

International Center for Tropical Agriculture Since 1967 / Science to cultivate change

Climate-smart soil protection and rehabilitation in Kenya

December 2016, Kisumu, Kenya

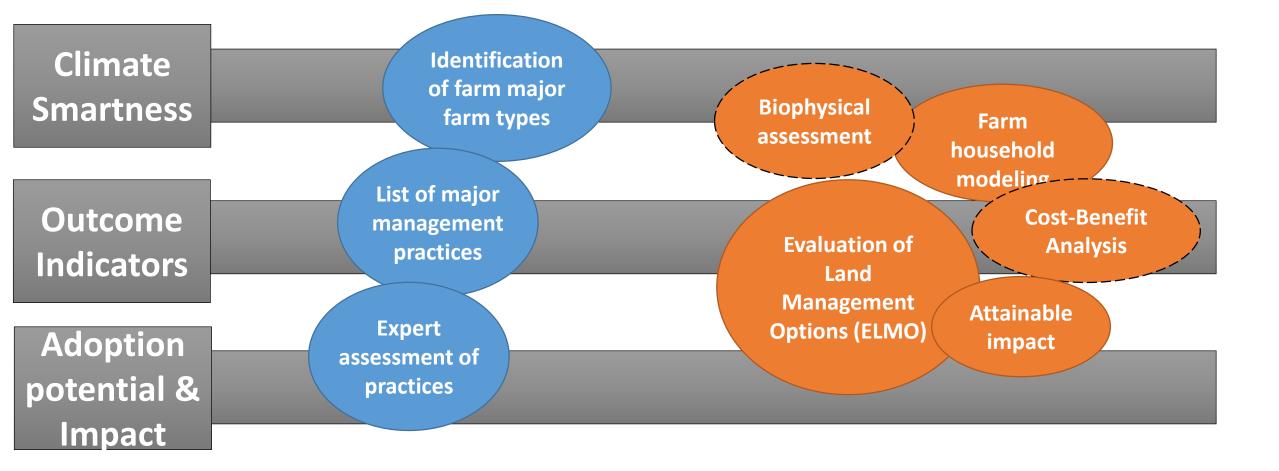
An Notenbaert, Birthe Paul, Caroline Mwongera, Celine Birnholz, Chris Mwungu, Deborah Bossio, Evan Girvetz, Ivy Kinyua, Jessica Koge, Job Kihara, John Mukalama, Juliet Braslow, Katherine Snyder, Rolf Sommer, Stanley Karanja, Wendy Okolo

<u>Outline</u>

- Introduction and objectives of the climate-smart soils (CSS) project
- Climate-smartness evaluation
 - Farm Typology
 - Rapid Climate Smartness Assessment (Kalkulator)
 - Evaluation of Land Management Options (ELMO)
 - Attainable impact
- Biophysical assessment
- CSA prioritization framework
 - CSA identification and prioritization workshop
 - Economic assessment, CBA
 - Revised framework
- Recommendations

Objective of the Climate Smart Soils Project

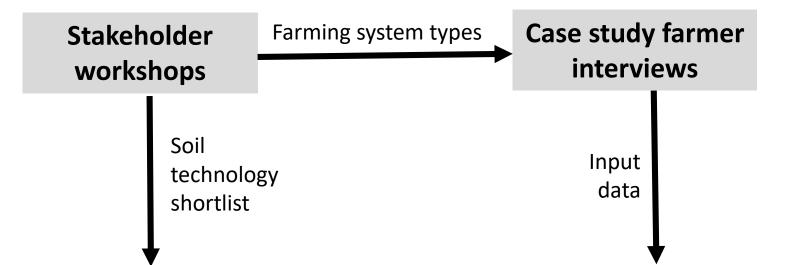
- Assessment of climate smartness of ongoing and potentially suitable alternative agricultural soil conservation practices, including:
 - analysis of farm-level cost-benefit and tradeoffs
 - evaluation of the overall CSA impact and scope
 - adoption and scaling potentials
- Design of a CSA prioritization process and implementation strategy in Western Kenya


"Agriculture has to be part of the solution to climate change." Patrick Verkooijen, The World Bank, 2012

Triple-win goal – three pillars (FAO 2013):

- Sustainably increasing agricultural productivity and incomes;
- 2. Adapting and building <u>resilience</u> to climate change;
- 3. Climate change <u>mitigation</u>: reducing greenhouse gases emissions, where possible.

"To ensure a food-secure food-secure future, farming must become climate resilient."

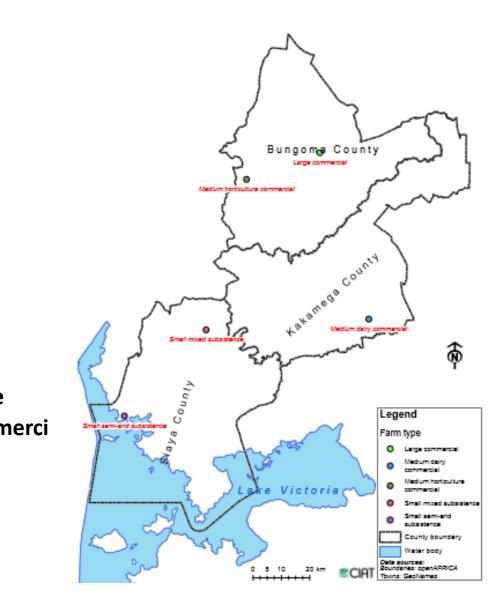

CIAT's approach to evaluate the climate smartness

<u>Outline</u>

- Introduction and objectives of the climate-smart soils (CSS) project
- Climate-smartness evaluation
 - Farm Typology
 - Rapid Climate Smartness Assessment (Kalkulator)
 - Evaluation of Land Management Options (ELMO)
 - Attainable impact
- Biophysical assessment
- CSA prioritization framework
 - CSA identification and prioritization workshop
 - Economic assessment, CBA
 - Revised framework
- Recommendations

<u>Rapid assessment - methodology</u>

Modelling CSA indicators for baselines and scenarios



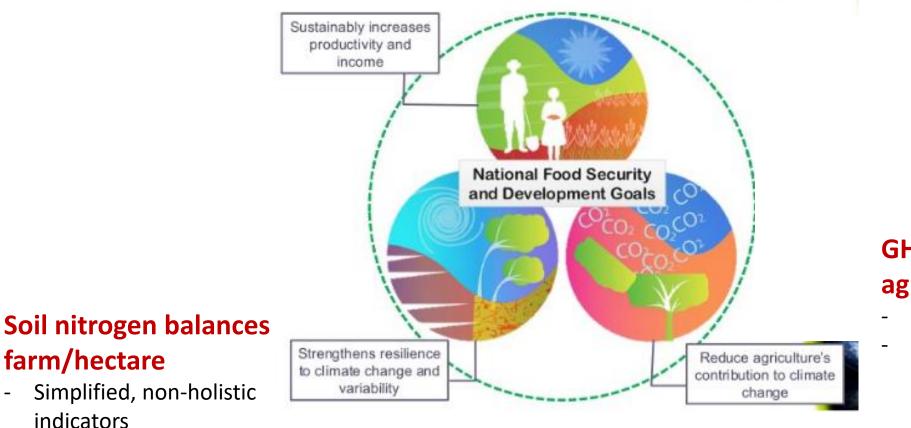
Farming system types

Factors: intensification, production orientation, commercialization, agroecological potential and resource endowment

Counties	Resource- poor female- headed	Small mixed subsistence	Medium dairy commercial	Medium horticulture commercial	Large comm al	
Siaya	NA	70 %	5 %	20 %	5 %	
Kakamega	NA	60 %	10 %	10 %	20 %	
Bungoma	NA	50 %	5 %	10 %	35 %	

Shortlisted/tested soil technologies

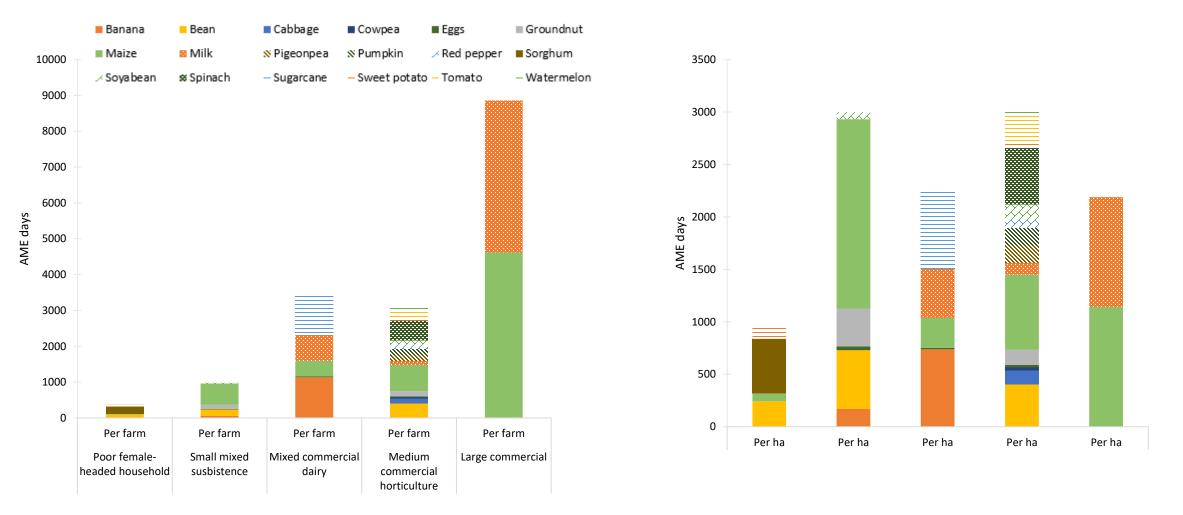
Stakeholders listed most relevant soil protection and rehabilitation technologies


• Liming and DAP

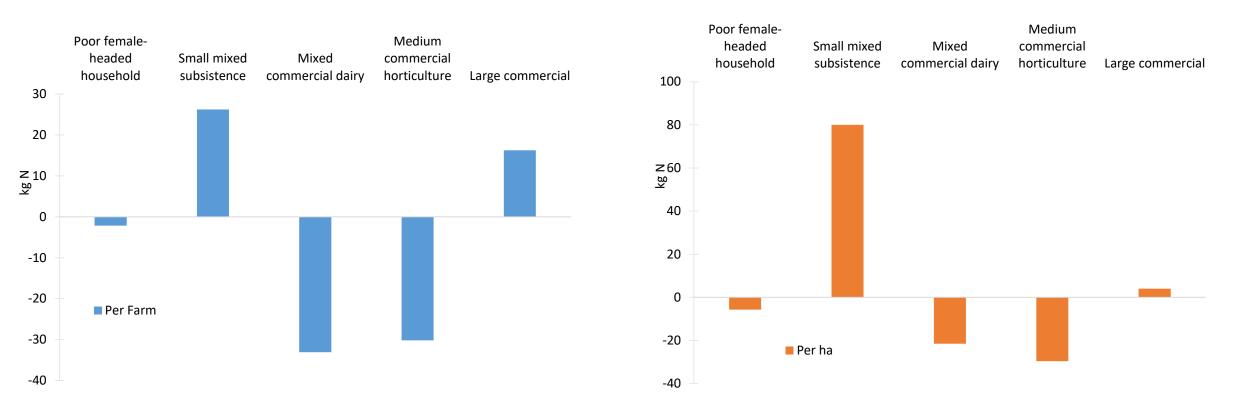
- Compost only
- Lime and compost
- Conservation Agriculture
- Vegetative strips

Modelling of CSA indicators and trade-offs

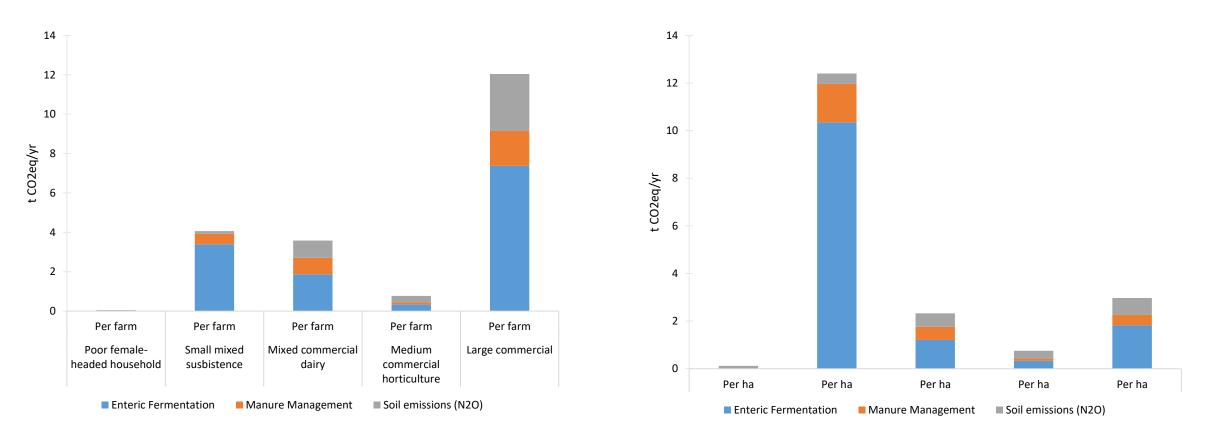
Calories produced on farm/hectare


- Cash crops and meat not taken into account
- 'Potential supply' only

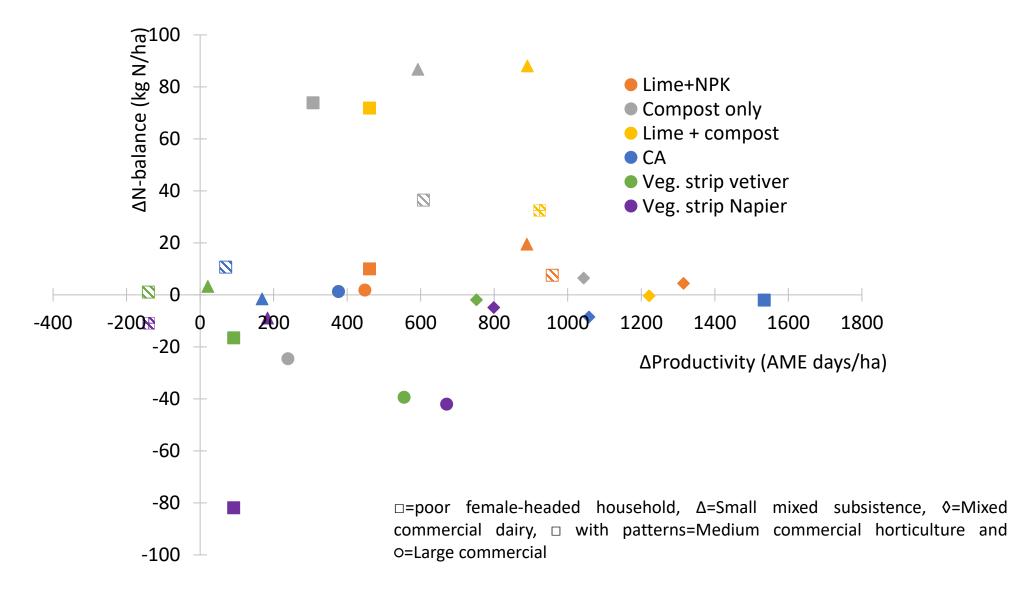
GHG emissions from agriculture per farm/hectare


- Soil C stock changes not included
- IPCC tier 1/2 overestimating for SSA

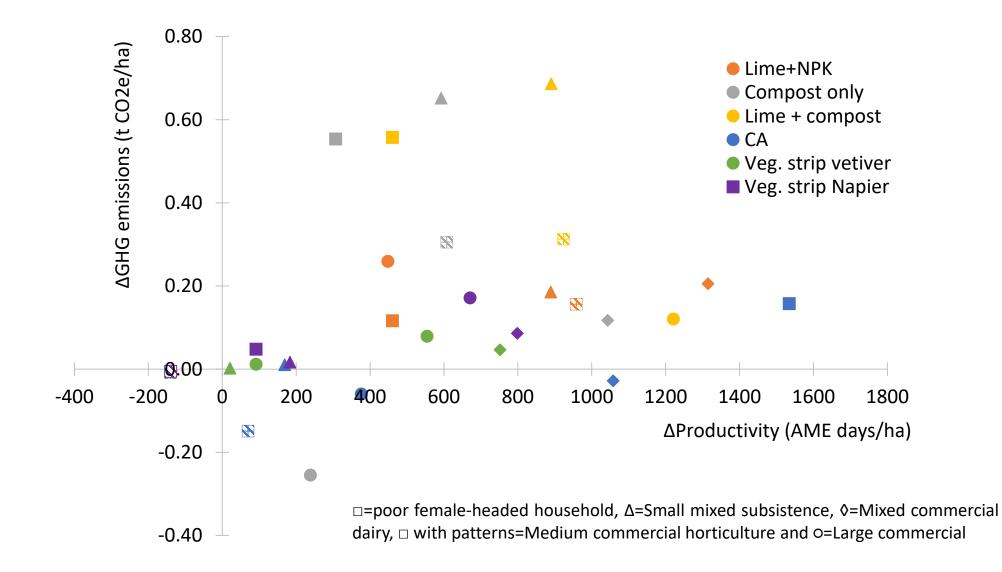
Calories produced on farm - baselines


- Diversity of production
- Small mixed subsistence, low per farm, but high per ha
- Large commercial, high per farm from milk production, not highest per ha- coffee does contribute to calories

Nitrogen balance - baselines


- Low inputs-low outputs
- Livestock density on the small mixed subsistence farm-> highest balance
- Negative on the medium commercial farms- not alarming; higher export of crop products (and milk).
- Positive on the large commercial farm because of use of inputs in larger quantities.

Greenhouse gas emissions - baselines



- low emissions
- livestock (ruminants) main source
- livestock density on the small mixed subsistence farm \rightarrow highest GHG intensity
- higher use of inputs on the large farm

Trade-offs: Productivity vs. N balance

Trade-offs: Productivity vs. GHG emissions

Evaluating Land Management Options (ELMO)

Participatory tool for assessing farmers' land management (LM) decisions, preferences & trade-offs

Identify techniques & attributes to be discussed

Record respondent characteristics

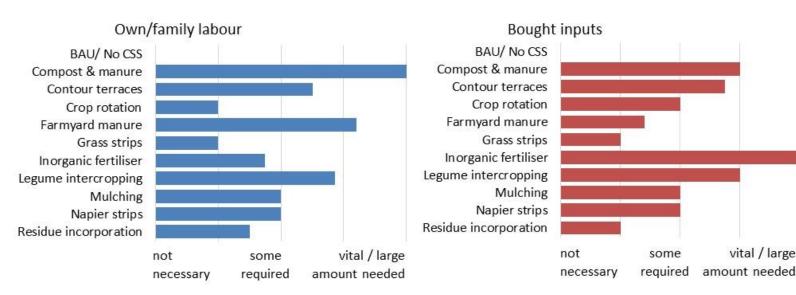
Define LM techniques & baseline

⁴ Rank & Score LM costs & input requirements

⁵Rank & Score LM benefits & desired outcomes

⁶Rank LM advantages & positive attributes

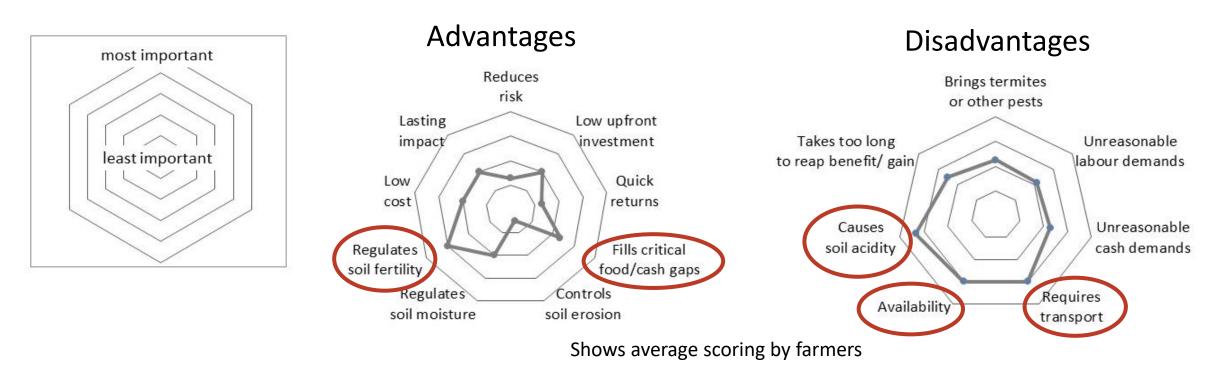
C Rank LM disadvantages & negative attributes


⁸ Rank and weight LM alternatives overall

Individual discussions with farmers

Farmer's perceptions of cost & input requirements

- Most farmers face difficulties in accessing labor, bought inputs and technical knowhow
- These requirements vary per practice and inform farmers' preferences


Land management cost/input requirements

Relative difficulty in accessing or affording costs/inputs

always v. difficult		
O	wn/family labou	ir
often difficult	0	Technical knowhow
ojten aljjicult	0	Bought inputs
usually possible		
		Free materials
alwavs v. easv		

Shows average scoring by farmers

Relative importance of advantages & disadvantages of practices

- Farmers emphasize the **importance of soil fertility and food supply** effects in shaping the relative viability of practices
- Farmers prefer techniques which can assist in **evening out or overcoming food** and cash shortages across the year.

Overall preference of practices

Shows average weight attributed according to overall preference relative to other land management practices. Note that total exceeds 100%, because interviews cover different combinations of land management practices.

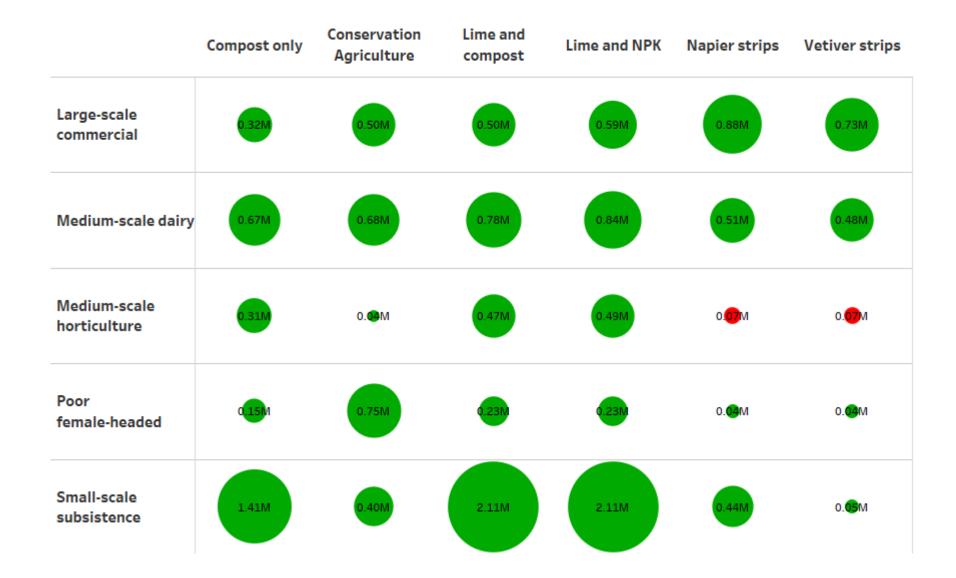
Calculating "attainable impact" across the five districts

1. Number of farm households of each farm type

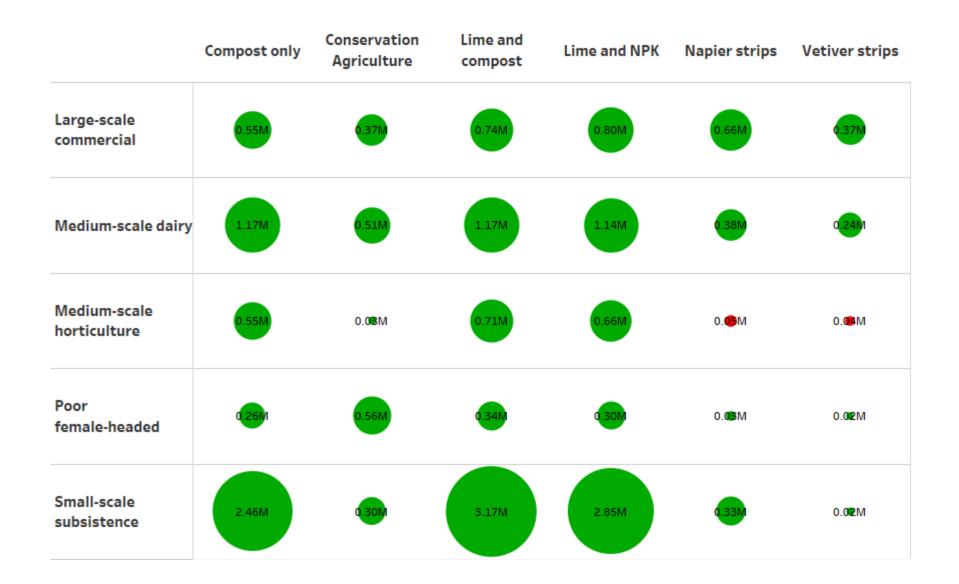
~ rural population / HH-size * farm type %

~ ELMO

3.


	Poor female-	Small-scale	Medium-scale	Medium-scale	Large-scale
	headed	subsistence	dairy	horticulture	commercial
%	6	52	7	12	21
Number HHs	37,563	351,290	48,426	84,009	144,208

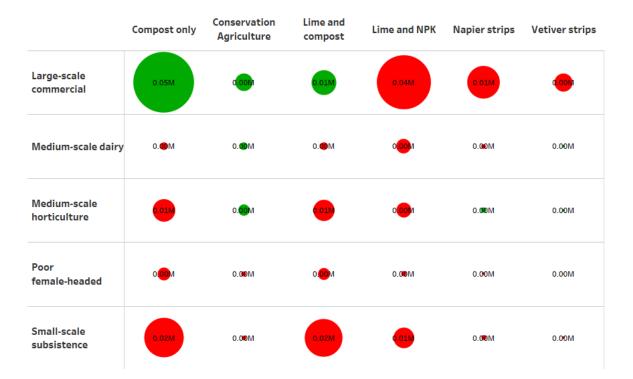
2. Adoption rates (% of the HHs likely to adopt the specific intervention) per farm type


200/		Compost only 35	CA 15	Lime and compost <i>30</i>	Lime and NPK 27	Napier strips 15	Vetiver strips 10
20%	or	Compost and manure score	Residue incorporation score (the lowest of the CA components)	Compost and manure score minus 5	Inorganic fertilizer score minus 5	Napier strips score	Grass strip score

Calculating "attainable impact" across the five districts

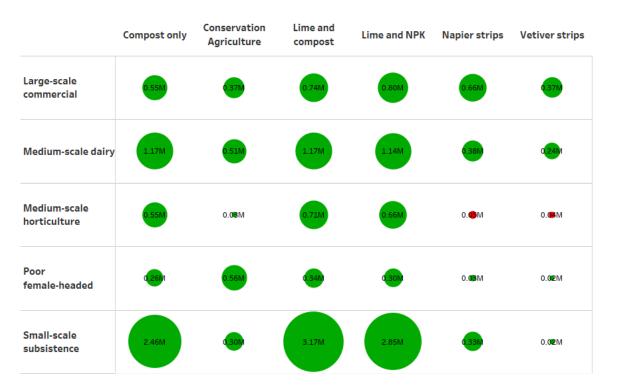
3. Number of adopting farms x estimated impact per farm

Importance of expected adoption rates

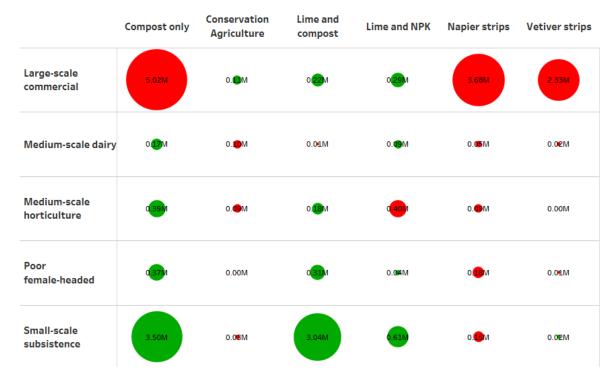


Trade-offs with GHG emissions

Conservation Lime and Lime and NPK Compost only Napier strips Vetiver strips Agriculture compost Large-scale 0.66M 0.55M .37N .74M M08.0 .37M commercial 1.14M Medium-scale dairy 1.17M .51N 1.17M .381 Medium-scale 0.08M .71M 0.**05**M 0.04M horticulture Poor .56N 0.03M 0.02M female-headed Small-scale 2.46M 2.85M .331 301 3.17M 0.02M subsistence


AME days

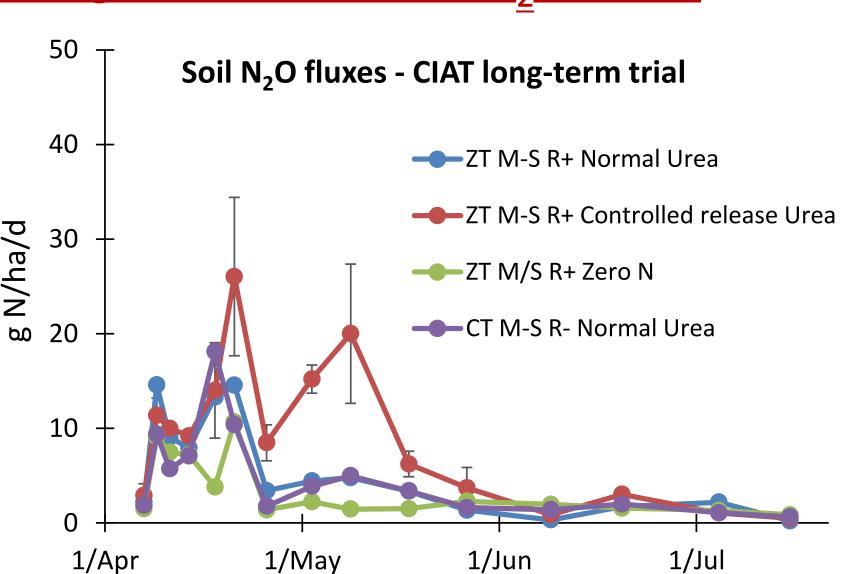
GHG emissions



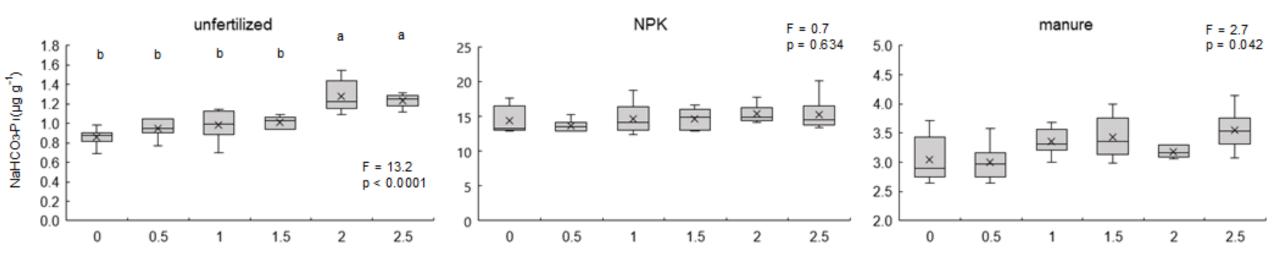
Trade-offs with soil fertility

AME days

N Balance

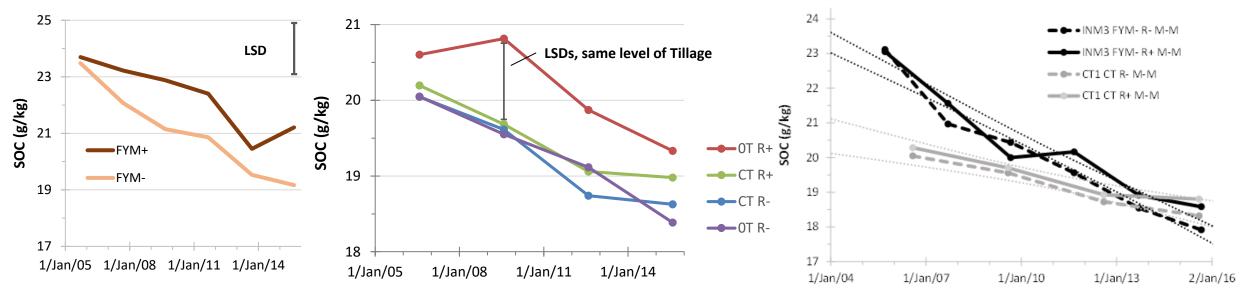


<u>Outline</u>


- Introduction and objectives of the climate-smart soils (CSS) project
- Climate-smartness evaluation
 - Farm Typology
 - Rapid Climate Smartness Assessment (Kalkulator)
 - Evaluation of Land Management Options (ELMO)
 - Attainable impact
- Biophysical assessment
- CSA prioritization framework
 - CSA identification and prioritization workshop
 - Economic assessment, CBA
 - Revised framework
- Recommendations

<u>Biophysical monitoring and evaluation – N₂O fluxes</u>

- Overall, nitrous oxide emissions were small
- Omitting tillage (ZT) or retaining residues did not have any impact on emissions.
- Retaining residues and applying manure increased emissions early in the season in April on farmer fields if not tilled (ZT).
- Use of controlled release urea fertilizer resulted in higher emissions in May.



Biophysical monitoring and evaluation – soil liming

- Liming nearly doubled labile P in soils which had not received any fertilizer for 12 years. But, that still did not bring these soils out of severe P deficiency.
- Fertilized soils with comparably higher initial available P did not show such trend.
- Liming of acid and P-fixing soils is not a substitute for application of sufficient amounts of organic or inorganic P-fertilizer.

Biophysical monitoring and evaluation – SOC dynamics

- Neither ISFM nor CA could prevent soil organic carbon (SOC) topsoil contents from declining over time
- However, manure application (as part of ISFM), as well as residue retention and omitting tillage (as part of CA) decreased SOC losses
- Land use history prior to installation of CIAT's long-term trials, i.e. the state of soil health/degradation, plays a major role in the speed of decline of SOC

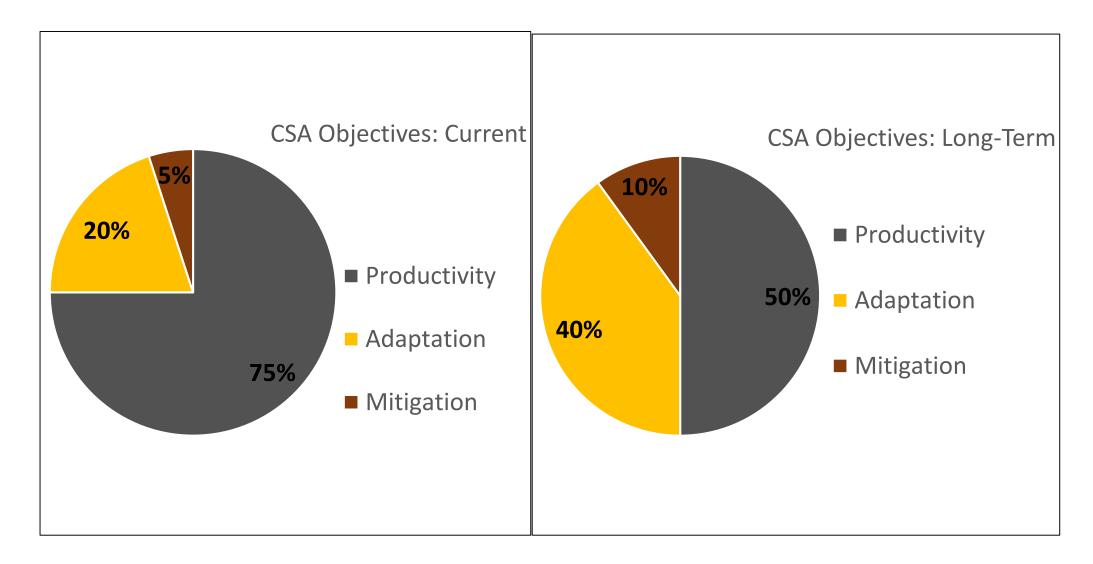
<u>Outline</u>

- Introduction and objectives of the climate-smart soils (CSS) project
- Climate-smartness evaluation
 - Farm Typology
 - Rapid Climate Smartness Assessment (Kalkulator)
 - Evaluation of Land Management Options (ELMO)
 - Attainable impact
- Biophysical assessment
- CSA prioritization framework
 - CSA identification and prioritization workshop
 - Economic assessment, CBA
 - Revised framework
- Recommendations

CSA prioritization workshop

Workshop objectives

- 1. To understand the desired outcomes by different stakeholders used to prioritize agricultural practices across the 5 farm types in Western Kenya;
- 2. To develop a prioritized list of CSA practices farmers would like to implement;
- 3. To evaluate the climate smartness of prioritized practices
- 4. To understand benefits, challenges, barriers and tradeoffs in adopting prioritized practices



Long list of agricultural practices in Western Kenya

- 1. Push and pull
- 2. Fallowing
- 3. Dry planting
- 4. Certified seed
- 5. Grass strips e.g. vertiver grass 15. Mulching
- 6. Organic manure
- 7. Cover crop
- 8. Conservation agriculture
- 9. Use of herbicides
- 10. Organic manure

- 11. Water harvesting
- 12. Intercropping
- 13. Crop rotation
- 14. Terracing
- 16. Minimum tillage
- 17. Incorporate residue
- 18. Composting
- 19. Agroforestry
- 20. Liming

<u>Current and long-term desired CSA objectives by stakeholders</u> <u>in Western Kenya</u>

Pairwise ranking of practices

Small sca subsisten		Medium scale mixed with commercial	mixed with mixed with mixed with		Large scale commercial
		horticulture			
1. Crop	rotation	1. Certified seed	1. Agroforestry	1. Crop rotation	1. Conservation
2. Comp	oosting	2. Crop rotation	2. Farm yard	2. Herbicides	agriculture
3. Farm	yard	3. Intercropping	manure	3. Certified seed	2. Crop rotation
manu	ure	4. Agroforestry	3. Inorganic	4. Inorganic	3. Agroforestry
4. Interd	cropping	5. Composting	fertilizer	fertilizer	4. Liming
5. Incor	porate	6. Soil liming	4. Certified seed	5. Terracing	5. Terracing
residu	ues	7. Terracing	5. Crop rotation	6. Farm yard	6. Fallowing
6. Conse	ervation	8. Water	6. Intercropping	manure	7. Inorganic
agricu	ulture	harvesting	7. Composting	7. Intercropping	fertilizer
7. Inorga	anic	9. Mulching	8. Fallowing	8. Agroforestry	8. Dry planting
fertili	izer	10. Conservation		9. Liming	9. Use of certified
8. Mulcl	hing	agriculture		10. Dry planting	seed
9. Orgar	nic				10. Herbicides
manu	ure				

CSA practices smartness' assessment

Individual (Expert) work

Produ	rction system: MAIZE Practice:	Region:		
By 🕪	PLEMENTING the practice what are the expected changes in the follow	wing indicators?		
<-: Con	npletely decreases (-100% Decreases by half No change Incr	eases by half Completely increases (+100% npared to baseline) compared to baseline)	N/A: Not applic N/I No informa	
	Indicator (Average)	Metric	Indicator assessment (-10 to 10 scale)	Pillar Average
Р	Yield (Maize)	∆ kg/ha		
Р	Yield variability (Maize)	Standard Deviation (kg/ha/yr)		
Р	Income generated from Maize production	\$/kg/year		
А	Household income spent on food	\$/month/ha		
А	Soil lost through erosion	t/acre/year		
А	Content of soil organic matter (SOM)	% SOM		
А	Quantity of water used per unit of product (water use efficiency)	L/kg product/season		
М	Aboveground Biomass	t/ha		
М	Belowground Biomass	t/ha		
Μ	Total Soil Carbon	% SOC		

<u>Climate smartness assessment</u>

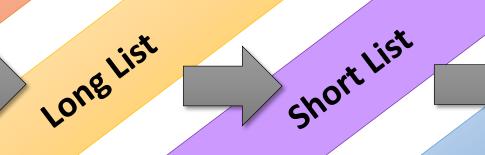
Farm type	Practice	Productivity	Adaptation	Mitigation
Small scale mixed	Farm yard manure	5	2.5	<mark>0</mark> .9
Small scale mixed	Conservation agriculture	5.2	2.7	1 .3
Small scale mixed	Composting	4.7	2.3	1. 6
Medium-mixed-hort	Intercropping	3.5	1.3	1 .1
Medium-mixed-hort	Certified seed	6.8	3.2	N/A
Medium-mixed-hort	Crop rotation	3.5	2.2	1
Medium-mixed-dairy	Farm yard manure	3.8	3.7	1 .5
Medium-mixed-dairy	Agroforestry	4.5	2.6	2.3
Medium-mixed-dairy	Inorganic fertilizer	3.5	1. 5	-3.3
Medium-mixed-cereal	Crop rotation	6.5	0.5	N/A
Medium-mixed-cereal	Herbicide	5	2.2	-0.3
Medium-mixed-cereal	Inorganic fertilizer	7	1 .2	-4.3
Large scale commercial	Conservation agriculture	5.5	3.6	1 .2
Large scale commercial	Liming	2.5	0.7	N/A
Large scale commercial	Agroforestry	5.5	3.5	2.7

Farmers preferred indicators

- a) Yield
- b) Yield variability
- c) Income
- d) income spent on food per season
- e) soil organic matter
- f) amount of water available for production

Cost-benefit analysis

Farm typology	CSS Practice	NPV (9%)	IRR (%)	Payback Period (years)
Small-scale mixed subsistence	Farmyard manure	2,487	65	3
	Intercropping	6,718	67	3
Medium-scale mixed commercial dairy	Agroforestry	4429	47	4
Medium-scale mixed	Improved seeds	5320	61	3
commercial horticulture	Composting	2342	36	5
Medium-scale mixed	Improved seeds	7,733	60	4
commercial cereals	Inorganic fertilizer	6,949	60	5
Large-scale commercial	Liming	5656	44	4


Cost-benefit analysis

Estimated implementation, maintenance and operation cost by practice and farm

typologies across all counties

Farm typology	CSS Practice	Implementatio n cost (US\$ ha ⁻ ¹)	Maintenance (US\$ ha⁻¹ yr⁻¹)	Operation cost (US\$ ha ⁻¹)
Small-scale mixed	Organic manure	688	211	250
subsistence farming	Intercropping	582	413	294
Medium-scale mixed	Agroforestry	616	294	173
with commercial dairy				
Medium-scale mixed	Improved seeds	1,092	886	200
with commercial	Organic manure	1,049	209	316
horticulture				
Medium-scale mixed	Improved seeds	1,560	410	271
with commercial cereals	Inorganic	1,659	787	270
	fertilizer			
Large-scale commercial	Liming	371	301	467
farming				

CSA prioritization framework sconing

Portfolio

Climate Smartness	Delineate Geographic Area		Farm & Household Modeling	
	Identify Farm Types		Biophysical	
Outcome Indicators	Agree on Key Indicators	Expert Scoring of Long List of Practices	Assessment	Project Design & Implementation at Scale
	List Practices to Consider:	Tractices	Cost-Benefit Analysis	Jule
Scaling	WOCAT DatabaseCSA Compendium		Evaluation of Land Management	
potential	Expert Assessment		Options	

Stakeholder Consultation & Workshops

<u>Outline</u>

- Introduction and objectives of the climate-smart soils (CSS) project
- Climate-smartness evaluation
 - Farm Typology
 - Rapid Climate Smartness Assessment (Kalkulator)
 - Evaluation of Land Management Options (ELMO)
 - Attainable impact
- Biophysical assessment
- CSA prioritization framework
 - CSA identification and prioritization workshop
 - Economic assessment, CBA
 - Revised framework
- Recommendations

Recommendations I

- Productivity similar, except female-headed much lower. Dairy also lower than others. Large commercial coffee farmer contributes less to food security
- Diversity of production base varies dairy and horticulture higher number of calorie-producing activities
- Poor female-headed household dependent on off-farm activities for survival
- N balances tend to be negative except for commercial farmers using inputs, and farms with high livestock density. Nutrient input management of concern
- Soil erosion very little, concern only from 20t/ha -> but this is only true for the sampled farms which were not on slopes
- GHG emissions driven by livestock (enteric fermentation and manure mgt).
- Total emissions low: Germany 9t/capita, USA 16t/capita, Kenya 0.3t/capita

Recommendations II

- Grass strip interventions need additional nutrient inputs, otherwise trade-off with N balance.
- Synergy production and GHG is rare. Different impacts on different farm types eg compost leads to GHG decrease on commercial farm, but increase on all others
- Increases in GHG emissions are small.
- With all agriculture you lose C with CA you lose less
- No tillage without residue retention will lead to a yield penalty
- Most important: soil fertility, critical food/cash crops
- Most important challenges: soil acidity, availability, requires transport
- Most preferred practices: compost and manure, inorganic fertilizers soil erosion techniques either not mentioned at all (tillage) or not preferred (grass strips)
- CA is perceived as a technology for commercial farmers due to herbicide use (weeds increase without tillage)

Questions

- Is this analysis useful and relevant to your work?
- How could you use these results in your work?
- Has this study influenced your thinking and practice already, and if yes how?

Thank you!