a 32,000 word

dictionary [22] was used to discover a list of about 200,000 unique apps from the

store (This is not exhaustive, and more can actually be discovered). Using the list,

the crawler then downloads apps at a rate of 500 apps/hour.

The Intent Miner module extracts apps’ start-up intents and permissions from

their manifest files. The start-up intent provides the means to start the app from

the Test Coordinator, while permissions identify the platform (device or emulator)

the app is suitable to be tested on. The reason is that Android emulators lack

microphone emulation, hence apps that require the microphone permission is

directed to physical test phones instead of the emulator.

2) Test Coordinator: The Test Coordinator ensures that the testing of the applica-

tions on each Testing Instance proceeds in a smooth and sequential fashion. The

inputs to the Test Coordinator are application apk files placed in a specified folder,

34

and the outputs are the corresponding test logs saved by individual application

package names. The Coordinator installs the applications on each available Testing

Instance, starts it up, saves the logs upon completion of test and starts up the testing

of the next application automatically. The logs saved include the leak-reports from

TaintDroid, widget and page transition data, all in-application widget and button

clicks/interactions made by the AMC’s MonkeyRunner as well as screen captures

of all unique pages traversed.

3) Process Monitor: To ensure smooth testing and deal with instabilities with the

Android Emulator and the Android Device Bridge(ADB), I developed a Process

Monitor to manage the test processes such as the Android Debug Bridge (ADB),

Model-Checking as well as logger processes. Problems in application testing on the

Android Emulator have been highlighted previously [31], with some works specif-

ically avoiding to run their test processes on the Emulator due to their slow speed

and instabilities. Issues with emulators are aggravated especially for continuous and

prolonged running with multiple instances. It was also observed that zombie ADB

processes tend to accumulate at the end of each application test run, which could

cause additional unwanted memory loads on the test machines causing slowdowns.

As such, the Process Monitor was specifically designed for unhindered testing on

the Android Emulator.

The Process Monitor tracks and monitors the Android Emulator, ADB and other

running binary processes of the front-end testing system. Various fault handling

routines were implemented, including the shutting and restarting of the Emulator,

ADB and Android Linux system processes before and during each test run, if

various stalling conditions occurred. Heuristics were used to determine stalling

or hanging conditions in the test instances. The heuristics were based on whether

the size of test logs and number of images being captured increased continuously

during the testing runs. If the logs captured did not increase by a specified time

(3 minutes), the Process Monitor shuts down and restarts the individual emulator

35

and Android SDK processes automatically and continues with the testing instance

until completion. On emulator crashes, appending of logs from the previous testing

process was performed. These implementations worked well to allow proper and

uninterrupted sequential testing of applications.

4) Automated Model Checker (AMC): The default app testing tool utilized is the

Automated Model Checker (AMC) [39] to automatically traverse and explore the

application GUIs. This module is readily switched with my MAMBA automated

tester that I created (Described in Section 2.2). Switching of tester is done with a

simple executable binary file swap.

5) Event Recorder: Event Recorders were implemented for each testing instance

while running the Automated Model Checkers on the test instances. The Event

Recorder automatically logged and saved the traces of the user-interaction with

the layouts and widgets of the application. Data logged included page-transition

notices, widgets and buttons tapped or clicked by the model checker, coordinates of

buttons and layouts accessed by the model checker as well as taint reports provided

by TaintDroid. This includes a screen-capture component to take and save images

of unique pages and layouts in the applications accessed by the model checker. As

the model checker could possibly access the same application page multiple times,

heuristics involving simple matching of some layouts in the pages accessed were

utilized to prevent multiple captures of the same application page to save storage

space.

6) Sensor Mocking: I implemented a simple Sensor Mocking program to send

fake running GPS coordinates to the emulator test devices through the telnet ports.

The purpose of which to elicit similar behaviours and data-leaks to physical phone

devices. The mocking of other sensors besides GPS can be accomplished by the

open-source project Sensor Simulator [28].

36

2.3 Notifying Users with Privacy Outputs

With the outputs of user-triggered causes and privacy characteristics of apps uncov-

ered in Section 2.2, the next part of my solution involves effective utilization of its

outputs to improve user privacy. Improvement in user privacy is sought, which is

observed in the form of reduction in user behaviours that cause privacy accesses

and/or leaks. In addition, I seek to investigate if the outputs improve privacy data

recollection and knowledge of the user.

Creation of Visual Leaky Layouts

Creation of Visual Leaky Layouts: For easier notification and illustration of leak

causes and potential users of the rules for end users, a tool was implemented [37]

to utilize the outputs of leak-cause analysis of Section 2.2.5. The tool creates vi-

sual presentations by automatically overlaying outlined coloured boxes on the top

of leaky widgets in the app screen-captures. This enables the leak-cause informa-

tion to be much more user friendly and easier for users to digest. An example of

the generated visual leaky layout is displayed in Figure 2.10. Such visual layouts

can be utilized by an analyst to make quick determinations as to whether apps are

appropriately utilizing privacy data. They can be also shown to app users for more

informed access control decisions of their apps.

Interactive Privacy Leak Notification App

To utilize the outputs of the hybrid static/dynamic app privacy system, an Interactive

Privacy Leak Notifications app was also developed. This Notifications app works on

un-rooted phones, and pulls data from the knowledge-base stored in the ’leak-cause’

database. This app runs an Android service on the user phone, which continuously

monitors the app state that the user is on. On detection of that the user is on a

desired app page, the Notification app fires of privacy messages using Android Toast

Messaging [21]. The toast messages appear on: (i) App Start-Ups, (ii) On the

37

Figure 2.10: Visual Overlay of Coloured Boxes on top of Leaky Widgets in App
Screen-Captures by Leak-Cause Analysis Tool

appearance of certain in-app layouts and (iii) Beside culprit buttons/widgets within

the app. The Notifications app works by reading event messages provided by the

Android Accessibility Service [19].

The notification app parses accessibility event messages to infer page transi-

tions, the exact application that users are in as well as the page-layout that users

are currently accessing to determine the exact moments to display notifications to

users. An example of the formatted accessibility event service sequence 4-tuple is:

{1: com.facebook.katana

2: d”ButtonText”e

3: android.widget.EditText

4: Layout Element Count:6}

The first sequence of the 4-tuple above indicates the application package name,

the second sequence refers to the text on the app widget clicked on by the user, the

third sequence indicates the widget type that was clicked upon and the last sequence

provides the element count in the particular layout. I found that for the majority of

38

the page transitions within the applications, it was possible to sufficiently identify

the current application page and state that a user is presently on for the field study

in Section 4.2.

To enable proper display of notification message overlays regardless of user-

phone screen size, scaling of the coordinates from the leak-cause database was per-

formed. The coordinates to display message overlays were scaled over the test

device (Galaxy Nexus) to user device screen sizes. i.e... x − Coordinate =

Display x−Coodinate
Test Device Length

×User Device Length , y−Coordinate = Display y−Coodinate
Test Device Height

×

User Device Height.

2.4 Initial Feasibility Study on Uncovering User-

Triggered Privacy Leaks and Characteristics of

Apps

In this section, I present the results of an initial feasibility study for uncovering

user-triggered privacy leaks and privacy characteristics of Android apps (Privacy

’Leak-Causes’). I also investigate the taxonomy of app privacy leak behaviours.

This study was performed using manual testing of apps.

Empirical Study: Taxonomy of Privacy ’Leak-Causes’

An empirical study was performed on popular apps from the Google Play store [1]

to observe the proportions of apps with user-triggers, as well as to study the

taxonomy of app privacy leak behaviours.

Applications: I sampled the top 10 apps from the (previously) 22 categories from

the Google Play store during Nov 2012. (Total 226 apps) The 6 additional apps

were randomly added to make up for cases where some apps crashed.

39

(1)

34 apps

(32.4%)

(2)

14 apps

(13.3%)
(3)

21 apps

(20.0%)

(1) + (2)

23 apps

(21.9%)

(1)+(3)

3 apps

(2.9%)

(1)+(2)+(3)

4 apps

(3.8%)

(2)+(3)

6 apps

(5.7%)

User-Triggered Leaks (1)

Start-Up Leaks (2)

Periodic Leaks (3)

Figure 2.11: Distribution of Various Leak Causes

Testing Environment: The test was performed on a Google Nexus one phone

running Android v2.3.4 with a custom ROM that includes TaintDroid leak detec-

tor [24] and the relevant OS instrumentations to capture UI events and user-actions.

Taxonomy of Leaky Applications: Out of the 226 apps studied, 121 apps were

found not to be leaking private data (non-leaking apps). Among the 105 apps

(46.5%) leaking privacy data, 64 apps (28.3%) were found to leak private data due

to user actions on application widgets. With leak-cause analysis, I defined a taxon-

omy of privacy leak behaviours for apps, based on the observation of how apps can

leak data: (1) User-Triggered Leaks (identified by association rules), (2) Start-Up

or One-Time Leaks, and (3) Periodic Leaks. Defining such a taxonomy helps in

properly classifying and describing the privacy leak behaviours of apps.

The distribution of the 105 apps with various leak causes is shown in Fig-

ure 2.11. 32.4% (34) of the leaky apps leak private data solely due to (1)

User-Triggered actions on widgets. 13.3% (14) leak solely on (2) Start-Up. 20%

(21) leak data solely in a (3) Periodic fashion. 21.9% (23) can leak data by either (1)

User-Triggers or (2) Start-Up. 2.9% (3) leak data either by (1) User-Triggers or (3)

40

Periodically. 3.8% (4) applications leak data by any of the three means. 5.7% (6)

have no User-Triggered leaks, but leak data both on (2) Start-up and (3) Periodically.

Distribution of Leak Data Types: Figure 2.12 shows the distribution of various

types of private data that was leaked by the test apps. 9 different leaked data types

have been found: {Phone Contacts, GPS Location, ICCID (SIM card identifier),

IMEI, Last-Known Location, Location (Non-GPS), Microphone Input, Net-based

Location, Phone Number}. It is noticed that a majority of leaks are of 3 types:

IMEI, Location (Non-GPS), and Net-Based location. As most of the processes in

the applications required an active internet connection, it is unsurprising perhaps

that much of the private data leaked is of their Net-Based location, which is the

coarse-grained geographical location obtained from mobile users’s IP addresses.

However, it is surprising that many applications are leaking IMEIs and non-GPS lo-

cation, which is the user location obtained from cellular towers, to external servers.

From our observation, IMEIs are often used (but possibly unnecessary) as a unique

identifier to link mobile users to activities such as user feedback, comments, and

record-keeping for access when requesting server-based information by the appli-

cations.

2.4.1 Accuracy of Association Rules Mining

User-triggered leaks and privacy characteristics were uncovered by the mining of

user-triggered causes and characteristics of privacy leaks from the outputs and logs

of mobile app testing described in Section 2.2.5. As mentioned, the processing of

logs is performed using Association Rules Mining with the WEKA machine learning

tool. Whereby app user-triggers and pages with privacy leaks that are correlated

with privacy reports (i.e. have high support and confidence values) are outputted for

building of a knowledge base in the form of a ’leak-cause’ database for advisory to

users.

41

6

68

4

64

2

66

5

8

8

0 10 20 30 40 50 60 70

Address Book

(Phone Contacts)

GPS Location

ICCID (SIM Identifier)

IMEI

Last-Known Location

Location (Non-GPS)

Microphone Input

Net-Based Location

Phone No.

Figure 2.12: Distribution of Types of Leaked Data

Figure 2.13 displays the accuracy results of the association rules mining as a

distribution. An overall mining accuracy of 67% was obtained. These accuracies

were obtained based on a manual pattern validation across a set of 64 apps with

user-triggered privacy leaks. Accuracy is defined to be the percentage of leak causes

that have been defined to be correct, out of the total number of leak causes returned

from the miner. It can be observed that the miner is very accurate (80-100%) for

37.5% (24) of the apps. However, there was a small percentage of apps with poor

accuracies (<40) - 26.6% (9) apps. Some of the reasons for lower accuracies are

highlighted next.

Causes of Mining Inaccuracies: Based on manual inspections of apps with lower

accuracies, I highlight a few reasons. It was observed that there were situations

where multiple non-leaky widgets were often situated in close proximity to a

leaky widget on the screen layouts. This often caused false positives due to these

non-leaky widgets showing up as false candidates in the Association Rules mining.

Co-occurrences of start-up/periodic leaks together with user-triggered leaks can

confuse the rule mining and cause false positives. Also, there are situations in

42

0

5

10

15

20

25

Accuracy of Association Rules Miner (%)

80-100%

60-79%

40-59%

<40%

Number of Apps

12.5% (8 apps)

14% (9 apps)

35.9% (23 apps)
37.5% (24 apps)

Figure 2.13: Distribution of Leak-Cause Accuracies

which widgets might leak infrequently (e.g. only once before stopping), and this

contributes to false negatives. Also, it is also known that TaintDroid tool may

generate false positives due to the usage of tag aggregation at various points in the

system to reduce storage costs. All these reasons contribute to mining inaccuracies.

2.4.2 Feasibility in Creation of a ’Leak-Cause’ Database

I built a knowledge-base of app leak causes from Mobile Forensics back-end test-

ing framework (’Leak-Cause’ Database). Building such a knowledge-base can

help to enhance the usability and trustworthiness of app stores. Notifications can

be performed by a customized 3rd-party app that I created, that is linked up to

this ’Leak-Cause’ Database. The database contains relevant information pertain-

ing to the leak behaviours of the apps: Types of private data leaks, leak-widgets

identified by the leak-cause miner, characteristics of leaks from taxonomy (User-

triggered, Start-Up, Periodic), App name, screen-captures, legitimacy recommen-

dations etc. Table 2.1 shows sample database contents for 4 apps: ’Dictionary’,

’HungryGoWhere’, ’GMail’ and ’MessengerWithYou’.

43

No. App Name Leaks Found Association Rules(Sample) Leak Behaviour Recommended?

1 Dictionary.com 1) Location 1)(ImageView #1)→ (Location)+(Net-based Location) -Start-up No
2) Net-based Location 2)(ImageView #2)→ (Location)+(Net-based Location) -User-Triggered

3)(TextView #1)→ (Net-Based)+(Location)
4) (Button #1) + (ImageView #3)
→ (Location)+(Net-based Location)

2 HungryGoWhere 1) ICCID (SIM Card Identifier) 1)(TextView #1)→ (ICCID)+(IMEI) -Start-up No
2) IMEI 2)(LinearLayout #1)→ (ICCID)+(IMEI) -User-Triggered

3)(LinearLayout #2)→ (ICCID)+(IMEI)
4) (RelativeLayout #1)→ (ICCID)+(IMEI)

3 Gmail 1) Address Book (Phone Contacts) 1)(LinearLayout #1)→ (Address Book)+(Phone Book) -User-Triggered Yes
2) Phone No. +(GPS Location)+(Net-based Location)
3) GPS Location 2)(Button #1)→ (Address Book)+(Phone Book)
4) Net-based Location +(GPS Location)+(Net-based Location)

4 Messenger WithYou 1) IMEI 1)(Button #1)→ (IMEI) -User-Triggered Yes
2)(Button #2)→ (IMEI)
3)(Button #3)→ (IMEI)
4)(Button #4)→ (IMEI)

Table 2.1: Example of Content Fields in Leak-Cause Database

As an example from Table 2.1, the rule 1) for ’Dictionary.com’ indicates that

touching ’ImageView #1’ would leak users’ locations. The leaky widgets can be

uniquely identified by 8-digit java has code identifiers and (x,y) layout coordinates,

with their corresponding leak type associations. A total of 647 leak causes were

mined from the 64 apps with user-triggered leaks. I thus demonstrated that a leak-

cause database can be created for privacy notifications to the mobile user. Infor-

mation from this database can be utilized by an Interactive Privacy Leak Reporter,

which I describe in Section 2.3.

2.5 Scaled-Up Testing Experiment with Parallelized

App Testing System

I ran the parallelized Automated Testing System described in Section 2.2.6 on a set

of 1,700 Android apps downloaded from the Application Crawler. The apps were

selected to provide an equal representation among popular and unpopular applica-

tions, and consisted of 840 applications from the 26 most popular categories on

Google Play as well as a set of 890 randomly selected applications which are not in

any of the popular categories.

I utilized 10x Amazon EC-2 cloud machines to run Android Emulator Testing

44

Total # of Apps 1,700

of Apps with Privacy Leaks 462

Average Running Time per
Application

17.9 minutes

Average # of Unique Pages
Transited per Application

6.3

Table 2.2: Run-Time Statistics in Automated Testing Experiment

instances, as well as 3 actual physical Android phones (2 x Galaxy Nexus; 1 x

Nexus 4). While it was found that up to 3 emulator test instances could be run on

a quad-core CPU machine with 4GB RAM, it would be more cost effective to run

a single emulator test instance on a dual-core CPU machine with 2GB RAM in the

EC-2 cloud. I set a maximum memory allocation of 768 MB for each emulator, and

an upper-bound running time of 60 minutes for each application.

Some statistics of the experiment is as shown in Table 2.2. Of the 1,700 appli-

cations tested, we found that 462 applications (27.2%) leak user-data to the external

network. The average running time of each application was 17.9 minutes (upper

bounded by 60 mins), and it was found that the model checker traversed through an

average of 6.3 unique pages per application. In this case, a unique page is defined

to be a page that has a significantly different layout (greater than 3 layout widget-

s/views) than the rest of the pages in the application. In total, 507 machine hours

were utilized for the testing of all applications.

In the run-time testing experiment performed in [39], the exploration times

required for the apps had a large variation from 10 minutes to over 10 hours. As the

aim is to simply to illustrate an automated approach for user-centric leaks, the de-

sign choice was to upper bound the run-time to 60 mins/app. However, it is possible

for all testing to proceed to full coverage if a larger number of machines are utilized.

45

Coverage Measurements of App Testing: I performed activity coverage measure-

ments for a number of 187 randomly selected apps. After decompiling, the An-

droidManifest and XML layout resources of these decompiled apps were analyzed

to obtain a measure of the number of unique layouts and pages required for model

checking. This was then compared to the number of actual unique pages accessed

by the Automated Testing System. The results are displayed in Figure 2.14. 83

of the 187 applications (44.4%) had a coverage of more than 80%, 39 applications

(20.9%) had a coverage of between 40% to 80%, while 65 applications (34.8%) had

a coverage of less than 39%.

0 - 39% 40 - 80% 80 - 100%
0

10

20

30

40

50

60

70

80

90

N
u

m
e

r
 o

f
 A

p
p

li
c
a

t
io

n
s

Percentage Coverage of Application (%)

Distribution of Application Coverages

Figure 2.14: Distributions in Application Activity Coverage (Percentage)

Processing of Leak-Causes: I performed processing and discovery of leak-causes

and characteristics for the apps. The apps were classified into 3 forms of leak char-

acteristics: Applications that leak a users’ privacy data on (i) Start-up, (ii) In a Pe-

riodic fashion and (iii) On User-Triggers. As before, frequent item-set mining was

utilized. For every occurrence of a leak event reported by TaintDroid in the log files

of each application, a look-back window of 5 seconds to co-locate user-activities

with these leak events. Similarly for Start-up leak behaviours, instances of appli-

cation launches were co-located to leak events within a 5 second window as well.

For Periodic leakage characteristics, consistent occurrences of at least 1 leak event

46

of User-Triggered Leak
Rules Found

of Applications

1-3 11

4-6 72

>6 5

Table 2.3: Distribution of Numbers of User-Triggered Leak Rules Found

at every minute time intervals were identified. The data leak was deemed to be peri-

odic if at least 75% of the minute time intervals had a leak report. WEKA [30] was

utilized with absolute support values of value 2. Targeted re-testing was performed

on leaking apps to validate the leak characteristics.

Table 2.3 presents a distribution of the number of user-triggered leak rules

for 88 applications found to leak user-data on pressing in-app widgets. Of these

applications, 11 were found to have 1 to 3 triggers, a majority of 72 applications

had 4 to 6 triggers and 5 applications had more than 6 user triggers that cause

privacy leaks. These results illustrate that most user-triggered leaky applications

typically have between 4 to 6 widgets that would cause a privacy leak when clicked.

Distribution & Characteristics of Leaks Found: Figures 2.15 displays the propor-

tions of applications displaying each of the 3 different leak characteristics and the

types of user leaks found respectively in the 462 applications. 148 applications

(32.0%) were found to have start-up leaks, 378 applications (81.8%) were found to

have periodic leaks, and 88 applications (19.0%) of the applications had leaks due

to user triggers.

Figure 2.16 highlights the types and numbers of leaks found in the applica-

tions. The leaks were found to disclose users’ physical locations, address books,

protected storage (SMSes, Photo & Media Files etc.), phone identity (IMEI) as well

as the SIM card identifier (ICCID). A large number of 337 applications were found

47

Characteristics of Data Leaks

Start-Up

Periodic

User-

Triggered

Figure 2.15: Proportions of Leak-Characteristics

0 50 100 150 200 250 300 350 400

Physical Location

Address Book

Protected Storage

(SMSes,Photo &

Media Files etc.)

Phone Identity

(IMEI)

SIM Card Identifier

(ICCID)

Number of Apps with Data Leaks

Figure 2.16: Types of Privacy Leaks Found

to disclose user protected storage, while a surprisingly large number of 250 appli-

cations disclosed the address book to an external server.

48

Chapter 3

Evaluation Results of MAMBA

System

In this chapter, I compare my automated testing solution, the MAMBA system, to

another testing solution, the Automated Model Checker (AMC) [39]. The compar-

ison is performed over 500 Android apps, with the comparisons metrics being the

(i) Testing Times Required (Latency), (ii) Activity Coverage, as well as the (iii)

Precision of my MAMBA testing in uncovering runtime privacy accesses/leaks.

3.1 The Automated Model Checker (AMC)

I provide some preliminaries on the Automated Model-Checker (AMC), which is

an automated app testing solution for Android apps from MobiSys 2013 [39]. In

AMC, no target activities were specified, but available user-actions for each click-

able widget/button on each activity encountered were ordered sequentially in a top-

to-bottom fashion based on the layout and each tried in-turn. On reaching a next

activity state, the app was backtracked to the previous activity before selection of

another clickable widget/button for tapping. In this fashion, AMC tries to reach all

activities in the app. AMC is based on state equivalence heuristics, and the com-

parisons of the app states that automated testing has reached after performing user

49

actions on app widgets.

After the inputs of user actions, activity transitions might not necessary occur.

And many user actions might not necessarily cause transitions but merely changes in

the activity’s state (For example clicking a view causes some additional information

to be displayed).

While it isn’t difficult for a human to deduce whether an activity transition has

occurred instead of merely view changes, the problem is not trivial for a machine.

AMC solves this problem by calculating structural hashes of the current activity and

comparing it to that of a previous state. An activity transition is deemed to have oc-

curred if the structural hashes calculated are different. AMC also holds in memory

a collection of states that testing has already reached, and builds an transitional rep-

resentation of all states visited at runtime. In addition, it uses equivalence heuristics

to determine if multiple transitions from a particular activity closely resemble each

other. If it does, it deduces that it is only sufficient to test the first few buttons in the

page. (For example, it is sufficient to test only the first few news items in an news

list of an activity)

AMC does not hold any prior knowledge of activity transitions of apps, but

builds up this transitional knowledge during runtime testing. This is in contrast to

MAMBA, which obtains activity transitional information of apps from static anal-

ysis prior to runtime testing. While this speeds up runtime testing, a downside of

MAMBA is that additional processing time is required for static analysis. However,

as the program sizes of mobile platforms are designed to be compact, the times

required for static analysis will usually not be exceedingly large.

50

3.2 Small-Scale Evaluation of MAMBA using

GATOR’s Callback Analysis

I present the results of a small-scale evaluation of 24 apps using MAMBA with test

cases generated by GATOR’s [53] Callback Analysis (MAMBA-GATOR). Testing

time required as well as activity coverage of MAMBA was evaluated against the Au-

tomated Model Checker (AMC) [39]. The test cases generated were entirely fully-

directed with no semi-directed ones. As mentioned in previous sections, GATOR’s

Callback Analysis was found to have a low success rate. The test apps were thus

selected based on apps which could be successfully processed.

3.2.1 Results of AMC Comparison with MAMBA-GATOR

The total time required for each of the 24 apps for both AMC and MAMBA-GATOR

are displayed in Table 3.1. AMC results are displayed in column ’AMC (Testing

Time)’, and consists of time for runtime testing in ’[hh:mm:ss]’ format. The total

testing time required for MAMBA-GATOR is a combination of the time required

for static test case generation as well as the automated running of the test cases on

the automated tester.

The total testing times required for AMC Model Checking ranged from over

2 minutes (0:02:32) to more than 3 hours (3:23:10). This is comparison to total

testing time required for MAMBA-GATOR’s directed testing (’MAMBA-GATOR -

Total [hh:mm:ss]’), which ranged from 2 minutes (0:02:04) to just over 15 minutes

(0:15:40). These testing total times required for MAMBA-GATOR were therefore

significantly shorter than that required for AMC. MAMBA-GATOR was 6.1 times

faster across all the 24 apps (Average 0:31:15 compared to 0:05:03), and was up to

58 times faster (No. 21 app: ’Speak Mandarin Free’).

Sensitive APIs & Target Activities of Interest: From Table 3.1, the Privacy Sensi-

51

AMC
(Testing Time)

MAMBA - GATOR
(Testing Time)

No. App Name Package Privacy
Data

Total No. of
Activities

No. of Target
Activities

Total
[hh:mm:ss]

Test Case
Generation [s]

Test Case
Running [s]

Total
[hh:mm:ss]

1 Album Cover Finder com.ftpcafe.coverart
.trial

GPS 8 6 1:18:25 59 337 0:06:36

2 A+ Certification Lite com.mhazzm.APlus
Certification702Lite

GPS 4 1 0:03:10 45 101 0:02:26

3 Advanced Task Killer com.rechild.advan
cedtaskkiller

GPS 6 1 1:04:11 47 140 0:03:07

4 African American
Quotes

com.hmobile.african
americanquote

GPS 11 11 1:18:18 37 610 0:10:47

5 Android Book App com.appmk.book.main GPS 5 3 0:19:41 56 146 0:03:22
6 Arsenal Fan Club com.arsenalfanclub Nil 9 0 0:46:55 57 N.A. Nil
7 Blood Alcohol Tracker com.promille GPS 7 7 0:27:00 32 411 0:07:23
8 Call and SMS

Easy Blocker
com.ekaisar.android.eb GPS, Contact

-List ,SMSes
9 2 0:17:17 94 168 0:04:22

9 Car Performance Free com.unnull.apps
.carperformancefree

GPS 7 2 0:12:51 26 224 0:04:10

10 CLT vs. PJ com.neocode.cltxpj GPS 3 3 0:03:35 30 185 0:03:35
11 Driving Skill Monitor com.drismo GPS 14 3 0:34:09 50 216 0:04:26
12 Fat Burning Foods com.v1 4.fatburning

foods.com
GPS, IMEI 15 15 0:11:27 42 535 0:09:37

13 Font for Galaxy com.hongik
.fontomizerSP

GPS 2 2 0:03:09 38 114 0:02:32

14 Interesting Cooler com.interestingcooler
freegoimbh.app

GPS 10 1 0:17:56 55 69 0:02:04

15 Interpret Your Dream com.dreamforth.iyd GPS 6 6 0:06:01 34 296 0:05:30
16 JaquecApp com.terranology

.jaquecapp
GPS 18 1 0:37:35 49 109 0:02:38

17 My Display Check com.jensu
.screenchecker

GPS 7 7 0:15:40 30 357 0:06:27

18 Shikoku Railway com.appspot.norit
subushi.shikoku

GPS 6 6 0:20:49 38 422 0:07:40

19 Solar Battery Charger com.solar.charger
.battery

GPS 3 2 0:07:12 39 123 0:04:42

20 Space War APK com.space war
free 10

GPS, IMEI
Phone No.

13 10 0:19:26 40 900 0:15:40

21 Speak Mandarin Free com.chineseskill.lan
tool.sc

Microphone,
Device IDs

3 2 3:23:10 61 148 0:03:29

22 Super Runner Boy com.pack.Super
-RunnerBoyTrial

GPS 4 1 0:02:32 68 80 0:02:28

23 TooLate Lateness afw.allforweb.toolate Contacts 6 1 0:08:34 42 95 0:02:17
24 Trios Labs Reader com.triosLabs

.hadithreader
GPS 8 8 0:26:47 47 313 0:06:00

Table 3.1: Results of Automated Testing - (Model-Checking) AMC vs. Graph-
Directed Tester (MAMBA)

tive API association of Section 2.2.1 uncovered that 21 apps accessed users’ GPS

data, 2 of the apps accessed the Contact List, 3 apps Device Identifiers, and 1 app

each accessed users’ Microphone and SMSes. 1 app (Arsenal Fan Club) did not

access any privacy data. The total no. of activities each app contained as well as the

no. of activities found to be accessing user privacy data are illustrated in the table.

The apps were found to each contain between 2 to 18 activities in total. 10

of the 24 apps had 100% of their activities accessing privacy data, with varying

numbers (0-100%) for the rest. These privacy accessing activities were flagged out

52

to be reached by the directed tester.

Generating Test Cases for Directed Testing: The processing times required for gen-

erating test cases for target activities of each app are tabulated in Table 3.1 (sec-

onds). Test Case Generation time includes bytecode and CCFG generation, CCFG

traversal and search for paths as well, Privacy Sensitive API association as the gen-

eration of user-action sequences for the automated tester. Test cases were generated

on an AMD Opteron 4386, 3.1GHz CPU and running 64-bit Debian Linux.

Test Case Generation took between 26 to 94 seconds for each app (Under

column ’MAMBA-GATOR : Test Case Generation (s)’). The results indicated that

generation time had no clear relation with the total number of activities in the app

or the number of target activities, although it may be dependent on app size and

complexity. An example was the No. 12 app: ’Fat Burning Foods’, which had 15

activities in total and 15 target activities, but required 42 seconds for processing.

This is in comparison to No. 2 app: ’A+ Certification Lite’ that required a longer

generation time of 45 seconds but had smaller number of only 4 activities and 1

target activity.

Running Test Cases: The testing times required for running the resulting test cases

on an automated tester are tabulated under the column ’MAMBA-GATOR: Test

Case Running (s)’. Automated testing performed on 3 hardware Galaxy Nexus de-

vices running Android OS 4.1.1 which were connected to a testing program running

on a Windows 7 machine. Testing can be carried out on emulators as well, but we

only utilized hardware devices for consistency in this evaluation.

Running a single test case took about over a minute on average. Automated app

testing took between 69 seconds (1 minute 9 seconds) to 900 seconds (15 minutes)

for each app, and were dependent on the number of target activities as well as the

number of test cases.

53

Discussion on Findings

Why is my Solution Faster? MAMBA-GATOR’s Graph-Aided Directed Testing

was faster due to the immediate and expedited transitions to target activities via

app buttons that were already known beforehand from test cases built. This was in

contrast to AMC, which had to spend time exploring all clickable UI components in

each app activity, many of which might cause state changes but not activity transi-

tions. Examples of such occurrences are Apps #1, #4 and #21, which required over

1-3+ hours respectively.

The branching structure of activity transitions also played a part to increase test

times in AMC. From inspection, apps with more highly cascaded activity transitions

required more time in AMC Testing, due to the time required for back-tracking to

previous activities, which graph-directed testing did not require.

It can be observed that there were situations where MAMBA-GATOR testing

was only slightly faster than AMC. (For example for App No. 15: ’Interpret Your

Dream’ and App No. 22: ’Super Runner Boy’.) From manual inspection of the

apps, these arose in circumstances where activity transitions were only branched

around the root (main) activity, such that the automated tester only needed to explore

all buttons on the root activity page to transit to other activities within the app.

It is highlighted that the GATOR’s CCFG analysis generated only contains ex-

plicit activity starting (’startActivity’) intents and do not include implicit intents.

Explicit intents consists of activity type classes that have been defined within de-

veloper code of the app, while implicit intents consists of transitions to external

window states (e.g. Transit from app to a web browser or email client).

Coverage of Target Activities

Figure 3.1 displays the Coverage of Target Activities (%) over the Total Testing

Time (seconds) for 3 example apps (App #1, #4 and #20). Although AMC was also

able to cover target activities, it required significantly higher testing times com-

54

pared to MAMBA-GATOR. It can be seen that the Coverage of Target Activities

in graph-directed testing converges faster compared to AMC. Coverage of activities

in directed testing proceeded at a steady pace until completion, compared to the

prolonged times required and stagnation at certain activity points for AMC.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600

C
o

v
e

r
a

g
e

 o
f
 T

a
r
g

e
t
 A

c
t
iv

it
ie

s
 (

%
)

Total Testing Time (Seconds)

App #1 (Exhaustive Test)

App #1 (Graph-Directed Test)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

C
o

v
e

r
a

g
e

 o
f
 T

a
r
g

e
t
 A

c
t
iv

it
ie

s
 (

%
)

Total Testing Time (Seconds)

App #4 (Exhaustive Test)

App #4 (Graph-Directed Test)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

C
o

v
e

r
a

g
e

 o
f

T
a

r
g

e
t
 A

c
t
iv

it
ie

s
 (

%
)

Total Testing Time (Seconds)

App #20 (Exhaustive Test)

App #20 (Graph-Directed Test)

Figure 3.1: Coverage of Target Activities (%) over Total Testing Time (Seconds)
for 3 Example Apps - (Left- App #1: ”Album Cover Finder”; Middle- App #4:
”African American Quotes” ; Right- App #20: ”Space War APK”)

Both my graph-directed testing solution and AMC were each able to cover 86

of the 101 target activities in Table 3.1 (85.1% coverage). From inspection, the

remaining activities were inaccessible by our testers due to a few reasons. The

first was that there were some defunct activities which were defined by developers

and in app code, but did not contain start intents. There were also a few which

required some hard to fulfil conditions that normal user events could not meet. For

example, App #11: Driving Skill Monitor had an activity that required input from

GPS sensors for a certain distance before it could be accessed. App #20: Space

War APK had 3 activities that required completion of game levels before it could be

accessed. Allowing coverage for such activities falls outside the scope of my work.

Verification of Privacy Usage Behaviour in Apps

Leak reports from 2 privacy detectors, PMP and TaintDroid were logged during the

automated test runs. PMP detected run-time privacy data accesses, while TaintDroid

was able to detect privacy leaks over the network. Based on the logs captured from

55

graph-directed testing, I verified that 45 of the 101 target activities (44.6%, over

13 apps) had privacy data accesses, and 27 of these activities (26.7%, over 8 apps)

leaked private data to the network. Such privacy behaviours can be recorded in off-

line databases for future notification to users. The logs from AMC also indicated the

same findings, which showed that my Directed-Testing solution was able to perform

verification of privacy usage behaviour in apps just as well as exhaustively testing

the app, but in a significantly reduced time.

3.3 Large-Scale Evaluation & Comparison of

MAMBA with Automated Model Checker

(AMC)

In this section, I present the results of a larger scale evaluation & comparison of my

MAMBA system with the Automated Model-Checker (AMC). This was conducted

on a set of 500 apps crawled from the Google Playstore. In contrast to the smaller-

scale evaluation described in previous Section 3.2, which had a low successful anal-

ysis rate, the test cases were generated entirely by MAMBA’s Callback Analysis

without using GATOR. My evaluation metrics were testing times required for test

completion (latency), coverage/recall of target activities that had privacy infringing

APIs, as well as precision in uncovering activities with privacy accesses/leaks.

3.3.1 Conduct of the Experiment

In this section, I describe the test conditions under which the experiments were

carried out. 500 test apps were analyzed each by MAMBA as well as by AMC.

The parallelized app testing system described in Section 2.2.6 was utilized to scale

up testing of both testers, with phone images running both PMP and TaintDroid

to detect data accesses and leaks. APK binaries were installed on test devices and

tested sequentially, with test logs being saved and processed at the end of testing.

56

For the MAMBA system, testing consists of static analysis of apks to uncover

paths and target activities, generation of test cases followed by apk installation and

automated testing on physical devices. For AMC testing, testing consists of only

apk installation and automated testing steps. A maximum time limit of 3 hours/app

was set on AMC. The results of testing of MAMBA and AMC are then compiled

and compared side-by-side.

Test Environment and Selection of Test Apps

Test cases were generated on an AMD Opteron 4386, 3.1GHz CPU running 64-

bit Debian Linux. The test cases were then transferred to parallelized app testing

instances running on a Quad-core i7, 2.2GHz laptop CPU running Windows 7, with

multiple Android test devices tethered with a multi-port USB hub. The Android

devices utilized were Galaxy Nexus phones running Android 4.1.2.

The static analysis, consisting of privacy API association to identify target activ-

ities as well as uncovering testing paths towards these activities, was performed on a

set of 1,000 apps. These apps were crawled from the Google Playstore, with an even

distribution of apps from the 26 app categories. From the 1,000 apps, it was found

that just over 400 apps (40%) invoked at least one privacy sensitive API. 500 test

apps were then randomly selected from this set of 1,000 app to provide a roughly

equal distribution of apps with privacy APIs (230 apps from 400 privacy-related

apps; 270 from remaining 600 apps).

The MAMBA, AMC and parallelized test coordination and logging programs

were packaged and ran as Python and Java binaries (.jar) on separate threads on the

i7 laptop CPU. The logs were saved and processed into designated folders under the

name of individual apk files.

46 out of the 230 apps with privacy-related APIs required user login. Accounts

were created for these apps manually, and the automated testing was performed on

these apps in their logged-in state.

57

3.3.2 Results of Comparison of MAMBA with AMC

After running MAMBA and AMC on the 500 test apps, the testing times required

and coverage of target activities are then compared. The results demonstrated that

MAMBA has advantages in significantly reduced overall testing times of apps for

reaching the specified targeted activities, and verifying runtime privacy access-

es/leaks (13.18 minutes/app compared to 51.86 minutes/app). Only a small trade-off

in a slightly reduced coverage of target activities (70.33% by AMC to 63.96% by

MAMBA) was required.

The precision of MAMBA’s static analysis in uncovering runtime app privacy

behaviours was 79.84% for data accesses and 35.66% for data leaks. MAMBA also

had recall values of 68.90% for data accesses and 56.10% for data leaks, as mea-

sured relative to privacy behaviours uncovered by AMC. These results are explained

in the next sections.

Testing Time Required for App Testing (Latency)

We compare the testing times required for both MAMBA and AMC for the 500

apps. MAMBA’s required testing time was 13.18 minutes/app compared to 51.86

minutes/app for AMC across 500 apps. We take a closer look and differentiate

the testing times required for 2 distinct groups of apps: (i) Apps with at least

one privacy-related API (#1-#230), and (ii) Apps with No privacy-related APIs

(#231-#500). Figures 3.2 and 3.3 displays the distribution of testing times required

for (i) and (ii) respectively. The testing times for AMC are in blue, while MAMBA’s

plot is in red.

(i) Apps with at least one Privacy-Related API: Figure 3.2 displays the distribution

of total app testing times required for each of the apps with at least one privacy-

related API (Apps #1-#230). AMC has a mean testing time of 57.11 minutes/app

(Std. Deviation = 58.93) - (Min.: 0.67 minutes; Max.: 208.3 minutes) compared

58

Figure 3.2: Distribution Plot of Total Testing Time (Mins) against App Number
(#1-#230) for (i) Apps with at least one Privacy-Related API: MAMBA (Red) -
(Mean=21.52 mins/app, Std. Dev.=21.91) ; AMC (Blue) - (Mean=57.11 mins/app,
Std. Dev.=58.93)

to MAMBA’s mean testing time of 21.52 minutes/app (Std. Deviation = 21.91) -

(Min.: 0.25 minutes; Max.: 120.68 minutes). From the graph’s distribution, it can

be observed that the testing times required for MAMBA is dominantly lower for the

vast majority of apps compared to AMC.

It can be observed from Figure 3.2 that there were a few apps for AMC with

total testing time larger than the 3 hour time limit set. This was due to the actual

runtime being longer than the programmed time limit, due to the presence of other

processes (e.g. writing of test logs, installation of app etc.) that were also involved

in the testing.

(ii) Apps with No Privacy-Related API: Figure 3.3 displays the distribution of total

app testing times required for each of the apps with no privacy-related APIs (Apps

59

0

50

100

150

200

250

2
3
1

2
3
5

2
3
9

2
4
3

2
4
7

2
5
1

2
5
5

2
5
9

2
6
3

2
6
7

2
7
1

2
7
5

2
7
9

2
8
3

2
8
7

2
9
1

2
9
5

2
9
9

3
0
3

3
0
7

3
1
1

3
1
5

3
1
9

3
2
3

3
2
7

3
3
1

3
3
5

3
3
9

3
4
3

3
4
7

3
5
1

3
5
5

3
5
9

3
6
3

3
6
7

3
7
1

3
7
5

3
7
9

3
8
3

3
8
7

3
9
1

3
9
5

3
9
9

4
0
3

4
0
7

4
1
1

4
1
5

4
1
9

4
2
3

4
2
7

4
3
1

4
3
5

4
3
9

4
4
3

4
4
7

4
5
1

4
5
5

4
5
9

4
6
3

4
6
7

4
7
1

4
7
5

4
7
9

4
8
3

4
8
7

4
9
1

4
9
5

4
9
9

T
o

t
a

l
T
e

s
t
in

g
 T

im
e

 (
M

in
s
)

App Number

Comparison of Testing Times of MAMBA vs AMC (Non-Privacy Related Apps)

AMC

MAMBA

Figure 3.3: Distribution Plot of Total Testing Time (Mins) against App Num-
ber (#231-#500) for (ii) Apps with No Privacy-Related API: MAMBA (Red) -
(Mean=6.08 mins/app, Std. Dev.=8.16) ; AMC (Blue) - (Mean=47.40 mins/app,
Std. Dev.=55.35)

#231-#500). AMC has a mean testing time of 47.40 minutes/app (Std. Deviation =

55.35) - (Min.: 0.02 minutes; Max.: 221.73 minutes) compared to MAMBA’s mean

testing time of 6.08 minutes/app (Std. Deviation = 8.16) - (Min.: 0.08 minutes;

Max. 48.95 minutes). From the graph’s distribution, the testing time required for

MAMBA is clearly much lower across all apps. This is because for MAMBA, apps

with no privacy-related APIs do not require runtime testing and time is only required

to be spent on static analysis.

Coverage of Target Activities

We measure the extent by which MAMBA and AMC is able to reach the specified

activities that have been uncovered by MAMBA’s privacy API association analysis

of Section 2.2.1. Coverage is measured based on the ability of both testers to reach

60

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

1
5
3

1
5
7

1
6
1

1
6
5

1
6
9

1
7
3

1
7
7

1
8
1

1
8
5

1
8
9

1
9
3

1
9
7

2
0
1

2
0
5

2
0
9

2
1
3

2
1
7

2
2
1

2
2
5

2
2
9

C
o

v
e

r
a

g
e

 o
f
 T

a
r
g

e
t
e

d
 A

c
t
iv

it
y

 (
%

)

App Number

Comparison of Target Activity Coverage of MAMBA vs AMC (Privacy Related Apps)

AMC

MAMBA

Figure 3.4: Distribution Plot of Coverage of Target Activities against App Number
Coverage for AMC (Blue) - (Mean=70.33%) and MAMBA (Red) - (Mean=63.95%)

the activity at runtime. AMC was able to cover on average, 70.33% of target activi-

ties compared to 63.95% of MAMBA. This means that MAMBA only had a slight

decrease in the coverage as compared to AMC. Figure 3.4 illustrates the coverage

distribution of AMC (Blue) and MAMBA (Red). It can be observed that there is no

large discernable difference across the apps.

For the target activities that could be reached by AMC but not MAMBA, this

was due to imperfections in some of the test cases generated. There were some

transitional or widget identifier information that MAMBA’s static analysis was un-

able to output. Also, an observation is that certain apps had target activities that

could not be reached by both AMC and MAMBA. A reason is that there were some

defunct or dead activity-code that were uncovered during the static analysis, but

were actually unreachable at runtime. There were also some activities that required

some complex sequences of user inputs or situations. (For example, some activities

required user-location to move a certain distance to be displayed, or the input of

61

special keystrokes) Reaching such activities fall outside the scope or capabilities of

MAMBA or AMC.

There were also a small number of target activities that MAMBA could reach

but not AMC. This illustrates that in some cases, MAMBA’s concept of pre-

computing paths prior to runtime testing can have advantages in better reachability.

Overall Coverage: AMC had an overall activity coverage of 36.99% compared to

21.97% for MAMBA. For AMC, this could be attributed to the time bounding of

AMC to 3 hours and the presence of dead activity code. Whereas for MAMBA,

the low overall coverage was due to the condition that only test cases towards target

activities were ran. However, these values also illustrate that MAMBA only needs

to cover a smaller proportion of overall activities within the apps compared to AMC

to be able to reach and test the required targeted activities.

Accuracy in Detection (Precision & Recall) of Privacy-Infringing Android Ac-

tivities

We measure MAMBA’s accuracy in uncovering privacy accessing and privacy leak-

ing Android activities. As mentioned, the PMP and TaintDroid runtime detectors

were instrumented for detection. By definition, privacy behaviours detected at run-

time are assumed to be the ground truth. Within the test apps, MAMBA was able

to output 206 activities that had privacy data accesses, and 92 activities with data

privacy leaks with complete accuracy.

We next measure the accuracy (precision/recall) of MAMBA’s static analysis.

We define the precision to be the number of correctly detected privacy access-

ing/leaking activities over the number of accessing/leaking activities that MAMBA

outputted. Recall for MAMBA is defined to be the number of correctly detected

accessing/leaking activities by MAMBA over all accessing/leaking activities found

by AMC. The total number of privacy accessing/leaking activities detected during

AMC’s runtime testing was used as an estimate for all true privacy-related activities.

62

This estimate is reasonable because AMC does not have a set target for exploration,

but attempted to reach all activities within the app.

MAMBA’s precision in outputting privacy accessing activities was 79.84% (206

activities/258 activities), and 35.66% (92 activities/258 activities) for privacy leak-

ing activities. MAMBA’s recall in outputting privacy accessing activities was 68.9%

(206 activities/299 activities), and 56.10% (92 activities/164 activities) for privacy

leaking activities.

The 270 apps with no privacy-related behaviours were tested by AMC to detect

any privacy behaviours. It was found that MAMBA was very accurate in detecting

apps that had no privacy-related behaviours. Across the 270 apps that MAMBA

flagged to be non privacy invasive, there were only 1 app with privacy access reports

and 2 apps with privacy leak reports.

3.3.3 Discussion

Advantages and Trade-Offs of MAMBA

The testing time and coverage results demonstrate that MAMBA has a significant

advantage in a lower testing time requirement per app (latency) for testing of ac-

tivities. Across all 500 apps, MAMBA was almost 4 times faster (13.18 mins/app

compared to 51.86 mins/app) in detecting and verifying privacy-related activities.

For the 230 apps with privacy behaviours, MAMBA was 2.7 times faster (57.11

mins/app compared to 21.52 mins/app). And for the 270 apps with no privacy be-

haviours, MAMBA had the largest advantage in being almost 8 times faster (47.4

mins/app compared to 6.08 mins/app). These testing time advantages are weighted

against a marginal 6.4% decrease in coverage by MAMBA compared to AMC

(63.95% to 70.33%). MAMBA is thus a very time efficient system for detection

of activities that have privacy implications compared to the AMC automated testing

method.

While the test cases were generated from a server, the automated testing times

63

could be achieved by a laptop CPU. This demonstrates that MAMBA has good

scalability.

MAMBA’s static analysis component had a high precision of 79.84% and recall

of 68.9% in outputting correct privacy accesses, but had only a moderate precision

of 35.66% and recall of 56.10% in outputting privacy leaks. The lower accuracy of

privacy leak detection is to be expected however, as MAMBA does not analyze any

source-sink networked API calls. These accuracy results indicate that MAMBA’s

static analysis outputs (especially privacy accesses) might be directly applied to the

the Interactive Privacy Notifications App of Section 2.3, to save on automated app

testing time. There is, of course, a trade-off by a roughly 20% decrease in accuracy.

64

Chapter 4

Understanding Utility of

User-Triggered Privacy Leak

Messages

In this section, I investigate and validate the utility of presenting information on

user-triggered privacy leaks uncovered in Chapter 2 to users. This is performed

using lab and field studies, and utilizes the Privacy Notification Mechanism detailed

in Section 2.3.

I chose to utilize a ’Non-Blocking’ mechanism of privacy notifications, in

which messages appear to users in the the background during various points of app

usage [54]. Such messages indicate to users the privacy cost or implications of app

usage or on performing certain in-app actions, but without providing users direct

control over allowing or blocking the data usage. This is in contrast to ’Blocking’

mechanisms, in which messages are accompanied with a GUI ’freeze’, where the

user is required to make a selection on the data access before app functionality can

be restored.

Why did I choose to validate using a ’Non-Enforcing’ mechanism?: While Enforc-

ing mechanisms have been utilized and studied in various privacy systems and

65

user-studies contexts [57, 14, 3, 5, 27] and have been shown to be effective, the

Non-Enforcing mechanism has been less studied for mobile app privacy. The Non-

Enforcing mechanism also fits my proposed framework better, due to the character-

istic of more fine-grained notifications having to be passed to the user during app

usage (e.g. Widget overlays and appearance of notifications on certain app layouts

etc.).

4.1 Small-Scale Lab-Study

4.1.1 Conduct of Lab-Study

I conducted a pre-deployment study of the privacy notifications app in the lab with

a small set of 12 users. The goal of the lab study was to observe if privacy messages

were effective for users in leak avoidance. The users consisted of students and staff

(8 males, 4 females) from the School of Information Systems in Singapore Man-

agement University. The users had an average age of 29 with 66% of participants

being expert Smartphone users.

The users were divided into 2 separate groups of 6 users each: a (i) Test Group

(with notifications) and (ii) Control Group (without notifications). Each user was

not informed which group they belonged to. Instructions were provided to users

that they might be observing display messages during application usage, and that

they were to utilize applications in as natural a manner as possible as if in a personal

capacity. No further context information was provided to them. The notification

app logged all widget click and page transition data of the users, and performed a

comparison between the two group. At the end of the study, participants were asked

to rate their ease of application usage on a Likert Scale, to measure differences in

usability between the 2 groups.

A screen capture of the Notification App as well as an example of a privacy

66

(a) Notification App (b) Toast Messages

Figure 4.1: (a) Notification App displaying leaky widgets and characteristics ob-
tained from the leak-cause database. (b) Privacy Message displaying the leak of
GPS Location on a clickable view (Flashes and disappears after a 3 second period)

Application Description Leak Type Cause
Sony TrackID Music Recognition App IMEI Button on start page

Telemaque Horoscope Lifestyle Horoscope App GPS & IMEI 4 widgets at different places
Linpus Weather Weather App GPS Button on main page

Super Backup: SMS & Contacts Tools Backup App Address Book & IMEI 4 widgets at different places

Table 4.1: List of applications used in lab-study

message is in Figure 4.1. I selected 4 apps for the study. The app names as well

as their leak-types and characteristics and causes are illustrated in Table 4.1 These

apps were chosen on the basis that they were relatively obscure apps in which users

would likely be unfamiliar with their layouts.

The user study was divide into two experiments, each involving 2 applications:

1. Experiment 1 (No instructions provided): We informed the participants that

they would be taking part in a privacy study, but did not tell them about the

existence of messages or provided further instructions. The participants were

then asked to use the applications for as long as they required, until they are

67

satisfied that they have utilized or accessed every part of the application.

2. Experiment 2 (More detailed instructions): We informed the participants

about the existence of possible notifications, and they should try to make their

own decisions as to how they should utilize the application. The users were

also then asked to use the applications for as long as they required.

I utilized the Sony TrackID and Linpus Weather apps for Experiment 1, and

Telemaque Horoscope and Super Backup SMS apps for Experiment 2.

4.1.2 Results of Small-Scale Lab Study

Results of Experiment 1:

Figure 4.2: Percentage of Leaky Widgets Clicked on by Users in Experiment 1 (No
Instructions Provided) for ’Sony TrackID’ and ’Linpus Weather’ Apps

(Pls refer to Figure 4.2) For the ’Sony TrackID’ app, 100% of leaky widgets

were clicked on by users in the control group, compared to 60% in the test group.

This represented a 40% drop in the number of leaky widgets clicked on by partic-

ipants when presented with the notification. This was an encouraging result as it

68

shows that the behaviour of the user changes when presented with the notification

mechanism.

For the ’Linpus Weather’ application, there were no changes observed in be-

haviours among both test and control groups as participants from both groups

clicked on 40% of the leaky widgets. From our observation of the kind of leak that

the application was causing (GPS Location), it might be because participants did

not mind sharing their GPS location for this particular app. However, other reasons

such as users’ unfamiliarity and lack of knowledge that there would be notifications

might have played a part as well.

Results of Experiment 2:

Figure 4.3: Percentage of Leaky Widgets Clicked on by Users in Experiment 2
(More Detailed Instructions) for ’Telemaque Horoscope’ and ’Super Backup: SMS’
Apps

(Pls refer to Figure 4.3) For the ’Telemaque Horoscope’ app, 10% of leaky wid-

gets were clicked on by users in test group, compared to 50% in the control group.

Whereas for the ’Super Backup: SMS’ app, 50% of leaky widgets were clicked on

by users in the test group, compared to 70% in the control group. There were there-

fore decreases of 80% and 28.6% of number of leaky widgets clicked upon for the

69

Telemaque Horoscope and Super Backup SMS apps respectively. These results are

promising as it shows that users’ privacy behaviours are positively affected, by them

clicking on fewer leaky widgets, when presented with the leak information and the

basic knowledge of what leak notifications are.

Based on user comments collected, 3 of the participants using the Telemarque

Horoscope application expressed discomfort with the data that the application was

utilizing and sending over the network (IMEI & GPS Location). 2 of the partici-

pants using the Super Backup SMS application expressed some discomfort with the

application send Address Book and IMEI data. But another 2 of the participants did

also mentioned that they could understand why the Super Backup SMS application

required the use of their Address Book, and felt that this was ok. Overall, the results

made sense as the general drop in the number of leaky widgets clicked by the users

in Experiment 2 was corresponding to the increased concerns that they had with

regards to the types of data the applications were sending. Furthermore, their com-

ments also indicated that there was good awareness of how the applications were

using and sending data, based on the appearance of the temporary messages besides

leaking widgets.

Usability Results:

Both test and user groups were asked to rate the usability of the applications on a 7

point Likert (7-Highly Usable to 1-Not Usable at All). The differences in the Likert

Scores between both Test and Control groups were not statistically significant, and

it was observed that 70% (with notification) and 80% (without notification) of users

gave a rating of 5 and above (10% decrease overall).

The results show that our mechanism does not greatly affect usability while still

notifying users of privacy leaks.

70

Discussion

The user study demonstrates that under lab settings, the privacy messages are suc-

cessful in decreasing user leaks cause by clicking on leaky-causing widgets/buttons

during app usage. There were promising results with a 0% to 80% drop in users

avoiding the leaky widgets, while still maintaining usability with statistically in-

significant difference in usability ratings between the test and control groups. Fur-

thermore, feedback obtained from the users demonstrated increased user perception

and understanding of application data usage.

4.2 Large-Scale Field-Study

Next, I validated my notification mechanism on a larger number of users over a

longer time period of 2 weeks. Users on non-rooted devices were targeted, and the

study was designed to take place on their own personal mobile phones. The Field

Study was performed using a ’between-participants’ design, whereby 2 different

groups of users were randomly selected to be subjected to Test (With Notifications)

and Control (Without Notifications) conditions.

4.2.1 Conduct of Field-Study

Approach of the study:

The study was conducted from Carnegie Mellon University (CMU) and Singapore

Management University (SMU) campuses, after clearing the Institutional Review

Board (IRB) requirements of each institute. The study consisted of 3 phases. In

the 1st phase, we conducted pre-study surveys and briefings, as well as installed

our customized Notifications Application on the personal Android smartphones of

each user. In the 2nd phase, the users utilized their smartphones and applications in

their own capacity for a period of 2 weeks. The 3rd phase was conducted after the

2-week study, whereby the users were requested to complete a post-study survey.

71

Application App Type Privacy Leaks Displayed Message Locations Within App
Facebook Social-Media (Address-Book, Camera, (On Start-up; Beside 3 widgets)

IMEI, Location)
Instagram Social-Media GPS On Start-up
ChannelNewsAsia News Microphone On advert tab

The Straits Times News IMEI (On Start-up; Beside news items)

GMAIL Utility (Address-Book, Calendar (On Start-up; Beside 2 widgets)
, IMEI, Media Files)

UC Web-Browser Utility GPS & IMEI (On Start-up; Beside 1 widget)

YouDao Dictionary Utility (Camera, IMEI, (On Start-up; Beside 2 widgets)
Microphone)

Temple Run 2 Game GPS On Start-up
Subway Surfers Game IMEI On Start-up
Trivial Crack Game Address-Book (On Start-up; Beside 4 widgets)

Table 4.2: List of Applications used in Field-Study

User characteristics and perceptions were measured from the pre and post-study

surveys.

Characteristics of Notifications and Test Apps:

The Interactive Notifications App (described in Section 2.3) was utilized in the field

study to display privacy messages to users interactively during application operation

on their personal phones, using Android toast messages. (Refer to Table. 4.2 for the

apps and placement of notifications) As the work does not study or compare the im-

pact of phrasing or words used in the privacy messages, the messages were designed

to be non-alarming and concise. The messages contained sentences such as ’This

app accesses’ or ’Clicking this button accesses’, followed by the data type. To en-

sure that users did not miss reading messages, they appeared for a 5-second period.

Example of data types indicated included GPS Lication, Phone Identifier(IMEI),

Phone Book and Media Files etc. (Figure. 4.4 shows the screencaptures)

10 test applications were utilized in the study (Table. 4.2), and were selected

on the basis that they were already in regular usage by most of the test subjects.

The Notifications Applications also sends back usage statistics to a data collection

72

Figure 4.4: (Messages Circled) Left: Privacy Message warning of phone book and
GPS Location Access ; Right: Privacy message appearing over a button warning of
access of phone identifiers on clicking the button. Bottom: A Blow-Up of a Privacy
Message

server for storage and processing. As shown in Table 4.2, the apps were chosen

to be representative of important app categories: Social-Media, News, Utility and

Game Apps. The privacy messages appeared on app start-ups as well as on-top of

various widgets and views when users arrived at them during usage.

Participants

The field study had 47 users (37 from CMU and 10 from SMU). They were ran-

domly divided into separate groups of Test (With Messages), and Control (Without

Messages). (25 Users in Test, 22 Users in Control) They consisted of staff/students

as well as external working adults. 37 of the participants were from CMU, while

10 of the participants were from SMU. Test subjects were recruited via posters

displayed on campus grounds, as well as from online adverts from Craigslist Pitts-

burgh. The subjects were made up of staff/students, as well as external working

73

adults from the ages of 19 to 42 years of age (33 males and 14 females). Each sub-

ject from CMU was compensated USD30.00, while each subject from SMU was

compensated SGD30.00 for their participation in the 2-week study. Participants

were required to be at least 18 years of age and own an Android smartphone with

an OS of Android v4.1 and above.

Capture of User-Characteristics as Independent Variables

Characteristics of users were captured from pre and post-study surveys on 7-point

Likert-Scale as well as Yes/No questions. (Please refer to Appendix A, Figures

A.1 & A.2 for the Survey Forms) These characteristics include users’ Prior app

Usage-time (Familiarity), Surprise level, Usability, Privacy Consciousness level

and Disapproval of app data-usage. In addition to privacy messages, a subset of

17 users (10 males, 7 females) were randomly selected and provided with a stim-

ulus of additional User Education on the meaning of messages (e.g. IMEI were

identifiers that could allow tracking etc.) as well as implications of allowing ac-

cesses (private data could be sent over the network and stored by developers). This

allows the inclusion of the effects of users being provided additional User Education

in a regression model.

Figure 4.5: Questions in Post-Study Survey Form posed to each user asking them
how surprised they were with the privacy leakages of each application, as well as to
rate the appropriateness of the data access on a 7-Point Likert Scale

74

As can be seen from the form in Figure. 4.5, the appropriateness rating of each

data type per application was phrased as the question: Please rate how appropri-

ate usage of ”Data Type” is: The rating was based on a 7-point Likert, with the

maximum score of 7(”Completely Appropriate”) and a minimum score of 1(”Not

Appropriate at All”). We also gauged the surprise levels to the data leaks by the

question: How surprised are you that this application leaks ”Data Type?” This

was again on a Likert scale, with 7(”Very surprised”) and 1(”Not surprised at all.”).

They were also asked the question: ”Knowing the data leak characteristics of the

app, will you still continue to use it?” (Yes/No/Unsure)

Using the post-study survey form, we were able to measure users’ level of ap-

proval/disapproval for each data-type leak for all of the test applications. A user was

deemed to be ’OK’ with the application’s data leak behaviour if he/she answered

’Yes’ to continuing to use the application on knowing its leak characteristics. Oth-

erwise, the user was deemed to be ’Not-OK’ with the application’s leak behaviour.

If the user replied ’Unsure’, he/she would be deemed ’OK’ if an average rating score

of 3 and above for the Data-type appropriateness was provided. (Note: The survey

question was directed towards the apps’ usage privacy data and not towards individ-

ual privacy messages) We posted the same form for the users in both the Treatment

and Control groups at the end of 2-weeks. We use these survey findings of user

variability to analyze the experimental study results in the next section.

Multiple Linear Regression

I conducted a multivariate regression with characteristics as Independent variables,

and 3 variables of (i) Frequency of App Start-Ups (Log), (ii) Duration of App Us-

age (Log) and (iii) No. of Leak Buttons Clicked (Log) as Dependent variables. We

investigated these Dependent variables as they were proportional to the amount of

privacy data being leaked by the application. The Independent Variables, their de-

scriptions as well as the questions posed in the surveys to capture them are displayed

in Table 4.3.

75

No. Independent Variable Description Range

1 Privacy Messages Did user receive privacy messages? (Yes=1; No=0)
2 Disapproval of Data Usage Does user disapprove of the data accessed for a particular app? -(From post-study survey) (Yes=1; No=0)
3 User Education Did user receive additional briefing session on data-type meanings and privacy implications? (Yes=1; No=0)
4 App Type Category of particular app Categorical (1.Social Media, 2.News,

3.Utility, 4.Games)
5 Privacy Consciousness Question to user: ”How privacy-conscious would you describe yourself to be Likert Scale (7:”Extremely Consciousness” -

when using mobile apps?” -(From pre-study survey) 1:”Not Consciousness at all”)
6 Usability of App Question to user: ”Please rate how usable (convenient to use) the application is.” Likert Scale (7:”Very Usable” -

-(From post-study survey) 1:”Very Unusable”)
7 Surprise at Question to user: ”How surprised are you that this application leaks your ”data-type”?” Likert Scale (7:”Very Surprised” -

Message Content -(From post-study survey) 1:”Not Surprised at all”)
8 Prior App Usage Time Question to user: ”How long have you been using this app prior to this user-study?”” Values (3:Years, 2:Months,

(Familiarity) -(From post-study survey) 1:Weeks, 0:Not used prior to study)

Table 4.3: Description of Independent Variables in Multiple Regression

Each of the 3 Dependent variables (Freq. of Start-Ups, Duration of App Usage

(s) and No. of Leak Buttons Clicked) were analyzed separately in a log-linear

regression model. The model consists of the logarithmic form of each of these 3

metrics as dependent variables, with the independent variables of Table. 4.3. We

also included 2 and 3-factor interactions of Presence of Privacy Messages and

Disapproval of Data Usage with the other independent variables. The regression

model utilized is as follows:

Regression Model:

log(Frequency of Start Ups/Duration of App Usage/No. of Leak Buttons Clicked) =

Is Notification Present + App OK Not OK + Is Context Present +

factor(AppType) + Privacy Consciousness + Usability +

Familiarity + Surprise Level + Usability : Privacy Consciousness +

Is Notification Present : App OK Not OK + Is Notification Present :

Is ContextP resent + Is Notification Present : factor(AppType) +

Is Notification Present : Privacy Consciousness +

Is Notification Present : Usability + Is Notification Present :

Familiarity + Is Notification Present : Surprise Level +

App OK Not OK : Is Notification Present : Is Context Present +

App OK Not OK : Is Notification Present : factor(AppType) +

App OK Not OK : Is Notification Present : Privacy Consciousness +

76

App OK Not OK : Is Notification Present : Usability +

App OK Not OK : Is Notification Present : Familiarity +

App OK Not OK : Is Notification Present : Surprise Level

4.2.2 Results of Field-Study

The results of the multivariate regressions are in Table. 4.4. The p-values of the

individual independent variables are displayed in the last column. We look out for

variables at 99%, 95% and 90% intervals (p-value≤0.001, 0.05 & 0.1), and negative

estimates that indicate the effectiveness of privacy messages by usage decreases.

The explanatory values of R2 were moderate from 0.294 to 0.442.

From Table. 4.4, of the individual main effects (List items 1-8), and for the

mobile usage metrics of (i) Frequency and (ii) Duration of App Usage, 2 factors of

’Application Type’ as well as ’Prior App Usage Time (Familiarity)’ were found to

be significant. For example in the 1st row of Table. 4.4, line 8, users who had used

the application previously for a longer period of time (Familiarity) had a significant

higher frequency of app start-ups (Estimate=0.15, p-value=1.83×10−7). For the

metric of of (iii) No. of Leak Widgets Clicked, ’App Type’ and ’User Education’

had significant effects.

I found significant 3-factor interaction effects of ’Privacy Messages’ and the

’Disapproval of Data Usage’ to: ’User Education’, ’Privacy Consciousness’, ’App

Type (Games)’ and ’Surprise at Message Content’. For example in the 2nd row of

Table. 4.4, line 9, users who received privacy messages and disapproved of the data

usages had a decrease in the Duration of App Usage, if he/she had the additional

stimulus of user education (Estimate=-1.23, p-value=1.38×10−4).

Effectiveness of Privacy Messages Mechanism

While the results indicate that the effects of Privacy Messages did not significantly

alter user behaviour across all users, the study highlights that a ’Non-Blocking’

77

Depend. Independent Variable Estimate Std. Error p-value
Variable
(i) Freq.
of App
Start-Ups
(Log)

1. Privacy Messages
2. Disapproval of Data Use
3. User Education
4a. (Social Media)
4b. (News)**
4c. (Utility)***
4d. (Games)***
5. Privacy Consciousness
6. Usability of App
7. Surprise at Message Cont.
8. Prior App Usage Time

(Familiarity)***
9. Interactions (1 : 2 : 3)***
10. Interactions (1 : 2 : 5)*
(Adjusted R2 = 0.442)

-0.20
-0.08
0.07
Baseline
-0.39
-0.30
-0.52
1.32×10−3

-0.02
0.01
0.15

-0.46
-0.12

0.43
0.09
0.09
Baseline
0.18
0.11
0.11
0.06
0.05
0.02
0.03

0.16
0.06

0.63
0.37
0.45
Baseline
0.03
0.005
-9.87×10−6

0.98
0.74
0.62
1.83×10−7

0.005
0.06

(ii) Dur.
(sec) of
App
Usage
(Log)

1. Privacy Messages
2. Disapproval of Data Use
3. User Education
4a. (Social Media)
4b. (News)
4c. (Utility)**
4d. (Games)**
5. Privacy Consciousness
6. Usability of App
7. Surprise at Message Cont.
8. Prior App Usage Time

(Familiarity)***
9. Interactions (1 : 2 : 3)***
10. Interactions (1 : 2 : 5)**
11. Interactions (1 : 2 : 7)*
(Adjusted R2 = 0.316)

-0.13
-0.01
0.02
Baseline
0.11
-0.50
-0.45
0.12
0.06
0.04
0.24

-1.23
-0.28
-0.15

0.83
0.18
0.17
Baseline
0.35
0.20
0.22
0.12
0.10
0.04
0.05

0.32
0.12
0.08

0.88
0.95
0.90
Baseline
0.76
0.016
0.04**
0.33
0.54
0.31
1.23×10−5

1.38×10−4

0.021
0.07

(iii) No.
of Leak
Buttons
Clicked
(Log)

1. Privacy Messages
2. Disapproval of Data Use
3. User Education*
4a. (Social Media)
4b. (News)
4c. (Utility)***
4d. (Games)***
5. Privacy Consciousness
6. Usability of App
7. Surprise at Message Cont.
8. Prior App Usage Time

(Familiarity)
9. Interactions (1 : 2 : 3)***
10. Interactions (1 : 2 : 4d)**
11. Interactions (1 : 2 : 7)*
(Adjusted R2 = 0.294)

0.04
-2.52
-0.83
Baseline
-0.43
-2.38
-2.51
-0.09
-0.13
-0.03
0.10

-3.83
-3.89
-0.44

1.73
1.61
0.47
Baseline
0.67
0.46
0.88
0.31
0.23
0.12
0.12

0.95
1.58
0.25

0.98
0.12
0.08
Baseline
0.52
5.34×10−7

4.66×10−3

0.76
0.58
0.78
0.40

7.86×10−5

0.01
0.08

Table 4.4: Results: Multiple Linear Regression of Field Study (***99%, **95%,
*90% Confidence Intervals)

78

mechanism can be still be effective under certain conditions. The significant

3-factor interaction effects uncovered that user-disapproval with accesses, user-

education, inherent levels of privacy consciousness as well as high surprise-levels

are required for the effectiveness of a ’Non-Blocking’ mechanism. Although a com-

parison study on non-blocking and blocking mechanisms is beyond the scope of this

thesis, I see that, for stronger overall effects, especially for users who have a longer

history of usage of the particular app as well as for warning of more serious issues

such as malware, ’Blocking’ mechanisms would be advocated.

4.2.3 Discussion & Factors Influencing Usage Behaviours

Users utilized Social Media apps significantly more than the other app categories.

The Prior App Usage Time (Familiarity) had the highest statistical strength in influ-

encing app usage behaviours of App Start-up Frequency and App Usage Durations

across all users. This implies that users who have been utilizing the applications for

a longer period of time were less likely to decrease utilization of the applications,

in spite of receiving the Privacy Messages.

This has both positive and negative implications. A positive implication is that

implementing privacy messages on applications is unlikely to cause its overall rate

and duration of usages to drop. And this supports the notion that mobile platforms

or developers can readily deploy privacy messages to users without badly decreas-

ing overall usage rates. A negative implication is that privacy messages might not

function well in scenarios where strong overall effects on users are desirable (e.g.

Warning of security issues).

As mentioned earlier, all significant interactions found included both Privacy

Messages together with the Disapproval of Data Use. The user’s disapproval of

data use by an app was thus critical in determining the effectiveness of privacy

messages. We did not find any significant 3-factor interactions involving Prior App

Usage Time (Familiarity),(i.e.Interactions(1:2:8)). This indicates that users who

79

received privacy messages and disapproved were unaffected by App Familiarity.

From in Table. 4.4, the strongest interaction for all 3 usage metrics was between

(Privacy Messages: Disapproval of Data Usage: User Education). Users who re-

ceived privacy messages, disapproved of data usage indicated and had additional

user education had decreased app usage metrics. User Education was thus a strong

factor allowing for the effectiveness of the privacy messages. The implications are

that it is important for app stores and developers to ensure that users have a proper

understanding of the meanings as well as consequences of privacy related messages

to optimize its effectiveness. It would be greatly beneficial for platforms to include

educational aspects in the privacy messaging framework. A possible idea might be

the implementation of voice messages or sliding screens detailing privacy implica-

tions and explanations of data meanings, which might improve the effectiveness of

privacy messages. There exists opportunities for future exploration in this area.

Another significant interaction found was that between (Privacy Messages: Dis-

approval of Data Usage: Privacy Consciousness) for Frequency of Start-ups, as

well as for Duration of App Usage. Users who received privacy messages and dis-

approved of the data usages had decreased app usage metrics if they had a higher

level of Privacy Consciousness. This was an indication that users who disapproved

of the privacy message contents were reacting accordingly to their privacy comfort

levels.

A third significant interaction was between (Privacy Messages: Disapproval of

Data Usage: Surprise at Message Content) for Duration of App Usages and Num-

ber of Widgets clicked. Users who were more surprised at the messages, and dis-

approved of the data usages, were thus more likely to have decreased app usage

metrics. Users were more likely to react properly to messages in which there were

strong contrasts between legitimate and questionable usage, which increased sur-

prise. This suggests that it might be beneficial for platforms to utilize message

designs that increase this contrasts, so that users have a higher level of surprise

towards the privacy accesses indicated.

80

Chapter 5

Conclusion

In this dissertation, my main motivation is the investigation into the novel and

unique context of causes of user-triggered privacy app behaviours as well as the

activity transition paths towards these behaviours. I presented the design, imple-

mentation and evaluation of my solution (MAMBA) for achieving this goal. The

solution involves a hybrid application of static analysis and automated runtime test-

ing of app binaries. And the techniques utilized are control-flow analysis as well as

dataflow analysis for callback functions.

My MAMBA solution achieved a much higher success rate (Over 70% com-

pared to 13%) in the analysis of callback functions than previous recent work

(GATOR [63]), for the purposes of generating an activity transition graph (ATG)

that guides automated runtime testing of Android apps. The solution also demon-

strated large time savings compared to another automated testing system, the Au-

tomated Model Checker (AMC), with only a small trade-off in activity coverage.

MAMBA’s static analysis also had high accuracy in outputting activities with pri-

vacy access behaviours (79.84%), and had a moderate accuracy in outputting activ-

ities with privacy leak behaviours (35.66%).

User studies demonstrated that presentation of the additional context can help

users to improve their app usage behaviours. Improvements in app usage behaviours

were measured by the decrease in app start up frequencies, usage durations as well

81

as clicking on fewer privacy culprit buttons/widgets, for the apps with privacy us-

ages which users disapproved of. It was also found that for the ’Non-Blocking’

delivery mechanism, the users’ prior app usage history was the strongest determin-

ing factor influencing privacy behaviours. And there were certain conditions which

enhanced the effectiveness of the ’Non-Blocking’ mechanism - Namely users’ dis-

approval of privacy messages, sufficient understanding on the meaning and impli-

cation of notices, being inherently privacy conscious as well as surprise towards the

app’s privacy behaviours in the notices.

I describe some possible extensions for future work in the next section.

5.1 Future Work

5.1.1 Extensions to MAMBA System

Static Analysis of App Privacy Leaks

An extension to MAMBA’s static analysis to output target activities with privacy

leak behaviours would be very useful. At the moment, MAMBA does not analyze

the control flow of network function calls (e.g. HTTP and POST), and is thus unable

to differentiate between privacy access and privacy leak behaviours.

This extension could be performed by utilizing FlowDroid’s [9] static taint

tracking to analyze network calls as ’sink’ points, to observe if sensitive data vari-

ables are linked to network function calls. This would likely increase the precision

of MAMBA’s privacy leak detection from its current 35.7%, and allow the direct

use of static analysis outputs for user notifications without the need for runtime

verification with TaintDroid.

A performance concern however, would be an increase in the time required

for completion of static analysis. While FlowDroid’s taint tracking is known

to have reasonable overheads [9], an evaluation would be required for accurate

determination.

82

Improved Analysis of Android Callback Functions

At the moment, while MAMBA has a high success rate for analysis of Android Call-

back Functions, it suffers from generalizability issues. This reduces the capability

to output fully directed test cases, which it overcomes by producing semi directed

test cases. These issues stem from MAMBA missing out on possible variants in the

implementation of listener invocations within the Android framework, and the prob-

lem is compounded by differences in Android API versions as well as the utilization

of custom view libraries by developers. In-depth modelling of listener invocations

could be thus performed to enhance MAMBA’s capability of analyzing callback

functions.

Improved Runtime Privacy Detection

MAMBA current instruments 2 privacy detectors, PMP and TaintDroid. While these

privacy detectors are well regarded and extensively utilized by the research commu-

nity, they have reported vulnerabilities that malicious apps can potentially exploit

and bypass [11]. Future work could be aimed towards patching up some of these

vulnerabilities of privacy detectors for improved privacy detection. The solution

would require the proposal of defences against some of the reported attacks in ex-

isting literature (e.g. ’System-File Attack’ or ’File Length Attack’ etc.).

Another possibility to improve runtime privacy detection is the tracking of ker-

nel related system calls which are linked to users’ data privacy. A survey would

be required to document which system calls are related to the privacy data as well

as network and other calls that could indicate potential privacy leaks on Android.

Such a survey might be done manually or by using automated tools (e.g. SUSI [49]).

While the tracking of kernel system calls would certainly result in an improvement

in the accuracy of runtime privacy detection, a concern is that large overheads on

the phone would be incurred. However, as MAMBA is based on back end analysis,

83

these overheads would not be relevant as they would be incurred on test devices

instead of on user devices.

Extended Comparisons of Automated Testers

From Appendix A, I detailed 4 types of automated testing solutions, based on a

survey of existing research. These are: (i) Random, (ii) Systematic Event Selec-

tion, (iii) Model-Based (Built at runtime) and (iv) Model-Based (Built from static

analysis). A comparison could be made by the re-implementation of representative

systems from each of these groups (e.g. Monkey [18], VanarSena [51], PUMA [31]

and A3E [10]), and evaluating them with the MAMBA automated tester on a scaled

up number of a few thousand apps. A significant contribution can be claimed if

MAMBA can demonstrate improvements in terms of lower testing time, higher cov-

erage as well as the reachability of certain runtime app states that other automated

testers might be unable to reach.

5.1.2 Privacy User Studies

Improvement & Extension of Field Study

The field study conducted in Chapter 4.2 can be improved by changing the study

from a ’Between-participants’ to a ’Within-participants’ design, extending the num-

ber of test apps, controlling users’ prior knowledge on the test apps as well as by

improving the user survey mechanism.

The current field study was conducted with a ’Between-participants’ design,

in which the test stimulus was conducted over 2 different groups of users. While

this was acceptable, it requires a large number of users to be statistically confi-

dent. While 47 users cannot be considered a small number for a HCI study, a larger

number of users would increase the validity of the findings. Instead of conducting

the study over more users, it would however be advantageous to change the study

design to a ’Within-participants’ design, whereby the comparisons would be made

84

based on test and control stimulus presented to the same user.

While the current study’s 10 test apps were solicited from a pre-study survey,

the current app list might be too small to optimally represent the apps that all users

were already regularly using. There were users who were regularly using only a

small number of apps from the list prior to the study. An improvement can be made

by observation of users’ app usage histories (this can be done during the control

phase of a ’Within-participants’ design), and extending the list of test apps based on

these user histories.

Another improvement can be made by controlling users’ prior knowledge on

the test apps in which privacy messages would appear on. In the current field study,

users were aware of the test apps that were being utilized in the study, as they were

required to install any apps that they did not already have from the list of 10 test

apps. This could have introduced biases in the study, as users could be utilizing the

test apps more with the mistaken idea that this would help the study. Users should

thus be withheld any information with regard to the names of the test apps in future

studies.

Finally, the survey mechanism can be improved in future studies. In the current

field study, users were surveyed only twice - Pre study and Post study. The users

can be surveyed more frequently at regular intervals during the duration of the study

(e.g. Survey at every 3-day interval). A customized survey mechanism would have

to be developed that can send prompts at regular intervals to users, as well as gen-

erate survey forms for users based on their app usage during in between the survey

time intervals. More fine grained surveys will mean that more fine grained user

characteristics can be obtained (e.g. User approval at the data level for each app, or

at the message level granularity).

In addition, usage of a customized survey mechanism can allow extension of the

field study to investigate if the privacy notices can allow users to set better privacy

policies in data access control of their apps. These might be posed in the form of

survey questions, such as whether they would prefer to allow or deny access of the

85

data utilization behaviour of their test apps. This can be used to demonstrate that

providing the additional context of causes of user-triggered privacy leaks can allow

users to set better privacy policies, so that apps’ privacy behaviours follow closer to

their provided functionalities.

Study on Privacy Notification Mechanisms

In Appendix A, a comparisons table for Privacy Notification Systems is provided.

The table details the notification mechanisms utilized for the privacy systems sur-

veyed. Future work might be performed to compare between the dimensions of

’Notification Content’ and ’Notification Interface’ of these other privacy systems

with that of MAMBA’s privacy notification mechanism. In addition, the different

factors of ’Frequency’, ’Timing’ as well as ’Granularity’ might be investigated for

their efficacy in the effectiveness of the notification mechanisms.

The ’Notification Content’ of my MAMBA system can be compared together

with 2 existing types: (i) Notices on real time privacy data accesses and (ii) Summa-

rized privacy access control lists can be evaluated together. Ideally, the evaluation

should be performed in field studies. But for ease of conduct can also be performed

on mechanical turk platforms, where users could be shown mock ups of these con-

tents or screen captures. Users would be surveyed on the privacy access policies

that they would set (Allow/Deny). The evaluation metrics could be - Functionality

profile of the app (App functionality requires/does not require privacy data type)

as well as the Correctness of privacy profile set by user (% of privacy data access

control decisions that fits app’s functionality profile).

The ’Notification Interface’ of my MAMBA system can also be compared with

a few types of: (i) Install Time List, (ii) Android Notifications (Standard scroll

down), (iii) Dialog Box and (iv) Summary List. This might be performed under a lab

setting, where users would be asked to complete tasks on the apps, and observing the

appearance of different types of notification interfaces. The evaluation metrics could

be - User feedback on usability and preference, Recall of users, Task completion

86

time and Effectiveness of privacy leak avoidance.

87

Bibliography

[1] Google play. https://play.google.com.

[2] I. Adjerid, A. Acquisti, L. Brandimarte, and G. Loewenstein. Sleights of privacy:
Framing, disclosures, and the limits of transparency. In Proceedings of the Ninth
Symposium on Usable Privacy and Security, page 9. ACM, 2013.

[3] Y. Agarwal and M. Hall. Protectmyprivacy: detecting and mitigating privacy leaks
on ios devices using crowdsourcing. In Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pages 97–110. ACM, 2013.

[4] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[5] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck, L. F. Cranor,
and Y. Agarwal. Your location has been shared 5,398 times!: A field study on mobile
app privacy nudging. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 787–796. ACM, 2015.

[6] R. Amadeo. App ops: Android 4.3’s hidden app permission manager, control
permissions for individual apps! http://www.androidpolice.com/2013/07/25/app-
ops-android-4-3s-hidden-apppermission-manager-control-permissionsfor-individual-
apps, 2013.

[7] S. Amini, J. Lin, J. I. Hong, J. Lindqvist, and J. Zhang. Mobile application evaluation
using automation and crowdsourcing. 2013.

[8] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic testing of smart-
phone apps. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 59. ACM, 2012.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. ACM SIGPLAN Notices, 49(6):259–
269, 2014.

[10] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic testing of
android apps. ACM SIGPLAN Notices, 48(10):641–660, 2013.

[11] G. S. Babil, O. Mehani, R. Boreli, and M.-A. Kaafar. On the effectiveness of dy-
namic taint analysis for protecting against private information leaks on android-based
devices. In Security and Cryptography (SECRYPT), 2013 International Conference
on, pages 1–8. IEEE, 2013.

88

https://play.google.com

[12] R. Balebako, J. Jung, W. Lu, L. F. Cranor, and C. Nguyen. Little brothers watching
you: Raising awareness of data leaks on smartphones. In Proceedings of the Ninth
Symposium on Usable Privacy and Security, page 12. ACM, 2013.

[13] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting android
dalvik bytecode to jimple for static analysis with soot. In Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program analysis, pages
27–38. ACM, 2012.

[14] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid: trading privacy for
application functionality on smartphones. In Proceedings of the 12th workshop on
mobile computing systems and applications, pages 49–54. ACM, 2011.

[15] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R. Wang, and
D. Wetherall. Brahmastra: Driving apps to test the security of third-party components.
In 23rd USENIX Security Symposium (USENIX Security 14), pages 1021–1036, 2014.

[16] E. K. Choe, J. Jung, B. Lee, and K. Fisher. Nudging people away from privacy-invasive
mobile apps through visual framing. In IFIP Conference on Human-Computer Inter-
action, pages 74–91. Springer, 2013.

[17] A. M. Developer. Android Market API, Oct 2013. https://code.google.
com/archive/p/android-market-api/.

[18] A. Developers. The developers guide. ui/application exerciser monkey, 2012.

[19] A. Developers. Accessibility Service: Developer guide, Oct 2013.
http://developer.android.com/reference/android/
accessibilityservice/AccessibilityService.html.

[20] A. Developers. Android Build Source: Developer guide, Mar 2016. https://
source.android.com/source/building.html.

[21] A. Developers. Android Toast: Developer guide, Mar 2016. http://developer.
android.com/guide/topics/ui/notifiers/toasts.html.

[22] Dictionary. Dictionary of english words, Oct 2013. http://wordlist.
sourceforge.net/12dicts-readme.html.

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in ios
applications. In NDSS, pages 177–183, 2011.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions on Computer Systems (TOCS),
32(2):5, 2014.

[25] P. Faruki, S. Bhandari, V. Laxmi, M. Gaur, and M. Conti. Droidanalyst: Synergic app
framework for static and dynamic app analysis. In Recent Advances in Computational
Intelligence in Defense and Security, pages 519–552. Springer, 2016.

[26] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based detection of
android malware through static analysis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 576–587.
ACM, 2014.

89

https://code.google.com/archive/p/android-market-api/
https://code.google.com/archive/p/android-market-api/
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://wordlist.sourceforge.net/12dicts-readme.html
http://wordlist.sourceforge.net/12dicts-readme.html

[27] H. Fu, Y. Yang, N. Shingte, J. Lindqvist, and M. Gruteser. A field study of run-time
location access disclosures on android smartphones. Proc. USEC, 14, 2014.

[28] GitHub. Sensor simulator, April 2016. https://github.com/openintents/
sensorsimulator.

[29] L. P. Guard. Lbe privacy guard, Mar 2016. https://www.amazon.com/
Team-LBE-Privacy-Guard/dp/B004UR5KSG.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18, 2009.

[31] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma: Programmable
ui-automation for large-scale dynamic analysis of mobile apps. In Proceedings of the
12th annual international conference on Mobile systems, applications, and services,
pages 204–217. ACM, 2014.

[32] M. Harbach, S. Fahl, P. Yakovleva, and M. Smith. Sorry, i dont get it: An analysis of
warning message texts. In International Conference on Financial Cryptography and
Data Security, pages 94–111. Springer, 2013.

[33] R. Holly. Using app permissions in android m, June 2015.

[34] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang. Supor: Precise
and scalable sensitive user input detection for android apps. In 24th USENIX Security
Symposium (USENIX Security 15), pages 977–992, 2015.

[35] J. C. J. Keng, L. Jiang, T. K. Wee, and R. K. Balan. Graph-aided directed testing
of android applications for checking runtime privacy behaviours. In 11th IEEE/ACM
International Workshop on Automation of Software Test (AST 2016), 2016.

[36] J. C. J. Keng, T. K. Wee, L. Jiang, and R. K. Balan. The case for mobile forensics of
private data leaks: towards large-scale user-oriented privacy protection. In Proceed-
ings of the 4th Asia-Pacific Workshop on Systems, page 6. ACM, 2013.

[37] J. C. J. Keng, T. K. Wee, L. Jiang, and R. K. Balan. Demo of mobile forensics:
Identification of leak causes in mobile applications. In 4th ACM SIGOPS Asia-Pacific
Workshop on Systems (APSys 2013), 2013.

[38] M. Kern and J. Sametinger. Permission tracking in android. In The Sixth International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
UBICOMM, pages 148–155, 2012.

[39] K. Lee, J. Flinn, T. J. Giuli, B. Noble, and C. Peplin. AMC: Verifying user interface
properties for vehicular applications. In Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pages 1–12. ACM, 2013.

[40] M. Lindorfer, M. Neugschwandtner, and C. Platzer. Marvin: Efficient and compre-
hensive mobile app classification through static and dynamic analysis. In Computer
Software and Applications Conference (COMPSAC), 2015 IEEE 39th Annual, vol-
ume 2, pages 422–433. IEEE, 2015.

90

https://github.com/openintents/sensorsimulator
https://github.com/openintents/sensorsimulator
https://www.amazon.com/Team-LBE-Privacy-Guard/dp/B004UR5KSG
https://www.amazon.com/Team-LBE-Privacy-Guard/dp/B004UR5KSG

[41] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van
Der Veen, and C. Platzer. Andrubis–1,000,000 apps later: A view on current an-
droid malware behaviors. In 2014 Third International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), pages 3–17.
IEEE, 2014.

[42] B. Liu, S. Nath, R. Govindan, and J. Liu. Decaf: detecting and characterizing ad fraud
in mobile apps. In Proc. of NSDI, 2014.

[43] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system for
android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 224–234. ACM, 2013.

[44] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission model and
enforcement with user-defined runtime constraints. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, pages 328–332.
ACM, 2010.

[45] [Online]. You think facebook privacy is bad? take a look at smartphone games, Nov.
2014.

[46] [Online]. Android developers api class reference,
http://developer.android.com/reference/classes.html, Oct. 2015.

[47] [Online]. Hierarchy viewer android, http://developer.android.com/tools/help/hierarchy-
viewer.html, Jan. 2016.

[48] [Online]. Protectmyprivacy (pmp) for android,
http://www.android.protectmyprivacy.org/, Jan. 2016.

[49] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach for classifying
and categorizing android sources and sinks. In NDSS, 2014.

[50] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic security analysis of
smartphone applications. In Proceedings of the third ACM conference on Data and
application security and privacy, pages 209–220. ACM, 2013.

[51] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and scalable
fault detection for mobile applications. In Proceedings of the 12th annual inter-
national conference on Mobile systems, applications, and services, pages 190–203.
ACM, 2014.

[52] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. Recon: Revealing and
controlling pii leaks in mobile network traffic. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services (New York,
NY, USA, 2016), MobiSys, volume 16, 2016.

[53] A. e. a. Rountev. Gator: Program analysis toolkit for android, 2016. http://web.
cse.ohio-state.edu/presto/software/gator/downloads/.

[54] F. Schaub, R. Balebako, A. L. Durity, and L. F. Cranor. A design space for effective
privacy notices. In Eleventh Symposium On Usable Privacy and Security (SOUPS
2015), pages 1–17, 2015.

91

http://web.cse.ohio-state.edu/presto/software/gator/downloads/
http://web.cse.ohio-state.edu/presto/software/gator/downloads/

[55] P. Silva, V. J. Amorim, F. N. Ribeiro, and I. Muzetti. Privacymod: Controlling and
monitoring abuse of privacy-related data by android applications. In 2015 Brazilian
Symposium on Computing Systems Engineering (SBESC), pages 42–47. IEEE, 2015.

[56] D. Stites and K. Skinner. User privacy on ios and os x, 2014.

[57] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson, S. Egelman,
and D. Wagner. The effect of developer-specified explanations for permission requests
on smartphone user behavior. In Proceedings of the 32nd annual ACM conference on
Human factors in computing systems, pages 91–100. ACM, 2014.

[58] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java bytecode for analyses and
transformations. 1998.

[59] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: multi-layer profiling
of android applications. In Proceedings of the 18th annual international conference
on Mobile computing and networking, pages 137–148. ACM, 2012.

[60] M. S. Wogalter, V. C. Conzola, and T. L. Smith-Jackson. Research-based guidelines
for warning design and evaluation. Applied ergonomics, 33(3):219–230, 2002.

[61] R. Xu, H. Saı̈di, and R. Anderson. Aurasium: Practical policy enforcement for android
applications. In Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), pages 539–552, 2012.

[62] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan. Intentfuzzer: detecting capa-
bility leaks of android applications. In Proceedings of the 9th ACM symposium on
Information, computer and communications security, pages 531–536. ACM, 2014.

[63] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis of
user-driven callbacks in android applications. In International Conference on Software
Engineering (ICSE), 2015.

[64] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated gui-model
generation of mobile applications. In International Conference on Fundamental Ap-
proaches to Software Engineering, pages 250–265. Springer, 2013.

[65] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent: Analyzing
sensitive data transmission in android for privacy leakage detection. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security, pages
1043–1054. ACM, 2013.

92

Appendix A

Appendix

List of Privacy Sensitive Data API Invocation Calls Utilized By MAMBA
• getLatitude

• getLongitude

• getLastKnownLocation

• requestLocationUpdates

• getLastLocation

• getConnectionInfo

• getMacAddress

• getDeviceId

• getSubscriberId

• getSimSerialNumber

• ContactsContract

• pictureFile

• getCameraInfo

• FEATURE CAMERA

• getLine1Number

• startRecording

• MediaRecorder

• mRecorder

• CallLog.Calls

• content://sms

• CalendarContract

• ClipboardManager

• Secure.ANDROID ID

93

Algorithm 1 Algorithm For Sensitive API Association with App Activities
1: INPUT: Sensitive Data APIs
2: OUTPUT: Target App Activities Associated with APIs To Reach/Test
3:
4: JimpleSet← getJimpleBytecodeRepresentations()
5: sensitiveAPISet← getSensitiveAPISet()
6: activityClassSet← getActivityClasses()
7: activityMethodSet← getMethods()
8:
9: begin

10:
11: for each Activity ∈ activityClassSet do
12:
13: for each Method ∈ activityMethodSet do
14: Method Body β ∈ getActiveBody()
15: All Sensitive API Invocation Points α←
16: getAllSensitiveInvocationPoints()
17:
18: for each Invocation Point in α do
19: Get Methods along back-tracked CFG, backTrackMethodSet←
20: backTrackCFG(α)
21:
22: for each Method in backTrackMethodSet do
23: Activity Class containing Method µ← getClass(Method)
24: if Method is of ’onCreate’ lifecycle then
25: if µ ∈ activityMethodSet then
26: Target Activity to Reach τ1←
27: targetActivityToReachSet.add(µ)
28:
29: else if Method is of ’User-Input’ Handling Type then
30: if µ ∈ activityMethodSet then
31: Target Activity to Test τ2←
32: targetActivityToTestSet.add(µ)
33:
34: end

94

Algorithm 2 Algorithm For Generating Fully-Directed Activity Transition Graph
(ATG)

1: INPUT: Application Binary
2: OUTPUT: Edges of Activity Transition Graph (ATG)
3:
4: JimpleSet← getJimpleBytecodeRepresentations()
5: CallbackSet← getCallbackClasses()
6: activityClassSet← getActivityClasses()
7:
8: begin
9:

10: for each Activity ∈ activityClassSet do
11:
12: for each Callback Method ∈ in Activity do
13:
14: if Method is of ’onCreate’ lifecycle then
15: if findStartActivityInvocation() is True then
16: ATG Edge ε← ATG.add(callback of previousActivity,
17: callback of nextActivity)
18:
19: Listener Invocation Point λ← getListenerInvocation()
20:
21: Get Statements Along Backwards Data Flow of Listener, Φ←
22: dataFlowTracking(λ,Method)
23:
24: for each Statement in Φ do
25: if Statement ∈ View ID Retrieval from XML Resources then
26: Get View ID, ID← getID(Statement)
27: Get Widget Identifier, I← getXMLResource(ID)
28:
29: if Statement Contains Object File of Listener then
30:
31: Get Active Body of User-driven Callback Function
32: of Object File, body←
33: getActivityBodyObjectListener(Object File)
34:
35: Get Next Activity from Bytecode body, nextActivity←
36: getNextActivity(body)
37:
38: Get User-driven Callback Function of Previous Activity,
39: callbackPreviousActivity← getCallBack(Activity)
40:
41: Get ’onCreate’ Callback Function of Next Activity,
42: callbackNextActivity← getCallBack(nextActivity)
43:
44: ATG Edge ε←ATG.add(callbackPreviousActivity,callbackNextActivity
45: , I)
46:
47: end 95

Algorithm 3 Algorithm For Generating Semi-Directed Activity Transition Graph
(ATG)

1: INPUT: Application Binary
2: OUTPUT: Edges of Activity Transition Graph (ATG)
3:
4: JimpleSet← getJimpleBytecodeRepresentations()
5: CallbackSet← getCallbackClasses()
6: activityClassSet← getActivityClasses()
7:
8: begin
9:

10: for each Activity ∈ activityClassSet do
11:
12: for each Callback Method ∈ in Activity do
13:
14: Listener Invocation Point λ← getListenerInvocation()
15:
16: if λ != Null then
17: Get All Statements in Method, µ← getAllStatements(Method)
18:
19: for each Statement in µ do
20: if Statement ∈ View ID Retrieval from XML Resources then
21: Get View ID, ID← getID(Statement)
22: Get Widget Identifier, I← getXMLResource(ID)
23:
24: Add to List of Possible Widget Identifiers,
25: possibleWidgetIDs.add(I)
26:
27: Get All Listener Object Files of Activity, τ
28: ← getAllListenerObjects(Activity)
29:
30: for each Object File O in τ do
31:
32: Get Active Body of User-Driven Callback Function of Object File, body
33: ← getActivityBodyObjectListener(Object File)
34:
35: if startActivity Intent in body then
36: Get Next Activity from Bytecode Body, nextActivity
37: ← getNextActivity(body)
38:
39: Add to List of Possible Activity Transitions, possibleActivity
40: Transitions.add(nextActivity)
41:
42: for each Activity, nextActivity, in possibleActivityTransitions do
43: for each Widget Identifier,I, in possibleWidgetIDs do
44:
45: ATG Edge ε←ATG.add(callbackPreviousActivity,callbackNextActivity
46: , I)
47:
48: end

96

Table A.1: Comparison Table of Privacy Detection & Protection Systems

System
Privacy-Related
Behaviour
Analyzed

Usable Outputs Technique for App
Coverage Latency Coverage Accuracy

1.
AppIntent [65]

Data transmissions
and the UI states
during such
occurrences for an
analyst to make
determinations.

Sequence of app
screen captures of
app operation during
data transmissions.

Static taint
analysis/Dynamic
Analysis (Symbolic
Execution)

2 hours/app High Not reported.

2. AppsPlay-
Ground [50]

Malicious behaviour
in apps. (e.g. root
exploits, background
SMS sending etc.)

Flagging of apps as
having malicious
behaviour and data
leaks.

Dynamic Analysis
(Fuzz testing)

Medium to
low

33% code
coverage Not reported.

3. Ap-
poscopy [26] Privacy malware.

Flagging of apps
with
control/data-flow
signatures matching
known privacy
malware signatures.

Static analysis
(Malicious Signature
Matching)

5.8 mins/app High 90%

4. ANDRU-
BIS [41]

Malicious
behaviours

Analysis report on
malicious app
behaviour from an
online submission.

Static/Dynamic
Analysis (
Machine-Learning
Classification)

20 mins/app Not
reported. >90%

5. DroidAna-
lyst [25]

Signature-based
malware detection.

Analysis report on
malicious behaviour.

Static/Dynamic
Analysis
(Machine-Learning
Classification)

>20 mins/app 50-80% 85%

6.
FlowDroid [9]

Taint analysis of
privacy data.

Program Sources &
Sinks of privacy
leaks.

Static analysis 2.5 mins/app High 93%

7. GORT [7] Privacy Behavioural
heuristics

Provides a GUI for
analysts to easily
digest privacy
behaviours of apps.

Static/Dynamic
Analysis > 60 mins/app

49.5%
activity

coverage
Not reported.

8.
MARVIN [40]

App privacy risk
level

Provides a privacy
risk assessment
score.

Static/Dynamic
Analysis
(Machine-Learning
Classification)

>20 mins/app Not
reported. 98%

9. Profile-
Droid [59]

Network traffic of
app

Provides
origins/sources of
the network traffic.

Static/Dynamic
Analysis

>1 day/app
(Measure-

ments taken
multiple
times)

Nil Nil

10. PiOs [23] Taint analysis of
privacy data.

Program Sources &
Sinks of privacy
leaks.

Static analysis Not reported. High Not reported.

11.
SUPOR [34]

Sensitive user inputs
(e.g. passwords,
credit card nos. etc.)

Flag vulnerabilities
with sensitive user
inputs.

Static analysis 3.7 mins/app High 97.3%

12. ReCon [52]

Personally
identifiable
information (PIIs)
leaked from apps.

Information on leaks
of PIIs by apps.

Dynamic analysis
(Machine-Learning
from Network
Flows)

Few mins/app Not
reported. 98.1%

97

Table A.2: Comparison Table for Automated Testing Systems

System Exploration
Strategy

Exploration
Target

Exploration
Technique

Inputs
Simulated Purpose

1. Intent-
Fuzzer [62]

(i) Random All Pages
Dynamic
Analysis

UI Events Stress Testing

2.
Monkey [18]

(i) Random All Pages ” UI Events General Testing

3. Dyn-
odroid [43]

(ii) Systematic
Event

Selection
All Pages ”

UI Events/
System Inputs

Crash Testing

4. Va-
narSena [51]

(ii) Systematic
Event

Selection
All Pages ” UI Events Crash Testing

5. AppsPlay-
ground [50]

(ii) Systematic
Event

Selection
All Pages ” UI Events Privacy/ Fuzz Testing

6. ACTEve [8]
(ii) Systematic

Event
Selection

All Pages ”
UI Events/

System Inputs
Concolic Testing

7. PUMA [31]

(iii)
Model-Based
(On-the-Fly at

Runtime)

Flexible/
Customizable

” UI Events General Testing

8. AMC [39]

(iii)
Model-Based
(On-the-Fly at

Runtime)

Distinct Pages ” UI Events UI Checking

9. A3E(Depth-
First

Mode) [10]

(iii)
Model-Based
(On-the-Fly at

Runtime)

All Pages ” UI Events General Testing

10.
DECAF [42]

(iii)
Model-Based
(On-the-Fly at

Runtime)

Distinct Pages ” UI Events Ad layouts

11.
A3E(Targeted
Mode) [10]

(iv)
Model-Based
(Pre-Runtime

Analysis)

Distinct Pages
Dynamic &

Static
Analysis

UI Events General Testing

12.
ORBIT [64]

(iv)
Model-Based
(Pre-Runtime

Analysis)

All Pages ” UI Events General Testing

13. Brahmas-
tra [15]

(iv)
Model-Based
(Pre-Runtime

Analysis)

Distinct Pages ” UI Events Ad Checking

98

Table A.3: Comparison Table for Privacy Notification Systems

System Notification
Content

Notification
Interface Frequency Action Timing Granularity

1. Aura-
sium [61]

Real-time privacy
data access; Network
IP details; Privilege
Escalation

Dialog Box

Every
access

instance;
Set Rule

Blocking
Before
event

Data level

2.
APEX [44]

Permission data
control at install
time.

Install-time
List;

Dialog Box

Every
install

instance;
Every
access

instance

Blocking
After
event

App/Data level

3. AppIn-
tent [65]

Sequence of screen
captures of app
operation with notice
appearing on privacy
data sending. (Meant
for analyst to check)

Android
Toast

Message

Every
access

instance

Non-
Blocking

After
event

Data level

4.
AppOps [6]

Real-time privacy
data access;
Summarized access
control of privacy
data

Privacy
Manager

List;
Dialog Box

First
access

instance;
Config-
urable

Blocking
Before
event

App/Data level

5. Protect-
MyPrivacy
(PMP) [48]

Real-time privacy
data access;
Summarized access
control of privacy
data

Privacy
Manager

List;
Android
Notifica-

tions

First
access

instance;
Config-
urable

Blocking
Before
event

App/Data level

6. LBE
Privacy

Guard [29]

Real-time privacy
data access;
Summarized access
control of privacy
data

Privacy
Manager

List;
Android
Notifica-

tions

First
access

instance;
Config-
urable

Blocking
Before
event

App/Data Level

7.
Permission

Tracker [38]

Provide 3 different
levels of details with
regards to data
permission: (i) App
categories, (ii)
Permission
categories, (iii)
Frequency of
permissions.

Privacy
Manager

List;
Dialog Box

Every
access

instance;
Config-
urable

Blocking
Before
event

Data level

99

System Notification
Content

Notification
Interface Frequency Action Timing Granularity

8. Mock-
Droid [14]

Real-time privacy
data access;
Summarized access
control of privacy
data

Privacy
Manager

List;
Android
Notifica-

tions

Every
access

instance;
Set Rule

Blocking
Before
event

Data level

9. Privacy
Nudging [5]

Informs user on
frequency of privacy
data accesses and
number of apps that
accessed the data
over a time period.

Privacy
Manager

List;
Android
Notifica-

tions

Periodic
(default:

once
daily)

Non-
Blocking

After
many
events

App/Data Level

10. Privacy
Mod [55]

Background notice
informs user that app
is using data.
Informs user on
frequency of privacy
data accesses.

Privacy
Manager

List;
Android

Toast
Message

Every
access

instance

Non-
Blocking

After
event

Data level

11.
ReCon [52]

Informs user on
frequency of
personally
identifiable
information (PII) and
number of apps that
accessed the data
over a time period.

Summarized
UI

-
Non-

Blocking
After
event

Data level

12. Taint-
Droid [24]

Real-time privacy
data access

Android
Notifica-

tions

Every leak
instance

Non-
Blocking

After
event

Data level

100

Figure A.1: Pre Study Survey Form

101

Figure A.2: Post Study Survey Form (Example: Facebook App)

102

103

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2017

	Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
	Joo Keng Joseph CHAN
	Citation

	1 Introduction
	1.1 Thesis Statement
	1.2 Approach
	1.3 Research Contributions
	1.4 Summary of Thesis Results
	1.5 Existing Work (Literature Review)
	1.5.1 Mobile Privacy Detection & Protection Systems
	1.5.2 Automated Testing Systems
	1.5.3 Privacy Notification Mechanisms

	2 Uncovering Causes and Paths of User-Triggered Privacy Leaks
	2.1 Privacy Analysis Solution Framework
	2.1.1 Components of Framework

	2.2 Hybrid Static/Dynamic Analysis Solution (MAMBA System)
	2.2.1 Association of App Activities/Views with Privacy Sensitive APIs
	2.2.2 Analysis of Control-Flow Between Android Callbacks
	2.2.3 Reports on Activity Transition Paths and Results of Static Analysis
	2.2.4 Automated Runtime App Testing
	2.2.5 Analysis of Causes of User-Triggered Leaks & Characteristics
	2.2.6 Scaling up App Testing By Parallelized Test Instances

	2.3 Notifying Users with Privacy Outputs
	2.4 Initial Feasibility Study on Uncovering User-Triggered Privacy Leaks and Characteristics of Apps
	2.4.1 Accuracy of Association Rules Mining
	2.4.2 Feasibility in Creation of a 'Leak-Cause' Database

	2.5 Scaled-Up Testing Experiment with Parallelized App Testing System

	3 Evaluation Results of MAMBA System
	3.1 The Automated Model Checker (AMC)
	3.2 Small-Scale Evaluation of MAMBA using GATOR's Callback Analysis
	3.2.1 Results of AMC Comparison with MAMBA-GATOR

	3.3 Large-Scale Evaluation & Comparison of MAMBA with Automated Model Checker (AMC)
	3.3.1 Conduct of the Experiment
	3.3.2 Results of Comparison of MAMBA with AMC
	3.3.3 Discussion

	4 Understanding Utility of User-Triggered Privacy Leak Messages
	4.1 Small-Scale Lab-Study
	4.1.1 Conduct of Lab-Study
	4.1.2 Results of Small-Scale Lab Study

	4.2 Large-Scale Field-Study
	4.2.1 Conduct of Field-Study
	4.2.2 Results of Field-Study
	4.2.3 Discussion & Factors Influencing Usage Behaviours

	5 Conclusion
	5.1 Future Work
	5.1.1 Extensions to MAMBA System
	5.1.2 Privacy User Studies

	A Appendix

