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ASPHERICITY OF SYMMETRIC PRESENTATIONS

FULVIA SPAGGIARI

Abstract

Using the notion of relative presentation due to Bogley and Pride,
we give a new proof of a theorem of Prishchepov on the asphericity
of certain symmetric presentations of groups. Then we obtain
further results and applications to topology of low-dimensional
manifolds.

1. Relative presentations

This section is devoted to recall some definitions and results on the
asphericity of relative presentations according to [2].

A relative presentation is a triple P = (H, X : R) such that:

e H is a group,

o X ={x1,x9,...} is a set of elements,

e R is a set of words in the alphabet H U X U X! of the form

it hixhg -z hy,
where z; € X, ¢, =41 and h; € H.

We always assume that R contains no proper powers, and that the
words are cyclically reduced in the following sense: if h; = 1 and z; =
x;y1 (subscripts mod n), then ¢; = €;11. The elements of X U X! are
also called X-symbols. Let F(X) denote the free group on the set X.
Then the group G(P) defined by the relative presentation P is the quo-
tient of the free product H * F'(X) by the normal closure of R.

Let R* be the set of all cyclic permutations of words from R U R~}
which begin with X-symbols. Let us consider the bar operator - on R*
defined as follows. For any word w € R*, we write it in the form w = uh,
where h € H and u begins and ends with X-symbols. Then we set
w=u"*h~! € R*. Note that w = w, and @ = w if and only if w has the
form whiu~thy, where u begins and ends with X-symbols and h1, ho are
elements of order 2 in H. The relative presentation P = (H, X : R) is
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slender if {w}*NR = {w}, for any w € R. The relative presentation P is
orientable if it is slender and no element of R has a cyclic permutation
fixed under the bar operator (i.e., no element of R is a cyclic permutation
of its inverse).

A picture P is a finite collection of pairwise disjoint dises {A1q, ..., A, }
in the interior of a disc D?, together with a finite collection of pairwise
disjoint simple arcs {a1,...,a,} properly embedded in the closure of
DX\ UX, A;. For any i = 1,...,m, the corners of A; are the closures
of the connected components of 9A;\ U?Zl aj. The regions of P are
the closures of the connected components of D*\(U;Z, A; U U, o).
An inner region of P is a simply connected region of P which does not
meet 9D?. The picture P is connected if U~} AU, o is connected,
and is spherical if m > 1 and (Uj_, ;) N oD* = 0.

A picture P is said to be labelled if:

e Each arc is equipped with a normal orientation, indicated by a
short arrow meeting the arc transversely, and labelled by an
X-symbol.

e Each corner of P is oriented anticlockwise with respect to the
disk A, in whose boundary it is contained, and labelled by an
element of the group H.

Let ¢ be a corner of a disc A; in the labelled picture P. Then we
denote by w(c) the word obtained by reading in anticlockwise order the
labels on the arcs and corners meeting 9A; beginning with the label on
the arc which follows c. A label z on an arc gives the generator z or !
if its normal orientation agrees or not with the reading sense.

A connected spherical labelled picture P is said to be a picture over
the relative presentation P = (H, X : R) if the following conditions are
satisfied:

e For any corner ¢ of P, the word w(c) belongs to R*.

o If hy,ha,..., h,) is the sequence of the corner labels encountered
in a clockwise traversal of the boundary of an inner region of P,
then h1h2 e h’y(z) =1in H.

Remark. An ordinary group presentation can be considered as the par-
ticular case of a relative presentation P = (H, X : R) for which H =1
(hence, there are no labels at corners of a picture over P).

A dipole in a picture P over a relative presentation P consists of a
pair of corners ¢ and ¢’ with an arc « connecting the beginning of one
corner with the end of the other such that ¢ and ¢’ belong to the same
region of P and w(c¢') = w(c).
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A relative presentation P is said to be (combinatorially) aspherical if
every nonempty connected spherical picture P over P contains a dipole.

To complete the section, we illustrate a connection between the no-
tion of aspherical relative presentation and the concept of topological
asphericity.

Let P=(H, X : R) be arelative presentation for a group G. If K(H, 1)
is a Eilenberg-MacLane space for the group H, then consider the wedge

K' = K(H, 1)V (VoexSh).

For each w € R, let ¢, : S, — K’ be an attaching map which represents
the word w € H % F(X) = 71 (K’). Then the canonical compler K(P)
associated to P is the CW-complex

K((P)=K'u(l] D2)
weR

where D? is a 2-cell attached to K’ via ¢,,. By construction, we have
the isomorphism G 2 7 (K (P)).

Theorem 1. If P = (H, X : R) is an orientable (combinatorially) as-
pherical relative presentation for a group G, then the canonical com-
plex K (P) is topologically aspherical, that is, K(P) = K(G,1).

2. A family of symmetric presentations

Prishchepov [17] considered a family of symmetric presentations of
groups depending on a finite number of positive integers:

P(r,n,k,s,q) = (x1,...,7p : H Tit(j—1)q
j=1

= H$i+k—1+(j—1)q (i=1,...,n))
j=1

where the subscripts are taken modulo n, r > 2, and 1 < ¢ < n. He gave
arithmetic conditions on the parameters (r,n,k,s,q) which imply the
asphericity of the presentations P(r,n,k,s,q) (see Section 3). Further
results on the groups defined by these presentations and their general-
izations can be found in [8].

The family P(r,n, k, s, q) is very interesting from a topological point of
view, and contains many classes of symmetric presentations, previously
considered by several authors.
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e The presentations P(r,n,r + 1,1,1) define the Fibonacci groups
F(r,n), r>2and n>3 (see for example [14]). The group F(2,2m),
m > 2, is the fundamental group of the m-fold cyclic covering of
the 3-sphere branched over the figure-eight knot, as proved in [11].
The groups F(n — 1,n), n > 3, are fundamental groups of Seifert
fibered 3-manifolds [5].

e The presentations P(r,n,2,r—1,2) define the generalized Sieradski
groups S(r,n), r > 2, n > 2, introduced and geometrically studied
in [6]. The group S(r,n) is the fundamental group of the n-fold
cyclic covering of the 3-sphere branched over the torus knot of
type (2r — 1,2), as shown in the quoted paper.

e The presentations P(r,n,k + r,1,1) and P(r,n,r + 1,s,1) define
the groups F(r,n,k) and H(r,n,k), respectively, for any r > 2,
n > 3, and k,s > 1. These groups were introduced in [4] as
natural generalizations of the Fibonacci groups F(r,n). A lot of
topological and algebraic results on these classes of groups can be
found in the quoted paper and in [18].

e The presentations P(2,n,2,1,t) define the groups H(n,t) studied
in [16] and [10]. The group H(n,t) has infinite abelianization if
and only if n =0 (mod 6) and ¢ = 2 (mod 6). The group H(n,t)
is perfect if and only if either ¢ = 1 or n is coprime to 6 and
t =2 (mod 6).

The following theorem, due to Gilbert and Howie, gives arithmetic

conditions for the asphericity of groups H(n,t).

Theorem 2. Suppose that (n,t) ¢ {(8,3),(9,4),(9,7)}. Then the
group H(n,t) is aspherical, except for the values of (n,t) listed below:

(1) (n,0), forn > 2,

(2) (n,2), forn >3,

(3) (n,n—1), forn >3,

(4) (2t —1,t), fort >3,

(5) (2t —2,t), fort >3, and

(6) (n,t) = (6,3),(7,3),(7.5), (9,3), or (9,6).

e The presentations P(2,n,k + 1,1, m) define the groups G, (m, k),
introduced in [7], and successively studied in [1]. They are nat-
ural generalizations of the Gilbert-Howie groups as G,(m,1) =
H(n,m). The group G, (m,k) is said to be strongly irreducible if
the parameters satisfy the following conditions: 0 < m < k < n,
ged(n,m, k) =1, ged(n, k) > 1, and ged(n, k — m) > 1; otherwise,
G (m, k) is proved to be cyclic, a non-trivial free product, or a
Gilbert-Howie group.
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The following theorem, due to Bardakov and Vesnin, gives arithmetic
conditions for the asphericity of strongly irreducible groups G,,(m, k).

Theorem 3. Let G, (m,k) be a strongly irreducible group. Then Gy (m,k)
1s aspherical if all the following conditions are not satisfied:

(1) There exists an integer £ > 1 such that n divides £(2k —m) and
1 n ged(n, k) n ged(n, k —m)

l n n

> 1.

(2) n=k+m.
(3) n=2(k—m) and ged(n, k) < 5.
(4) n =2k and ged(n,k —m) < §

3. Asphericity

The following theorem, due to Prishchepov, gives arithmetic condi-
tions for the asphericity of the presentations P(r,n, k, s, q).

Theorem 4. Let P(r,n,k,s,q) be the symmetric presentation defined
in Section 2, where either r > 2s > 0 ors > 2r > 0. Let A=k —1,
B =k—1—(r—s)q, and suppose that one of conditions (i), (ii) and (iii)
holds:
(i) n does not divide any of 3A, 4A, 5A, 2B, B+ A, B+2A, B+ 3A,
2B+ A.
(ii) n does not divide any of 3B, 4B, 5B, 2A, A+ B, A+2B, A+3B,
2A+ B.
(iii) n does not divide any of 2A, 3A, 2B, 3B, A+ B, 2B+ A, 2A+ B.
Then the presentation P(r,n,k,s,q) is aspherical. In this case, the
group defined by P(r,n,k,s,q) is torsion-free and infinite.

We now give a new proof of Theorem 4 by using the concept of rela-
tive presentation. We shall proceed as follows. Extending a symmetri-
cally presented group by a finite cyclic group which cyclically permutes
the set of generators and the set of relators, one obtains a group de-
fined by a one-relator relative presentation over the finite cyclic group
in question. The theory of aspherical relative group presentations, as
developed by Bogley and Pride [2], applies to this set-up, there being
an equivalence between relative asphericity of the relative presentation
and asphericity of the original symmetric presentation. Let 6 denote
the automorphism of P(r,n,k,s,q) which permutes cyclically the gen-
erators, i.e., 0(x;) = ;41 (subscripts mod n). Let us consider the split
extension of P(r,n,k,s,q) by Z, = (f : 6™ = 1). If we substitute rela-
tions 0~ ¢x16" = ;41 into those of P(r,n,k,s,q) and set y~1 = 21079,
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then the split extension is generated by 6 and y and has a presentation
Q(rinkys,q) = (0,y: 0" =1, y°0F~ " =g 1-0mdayr),

We can regard Q(r,n,k,s,q) as a relative presentation in the sense of
Bogley and Pride, that is,

Q(r,n,k,s,q) = (H,y : y°0* = 6%y")
where H={(#:0"=1), A=k—1land B=k—1— (r— s)q.

Lemma 5. If the relative presentation Q(r,n,k, s,q) is aspherical, then
the ordinary presentation P(r,n,k,s,q) is aspherical.

Proof: Let P be a spherical picture over the ordinary presentation
P(r,n,k,s,q). Then P contains discs A; corresponding to relations

T S
—1 o
H Lit(j—1)q H Titk—1+(s—f)q | = 1
j=1 j=1

as shown in Figure 1.

Titk—14q

Titk—1+q(s—1)
LTit+k—1

Litq(r—1)

Litq

Figure 1. An inner disc in a spherical picture P over P(r,n, k, s, q).
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Here we have no labels at the corners since we regard the ordinary
presentation P(r,n,k, s, q) as a relative presentation with H = 1. Let us
replace each inner disc A; by a picture ¥; over Q(r,n, k, s, q) considered
as an ordinary presentation (see Figure 2). Here we have replaced arcs
labelled by x4 ;4 (and similarly for 2 +1k71 + q) by sequences of arcs using
relations

Tisjq = 0 HI9D) g gitIa—1 — g=(itia—1) ~1git(i+1a-1,

9i+k71+qsf 1

gi+k—1+q-1

anticlockwise
order

Figure 2. The picture ¥; over the ordinary presentation Q(r,n,k,s,q).

Along the boundary of ¥; we get the relation
(H y—19i+jq—19—(i+jQ—1))9—B
j=1

(H 9i+k—1+(s+1—j)q—l9—(i+k¢—1+(s+1—j)q—l)y)eA =1

Jj=1
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which is equivalent to the i-th relation of P(r,n,k,s,q). Along the
boundary of the interior disc in ¥; we get the relation

y—re—ByseA =1

which is a relation of Q(r,n,k,s,q). The arcs of ¥; having both ends
on 0%; can be made into floating circles. These circles can be removed
from the resulting picture. Furthermore, we will replace all other arcs
with #-labels by corner labels on the disc as shown in Figure 3. We get
again the relation y~70~By%94 = 1.

1
&

/
i

Figure 3. A picture Q over the relative presentation Q(r,n, k, s, q).

anticlockwise
order

Repeating the same construction for each disc A; of P yields a pic-
ture Q over the relative presentation Q(r,n,k, s, q). By the assumption
of asphericity for Q(r,n,k,s,q), the picture Q must contain a dipole,
i.e., a pair of opposite oriented discs connected by an arc which define
pairwise inverse words (see Figure 4).
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GA

corner ¢’

9+B

Figure 4. A dipole in the picture Q over the relative
presentation Q(r,n, k, s, q).

It is easy to see that any such dipole in Q arises from a pair of identical
but oppositely oriented discs in P connected by an arc with label z; for
some i. Moreover, two bridge moves in P produce a cancelling pair of
discs. This means that if Q has a pair of cancelling discs, then P has
a pair of cancelling discs, too. Thus, the initial picture P must contain
a dipole. Therefore, any nonempty spherical picture over P(r,n,k, s, q)
is equivalent to one having two fewer discs, hence this presentation is
aspherical by induction. O

To study the asphericity of the relative presentation
Q(ryn,k,s,q) = (H,y - y°0% = 65y")

where H = (6 : ™ = 1), we use the following algebraic criterion, due to
Prishchepov, which is stated here in terms of relative presentations.
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Theorem 6. Let G be a group defined by the relative presentation
(Hy:y d=ay")

for some group H, where either r > 2s > 0 or s > 2r > 0. Then G is
aspherical if one of conditions (i), (ii) and (iii) holds in H:

a 1s of order at least 3
(i)< d is of order at least 6
ad*' # 1, ad*? # 1, ad® # 1, a’d # 1

a s of order at least 6
(ii) § d is of order at least 3
da™ #1,da*? #1, da® # 1, d®>a # 1

a 1s of order at least 4
(iii) < d is of order at least 4
da®™ #£1, da® # 1, d*a # 1.

In these cases, y is of infinite order in G and does not commute with
any non-identity element of H.

We now apply Theorem 6 to our case where a = 8, d =04, A=k—1
and B =k —1— (r — s)q. One can directly verify that cases (i), (ii) and
(iii) of Theorem 6 produce the corresponding ones in the statement of
Theorem 4. Finally, recall that the group presented by Q(r,n, k, s, q) is
infinite if and only if the group presented by P(r,n, k, s, q) is infinite.

4. Topological results

Throughout the section let G = G(r,n, k, s,q) denote the group de-
fined by the symmetric presentation P = P(r,n,k,s,q), and let K =
K (P) be the canonical 2-complex associated to P.

The following results were proved in [8].

Theorem 7. Suppose that r+s (> 3) is odd, and n (> 3) is odd and co-
prime with 2(k—1)4+q(s—r). Then the Prishchepov group G(r,n,k, s, q)
cannot be the fundamental group of a hyperbolic 3-orbifold (in particular,
a closed 3-manifold) of finite volume.
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Theorem 8. The abelianization of the group G(r,n,k,s,q) is infinite if
and only if one of the following conditions holds:

0 s=r,

(i) there exists m € Z, m > 1, m\n, m does not divide qs, with
gs = qr (mod m), and k =1 (mod m),

(iii) there exists m € Z, m > 1, m\n, m does not divide gs, with
gs = —qr (mod m), and k+qs =14+ m/2 (mod m), m even.

In the finite case, the natural HNN extension of G(r,n, k, s, q) is a 3-knot
group.

Recall that a hyperbolic 3-orbifold is the quotient space H?3/T', where
H? is the hyperbolic 3-space and I' is a discrete group of isometries
of H? (in particular, if T' is torsion-free, then we get the notion of hy-
perbolic 3-manifold). A 3-knot is a locally flat topological embedding
of S? into S°.

Proposition 9. Let P = P(r,n,k,s,q) be orientable and satisfy one
of the conditions in the statement of Theorem 4. Then the Prishchepov
group G = G(r,n,k,s,q) cannot be the fundamental group of a closed
connected orientable 3-manifold.

Proof: Suppose, on the contrary, that M3 is a closed connected ori-
entable 3-manifold such that 71 (M) =2 G. By Theorem 1 the canonical
2-complex K = K(P) is aspherical, i.e., K = K(G,1). Since G is
torsion-free, the prime factors of M are either aspherical or isomorphic
to S! x S? (or counterexamples to the Poincaré conjecture). So if G has
k freely indecomposable free factors, then we have

1=x(K)=x(G)=x(M)+1-k<0

which is a contradiction. O

Theorem 10. Let G = G(r,n, k, s, q) be as in Proposition 9. Then there
exists a smooth closed orientable spin 4-manifold M* such that:

(1) y(M) =2, m(M) = G, mo(M) = Extr(Z,A) = H(G; A), where
A = Z|[G)] is the integral group ring of G (for a right A-module A,
the symbol A represents the associated left A-module induced by the
canonical anti-automorphism —: A — A sending g to g~1);
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(2) M bounds a smooth compact 5-manifold N° C R® such that N ~
K(G,1);

(3) The first k-invariant and the signature of M vanish;

(4) The integral homology of the universal cover M of M is Hl(M) =
Hy(M) = 0, Hy(M) = ﬁ2(G;A), and Hy(M) = Z¢D =1 yhere
e(Q) is the number of ends of G.

Ife(G) > 1, then G is a nontrivial free product. Ife(G)=1 and H?(G;A)
is finitely generated, then M is homotopy equivalent to S? (hence
mo (M) = FQ(G;A) >~ 7 and H'(G;A) = 0). If the abelianization G*P
of G is finite (see Theorem 8), then M* is a rational homology 4-sphere,
and there is an epimorphism from wa(M) onto Ho(M;Z) = G2b. If
further H%(G; ) is finitely generated, then G is finite cyclic (possibly
null).

Proof: Embed the canonical 2-complex K = K(P) into R®, and define
M* to be the boundary of a regular neighborhood N® of K in R®. Since
N collapses onto K, we have N ~ K(G, 1) and x(N) = 1. One easily
checks x(M) = 2x(N) = 2. By [13] and Corollary 5.2, p. 116, of [15]
there are isomorphisms mo(M) = mi(l, A) = ﬁ2(G; A). Since G has
cohomological dimension < 2, we have H3(G;m2(M)) = 0, hence the
first k-invariant of M vanishes. Furthermore, M is spin and its signa-
ture is zero as M embeds in R®. The integral homology of M is given

— —~ —1

by Hl(M) = 0, HQ(M) = Fg(]/\\{), H3(M) = H3(M,A) =~ H (M,A) =
T (G;A) = 241 and Hy(M) 2 0 (recall that G is infinite). If the
group G has more than one end, then it is isomorphic to a nontrivial
generalized free product with amalgamation U xy V' or an HNN exten-
sion U #w ¢, where W is finite and U # W # V (see for example [12,
p. 11]). Since G is torsion free, we must have W = 1, hence G is isomor-
phic to either U x V or U *x Z, where U,V # 1. Thus G is a nontrivial
free product. .

If e(G) = 1 and H?(G;A) is finitely generated, then H,.(M;Z) is
finitely generated. By Corollary C, p. 23, of [12], M is either aspherical
or M is homotopy equivalent to S? or S? or 71 (M) is finite. The first case
cannot occur since otherwise (M) = x(G) = 1 contradicts x(M) = 2.
By Theorem 10 (i), p. 23, of [12], M is homotopy equivalent to S if and
only if e(G) =2 and x(M) = 0. Thus it remains only the case M ~S?,

hence mo(M) = H (G5 A) = Z and H'(G; A) = 0.
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If the abelianization G2 of G is finite, then (M) = 2 = 2—283; (M) +
B2(M) = 2 + Bo(M) implies that Ba(M) = 0. Thus M is a rational
homology 4-sphere. Since G is finite, we have also 41 (K) = 0. Then
X(K)=1=1+ p2(K) gives B2(K) = 0, hence Ho(K;Z) = 0. Tt follows
that Hy(G;Z) = 0 by the Hopf formula. In fact, this formula states
that the number of generators of Hy(G;Z) is aw — 3 + 7, where 3 is the
number of generators and « the number of relations of G while v is the
rank of Hi(G) = G*" (see for example [3, p. 46]). In our case, we have
a = =mnand v = 0. Let us consider the terms of low degree of the
spectral sequence of the universal cover of M, that is, the exact sequence

. ——— Hy(M) = my(M) —— Hy(M) —— Hy(G) 0.
Since Ho(M) = H?*(M) = FHo(M) ® TH{(M) = G*°, we have an
epimorphism from 7o (M) = FQ(G; A) onto G2 Farrell [9] has shown
that if G is finitely presentable and has an element of infinite order, then
H?(G;A) is either 0, Z, or is not finitely generated. So, if H?(G;A) is
finitely generated, then G is finite cyclic (possibly null). O

The following arises in a natural way:

Open problem. Compute H?(G;A) and determine the ends of the
Prishchepov group G = G(r,n, k, s, q) for arbitrary values of the param-
eters.
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