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DICRITICAL LOGARITHMIC FOLIATIONS

Felipe Cano and Nuria Corral

Abstract

We show the existence of weak logarithmic models for any (di-
critical or not) holomorphic foliation F of (C2

, 0) without saddle-
nodes in its desingularization. The models are written in terms
of a representative set of separatrices, whose equisingularity types
are controlled by the Milnor number of the foliation.

1. Introduction

In this paper we show the existence of weak logarithmic models for
any holomorphic foliation F of (C2, 0) without saddle-nodes in its desin-
gularization (these foliations are called generalized curves in [2]). If F
is non-dicritical, the existence of a logarithmic model has been proved
in [5] and it gives an approximation of F by a (logarithmic) foliation
with linear projective holonomies given by the linear part of the projec-
tive holonomies of F .

The first difference in the dicritical case is the choice of the separatri-
ces. Actually, the logarithmic model should be of the form η = 0 for

η =

r
∑

i=1

λi

dfi

fi

that exhibits the separatrices fi = 0. But there are several possible
ways to do this. For instance the foliation d((y − x2)/(y + x2)) = 0 can
also be written down as d(y/x2) = 0. We choose a representative set S
of separatrices of F to get explicitly the closed logarithmic form η. In
Theorem 5 it is proved that the possible equisingularity types of S are
bounded by a function of the Milnor number of F . Note also that the
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results in this paper would provide a normalized presentation of a pencil
of curves, in terms of multivalued functions.

To have a weak logarithmic model L for F roughly speaking means
that the reduction of the singularities of L is longer than the one of F
and coincides with it outside a “escape set” of non-singular points for F
placed at dicritical components (domination of foliations). The escape
set can be chosen to be a singleton at such dicritical components and this
determines the residues λi. We prove (Theorem 14) that this concept
depends in fact only on the C-divisor (S, λ) and not on the particular
logarithmic foliation we take. This is key in the proof of the existence of
weak logarithmic models (Theorems 3 and 16) since it serves to “glue”
the models by induction.

We end the paper by a list of examples showing the difficulties in
order to get a logarithmic model without escape set.

2. Domination of foliations. Representative sets of
separatrices

We consider holomorphic singular foliations F defined on ambient
spaces M of dimension two, equipped with a normal crossing divisor
D ⊂ M . As usual, we say that a component F of D is dicritical if
it is generically transversal to F ; if F is invariant, we say that it is
non-dicritical .

The reduction of singularities of F at P ∈ M can be done relatively
to D as follows. Denote Sing(F , D) the set of points Q ∈ M where
F and D do not have normal crossings; that is, either Q ∈ SingF or
Q 6∈ SingF but the only invariant curve of F at Q does not have normal
crossings with D. In the case D = ∅, note that Sing(F , ∅) = SingF . We
say that P ∈ Sing(F , D) is simple for (F , D) iff P ∈ D, it is a simple
singularity in the sense of Seidenberg [10], [12] and each component of
D through P is non-dicritical. Then we have

Theorem (Reduction of singularities [3], [12]). Let (M, P ) be the
germ of M at P . There is a finite composition of blowing-ups π =
π(F ,D,P ) : M ′ −→ (M, P ) such that, if F ′ is the transform of F by π

and D′ = π−1(D ∪ {P}), then any Q ∈ Sing(F ′, D′) is simple and π is
minimal in the sense that it cannot be factorized by another morphism
with the above property.

We call π(F ,D,P ) the minimal reduction of singularities of (F , D)
at P . To get it it’s enough to blow-up successively the non-simple points
in Sing(F , D) (the processus stops by similar arguments to the ones



Dicritical Logarithmic Foliations 89

in [12]). Note that if D = ∅ the reduction π(F ,∅,P ) is maybe longer
than Seidenberg’s reduction; the main difference appears because of the
tangencies with the created dicritical components. If F is non-dicritical
(each succesive blowing-up is non-dicritical) and D = ∅, we get essen-
tially the same reduction of singularities as Seidenberg. Even if F is
non-dicritical, the dicritical components of the starting divisor D may
produce a longer reduction of singularities; unfortunately, we have to
keep them in this paper in order to assure coherence in our induction
statements.

Notation. Since F , D and its reduction of singularities will be fixed, in
all this paper we keep the notations π = π(F ,D,P ), E′ = π−1(P ), D′ =

π−1(D ∪ {P}) and we denote F ′, L′, G′ the transforms of the foliations
F , L, G by π. For a germ of analytic curve Γ at P , we will denote
by Γ′ the strict transform of Γ by π. Also we shall keep the notation
π1 : M1 → (M, P ) for the blowing-up of (M, P ) with center P and we
will denote E1 = π−1

1 (P ) the exceptional divisor, D1 = π−1
1 (D ∪ {P})

and F1, L1, G1, Γ1 the transforms of objects as above.

Let G be another singular foliation on M and assume that P is a
simple singularity for both (F , D) and (G, D). We say that P has same
linear type of singularity for (F , D) and (G, D) if IP (F , F ) = IP (G, F ) for
any component F of D through P , where IP (F , F ) is the Camacho-Sad
index (see [1]). In this paper we exclude saddle-nodes at the end of the
desingularization, that is, we restrict ourselves to generalized curves as
defined in [2]; in this case, the indices at simple singularities correspond
to the two quotients of eigenvalues.

Definition 1. We say that (G, D) dominates (F , D) at P if:

(1) The components of D′ are simultaneously dicritical or non-dicritical
for the transforms F ′ and G′ of F , G by π.

(2) For any non-dicritical component F ′ of D′ we have that

Sing(F ′, D′) ∩ F ′ = Sing(G′, D′) ∩ F ′

and each Q ∈ Sing(F ′, D′) is a simple singularity for (G′, D′) with
same linear type and same separatrices as for (F ′, D′) .

Note that in the case D = ∅ and F non-dicritical, we get that
π(F ,∅,P ) = π(G,∅,P ) and F , G have the same set of separatrices.

Definition 2. Let Γ be a separatrix for F at P not contained in D.
Following [2], we say that Γ is isolated for (F , D) if the strict transform
Γ′ does not cut E′ in a F ′-dicritical component. We say that Γ is an
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F ′−curvette for F if Γ′ cuts E′ in a F ′-dicritical component F ′. A set
S of separatrices of F at P is representative for (F , D) if it contains the
isolated separatrices, the non-dicritical components of D at P and the
number of F ′-curvettes in S for each dicritical component F ′ of E′ is
equal to max{0, 2 − vD′F ′}, where the valence vD′F ′ is the number of
components of D′ that intersect F ′ (excluding F ′).

Note that if F is non-dicritical the only representative set of separa-
trices for (F , D) is the set of all separatrices. In the case of a dicritical
F we know that we have infinitely many separatrices. In order to get a
logarithmic model we have to choose finitely many of them. The repre-
sentative sets of separatrices give our choice. The idea is to take not too
much “curvettes” to assure that the equisingularity types of the chosen
set of separatrices remain bounded by the Milnor number of the foliation
(Theorem 5).

This paper is devoted to prove the following theorem:

Theorem 3. Let F be a generalized curve of (C2, 0) and S = {Γi}r
i=1 a

representative set of separatrices for F . Take a local equation fi = 0 of
Γi for i = 1, 2, . . . , r. Then there are λi ∈ C∗, i = 1, 2, . . . , r, such that if

η =

r
∑

i=1

λi

dfi

fi

the logarithmic foliation η = 0 dominates F .

Let us explain with two examples the definition of a representative
set of separatrices. Consider the foliation (Suzuki’s example, see [4])
F defined by ω = (2y2 + x3)dx − 2xydy = 0. It has only one isolated
separatrix given by y2 − x3 = 0. Thus it is not possible to construct
a logarithmic foliation written only in terms of the isolated separatrices
and dominating F since it will be non-dicritical. To obtain a logarith-
mic foliation that dominates F it is enough to consider the foliation
d((y2 − x3)/x2) = 0. Note that S = {y2 − x3 = 0, x = 0} is a repre-
sentative set of separatrices of F . The second example is given by the
foliations Fp,q defined by pxdy − qydx = 0 with p, q ∈ N. If p, q ≥ 2
and gcd(p, q) = 1, then the only dicritical component in the reduction of
singularities of Fp,q has valence 2. The curvettes of this dicritical com-
ponent are the curves yp − cxq = 0 with c ∈ C. However, the foliation
Fp,q is given by d(yp/xq) = 0 where S = {x = 0, y = 0} are the isolated
separatrices and S is a representative set of separatrices. Note also that
the type of equisingularity of the curves yp − cxq = 0 is not bounded by
a function of the Milnor number since µ(Fp,q) = 1.

Let us give now some properties of a representative set of separatrices.
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Proposition 4. Let F be a generalized curve at P ∈ M , D a normal
crossings divisor and S = {Γi}r

i=1 a representative set of separatrices for
(F , D). Denote by CPS ⊂ E1 the tangent cone of S. Then we have

(1) S 6= ∅, that is r ≥ 1.
(2) If S has only one element and it is non-singular at P , then P /∈

SingF .
(3) If π1 is non-dicritical for F , then CPS = SingF1 = Sing(F1, D1).
(4) If π1 is F-dicritical, then Sing(F1, D1) ⊂ CPS.
(5) If π1 is F-dicritical, then CPS has max{2, vD′E1} points.

Proof: (1) If F is non-dicritical, the result follows from [1]. Note also
that the arguments in [1] imply that any connected component of the
union of non-dicritical components of the exceptional divisor after re-
duction of singularities will support at least one isolated separatrix of
F , which is necessarily an element of S. Thus, it remains to consider
the case that all the components of the exceptional divisor are dicritical;
since two such components do not intersect, there is only one of them,
we are in the radial case and S has two elements.

(2) If F is non-dicritical, the result follows from [2], since F has the
same reduction of singularities as the set of separatrices. Moreover, if S
has only one element, then F must be non-dicritical. To see this, note
first that F is not radial, and hence, by the above arguments, the only
element of S is an isolated separatrix of F , thus there are no “curvettes”
in S. Then, there is a dicritical component F ′ with valence greater or
equal than two. Now F ′ cuts at least two connected components of the
union of non-dicritical components. This implies the existence of at least
two elements in S in view of the arguments in (1).

(3) It is evident that CPS ⊂ SingF1, since F1 has at least two sepa-
ratrices at the points in CPS: the exceptional divisor E1 and the strict
transform of an element of S. To see that SingF1 = Sing(F1, D1), take
a point Q /∈ SingF1, then either D1 = E1 locally at Q or D1 = E1 ∪ F
and in both cases we have the normal crossings property, since E1 is in-
variant. It remains to show that if Q /∈ CPS, then Q /∈ SingF1, but this
follows from (2) since the only separatrix of F1 at Q is the exceptional
divisor E1.

(4) Take Q ∈ Sing(F1, D1). Since E1 is dicritical, then Q is not a
simple singularity for (F1, D1) and thus the reduction of singularities
continues through Q. By (1), we get an element of S passing through Q.

(5) We have that

CPS = CP {E1-curvettes in S} ∪ CP D ∪ Sing(F1, D1).
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Moreover, since the points in Sing(F1, D1) are not simple singularities,
we get that the valence vD′E1 is equal to the number of points in CP D∪
Sing(F1, D1). The result follows noting that if vD′E1 ≥ 2 there are no
E1-curvettes in S.

Theorem 5. There is a finite set E(µ) for each integer number µ≥ 0
such that the following property holds. Denote by µPF the Milnor num-
ber of F . Then the equisingularity type of S is in E(µPF), for any
generalized curve F and a normal crossings divisor D at P ∈ M , where
S = {Γi}r

i=1 is any representative set of separatrices for (F , D).

Proof: By a theorem in [6], the equisingularity types of the union S∗ of
isolated separatrices and non-dicritical components of D are bounded (in
the sense of the statement) by a function of the Milnor number. Now,
to get the equisingularity type of a representative set of separatrices we
have just to add at most one (or two arrows in the radial case) arrow to
the terminal vertices of the dual graphs representing each equisingularity
type for S∗.

3. Closed logarithmic forms and C-divisors

Consider a non-empty finite set S = {Γi}r
i=1 of germs of irreducible

curves at (M, P ) and take a list λ = {λi}r
i=1 with λi ∈ C∗. The pair

D = (S, λ) is called a C-divisor at P and its support is SuppD = ∪r
i=1Γ

i.
Write mi = νP Γi the multiplicity of Γi at P . We say that P is non-
singular for D if r = 1 and m1 = 1. We say that P is a simple singularity
for D if r = 2 and m1 = m2 = 1, the curves Γ1 and Γ2 have distinct
tangents and λ1/λ2 /∈ Q<0. More generally, these definitions can be
made relative to a normal crossings divisor D ⊂ M as follows. We
say that P is non-singular for (D, D) if it is non-singular for D and Γ1

has normal crossings with D and we say that it is a simple singularity
for (D, D) if it is a simple singularity for D and ∅ 6= D ⊂ Γ1 ∪ Γ2.

Let us define the transform DQ = (SQ, λQ) of D at a point Q ∈ E1

under the blowing-up π1 : M1 → (M, P ). Denote IQ the set of indices
defined by the property that Q ∈ Γi

1 for i ∈ IQ and put λ0 =
∑r

i=1 miλi.
Then

SQ = {Γi
1}i∈IQ

, λQ = {λi}i∈IQ
, if λ0 = 0.

SQ = {Γ0
1 = E1} ∪ {Γi

1}i∈IQ
, λQ = {λ0} ∪ {λi}i∈IQ

, if λ0 6= 0.

Note that if SQ = ∅ then Q /∈ SuppDQ. This construction can be iter-
ated by blowing-up at points in the support. To be precise, we say that
a finite composition of blowing-ups σ : M∗ → (M, P ) is a D-admissible
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morphism if the centers of the blowing-ups are in the support of the
corresponding transformed C-divisors. Moreover, we have a reduction of
singularities as follows

Proposition 6. Let D = (S, λ) be a C-divisor and D a normal crossings

divisor on (M, P ). There is a D-admissible morphism π̃=π(D,D,P ) : M̃ →
(M, P ) such that any point Q ∈ SuppDπ̃ in the support of the trans-

formed C-divisor is non-singular or simple for (Dπ̃, D̃), where D̃ =
π̃−1({P}∪D) and π̃ is minimal in the sense that it cannot be factorized
by another morphism with the above property.

The proof is a consequence of the reduction of singularities of curves
and Euclides’ algorithm, very similar (but simpler) to the proof in [12].

Consider reduced equations fi = 0 of Γi for i = 1, 2, . . . , r and put
f = f1f2 · · · fr. We say that a closed meromorphic 1-form η is (S, λ)-
logarithmic if

η =

r
∑

i=1

λi

dfi

fi

+ α,

where α is holomorphic. In particular α is closed and hence α = dh. In
fact, we can write η =

∑r

i=1 λidf
∗
i /f∗

i for suitable local equations f∗
i = 0

of each Γi (to see this, put α = du/u, where u(P ) 6= 0). Note that if η
is (S, λ)-logarithmic, then π∗

1η is (SQ, λQ)-logarithmic at Q ∈ E1.

Definition 7. We say that D = (S, λ) is a 1-faithful C-divisor at P if
there is a D-logarithmic 1-form η such that

νP (fη) = m − 1,

where m = νP f =
∑r

i=1 mi. (A direct computation shows that this
will be then true for any D-logarithmic 1-form). We say that D is
faithful if its transform is 1-faithful at any point of the support after any
D-admissible morphism.

The non-singular points and the simple singularities are persistent
under blowing-up and also the C-divisor is faithful at this kind of points.
Thus in order to verify the faithfulness of D is enough to verify the
1-faithfulness at the intermediary points in the reduction of singularities.

Lemma 8. Consider the C-divisor D=(S, λ) and let η be a D-logarithmic
1-form. Denote by Lη the foliation η = 0. Put λ0 =

∑r

i=1 miλi, as
above.

a) If λ0 6= 0, then π1 is non-dicritical for Lη and D is 1-faithful.
b) If λ0 = 0 and D is 1-faithful, then π1 is dicritical for Lη.
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Proof: First, let us recall that if a foliation G is given at P by ω = 0,
where ω = a(x, y)dx+b(x, y)dy is a germ of holomorphic form of order t,
then π1 is dicritical for G if and only if xInta + yIntb = 0, where Inta,
Intb denote the parts of degree t of a, b (here a and b are not necessarily
without common factor). Now the part a) of the lemma is an immediate
computation, since fη is a holomorphic 1-form that gives Lη. To prove
part b), it is enough to note that the fact that D is 1-faithful means that
the initial part of fη has degree m− 1 and then the condition λ0 = 0 is
equivalent to the dicriticalness of π1.

As a consequence, if λ0 = 0 and π1 is non-dicritical, the divisor D fails
to be 1-faithful.

Example 9. Taking S = {y − x2 = 0, y + x2 = 0} and λ = (1,−1) we
get a non 1-faithful D = (S, λ). In fact λ0 = 0 and π1 is non-dicritical
for the foliation d((y − x2)/(y + x2)) = 0. Note that the same foliation
is given by d(y/x2) = 0 and this presentation is faithful. More generally,
if the curves of S have all the same tangent and λ0 = 0, we have a
non-dicritical blowing-up, as we show next.

Proposition 10. Assume that the curves of S = {Γi}r
i=1 have all the

same tangent at P and that λ0 = 0. Take any (S, λ)-logarithmic form η.
Then π1 is non-dicritical for the logarithmic foliation L given by η = 0.

Proof: Put fi(x, y) = ymi +hi(x, y) with νP (hi) > mi for i = 1, 2, . . . , r.
Take coordinates (u, v) in the second chart of the blowing-up such that
π1(u, v) = (uv, v). We can write fi = fi(uv, v) = vmi(1 + Fi(u, v)) with
Fi(u, 0) = 0 and then we have

dfi

fi

= mi

dv

v
+

dFi

1 + Fi

,

π∗
1η =

r
∑

i=1

λi

dFi

1 + Fi

= A(u, v)
du

u
+ B(u, v)

dv

v
.

Let us put M = max{k : vk divides A and B}, A(u, v) = vM Ã(u, v) and

B(u, v) = vM B̃(u, v). To show that v = 0 is invariant by π∗
1η = 0 is

enough to verify that B̃(u, 0) 6= 0. Since π∗
1η is a closed form, we have

v
∂A

∂v
= u

∂B

∂u
.

If vk divides B, it must also divide u∂B/∂u and consequently vk divides
v∂A/∂v. The hypothesis over the Fi imply that A(u, 0) = 0 and thus
vk divides A. We conclude that M = max{k : vk divides B} and then

B̃(u, 0) 6= 0.
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Remark 11 (Mattei). This proof corresponds to the fact that a multi-
valued or meromorphic function in P1

C
with at most either one zero or

one pole is constant.

Corollary 12. Let D = (S, λ) be 1-faithful. Then SuppDπ1
has at least

two points in the exceptional divisor E1 of the first blowing-up π1. As a
consequence, if D is faithful and σ : M∗ → (M, P ) is any D-admissible
morphism, then each component F ∗ of E∗ = σ−1(P ) has at least two
points in SuppDσ.

In the next proposition we recover the relationship between non-
dicritical components and support components.

Proposition 13. Let D = (S, λ) be a faithful C-divisor, consider a D-
logarithmic form η, and the corresponding foliation Lη. Let σ : M∗ →
(M, P ) be any D-admissible morphism. Then a component F ∗ of E∗ =
σ−1(P ) is non-dicritical for the transform Lη

σ if and only if F ∗ is con-
tained in the support of the transformed C-divisor Dσ.

Proof: It follows just applying the properties of 1-faithfulness at each
center in the sequence of blowing-ups.

4. Existence of weak logarithmic models

In this section, we consider a generalized curve F at P , a normal
crossings divisor D ⊂ M and a representative set of separatrices S =
{Γi}r

i=1 for (F , D) at P . We say that a C-divisor D = (S, λ) is a weak
logarithmic model for (F , D) at P , relatively to S if and only if we have
the following properties:

(1) D is faithful.
(2) π(D,D,P ) = π(F ,D,P ).
(3) Put π = π(F ,D,P ) : M ′ → (M, P ). Then any component F ′ of E′

is dicritical for F ′ if and only if F ′ is not contained in the support
SuppDπ .

(4) Any point Q ∈ Sing(F ′, D′) is in the support SuppDπ and the quo-
tient of residues −λ2

Q/λ1
Q is the quotient of the eigenvalues of F ′

at Q.

The fact that D = (S, λ) is a weak logarithmic model for (F , D) depends
only on the projective class [λ] ∈ Pr−1

C
. Note that P ∈ SuppD. More-

over, the definition is compatible with the blowing-ups in the following
sense. Take any point Q ∈ E1 in the support SuppDπ1

, then Dπ1
is a

weak logarithmic model for (F1, D1) at Q.
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Theorem 14. Assume that D = (S, λ) is a weak logarithmic model for
(F , D) at P , take any D-logarithmic form η and let Lη be the foliation
η = 0. Then (Lη, D) dominates (F , D) at P .

Proof: Let us do induction on the number NP (F , D) of blowing-ups
needed to desingularize (F , D) at P . Let us consider the case NP (F , D)=
0. Assume first that P /∈ SingF . Then the set S has only one element Γ
that is non-singular at P . Take coordinates x, y such that Γ = {x = 0}
and D ⊂ {xy = 0}. Note that D = (S, {λ1}) and xη = dx + xα, for a
closed holomorphic form α. Then obviously (Lη, D) dominates (F , D)
at P . Assume now that P ∈ SingF . Then up to a choice of coordi-
nates we have that S = {Γ1, Γ2}, with Γ1 = {x = 0}, Γ2 = {y = 0} and
Γ1 ⊂ D ⊂ Γ1∪Γ2. Moreover −λ2/λ1 /∈ Q>0 is the quotient of eigenvalues
for F . Then xyη = λ1ydx+λ2xdy +xyα, for a closed holomorphic form
α. Then P is a simple singularity for (Lη, D) with separatrices xy = 0
and same quotient of eigenvalues as F ; the domination is straightfor-
ward.

Let us do the induction step. Assume first that π1 is non-dicritical
for F . Hence λ0 6= 0 and π1 is non-dicritical for Lη. Note also that
E1 ⊂ SuppDπ1

. Take a component F of D, to verify if F is dicritical
or not for Lη is enough to do it for the strict transform F1 of F with
respect to Lη

1 ; this one and the rest of the conditions for the domination
property can be verified at the points Q ∈ E1 and this is given by the
induction hypothesis.

Assume now that π1 is dicritical for F . Then λ0 = 0 and in view of
the faithfulness π1 is dicritical for Lη. Moreover SuppDπ1

∩E1 = CPS.
Take a component F of D, if F is non-dicritical for F , then F ∈ S and
hence F is non-dicritical for Lη. Assume that F is dicritical for F and
put Q1 = F1 ∩ E1, then Q1 ∈ Sing(F1, D1) ⊂ CPS = SuppDπ1

∩ E1

(in view of Proposition 4-(4)). Applying induction hypothesis to Q1 we
deduce that F1 is dicritical for Lη

1 and hence F is dicritical for Lη.

Let us prove the existence of a weak logarithmic model; in view of the
above Theorem 14, this will give the stated Theorem 3.

We need the following computation of Camacho-Sad indices at the
non-singular curves of S. We include a proof for the sake of completeness.

Lemma 15. Let Lη be the foliation of (C2, 0) defined by η = 0, with

η =
dy

y
+

r
∑

i=2

λi

dfi

fi

+ α, α holomorphic, dα = 0.
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Then I0(Lη, y = 0) = −
∑r

i=2 λiı0(fi, y), where I0(Lη, y = 0) is the
Camacho-Sad index and ı0(fi, y) denotes the intersection multiplicity.

Proof: (See also [9], [11] for the non-dicritical case). We do induction
on the number of blowing-ups needed to desingularize Lη. If the origin
is non-singular, then I0(L

η, y = 0) = 0 and r = 1. If it is a simple
singularity, then r = 2 and f2 is a coordinate x = f2, in this case −λ2

is the ratio of eigenvalues that gives the Camacho-Sad index. Now, let
us do a blowing-up π1 and consider the origin P1 of the first chart, with
coordinates x′ = x, y′ = y/x. Assume that the fi = 0 tangent to y = 0
are those for i ∈ B and denote f ′

i = x′−mifi ◦π1 the strict transforms at
P1 of fi. Now we have

π∗
1η =

dy′

y′
+

(

1 +

r
∑

i=2

miλi

)

dx′

x′
+
∑

i∈B

λi

df ′
i

f ′
i

+ α∗,

where α∗ is closed and holomorphic at P1. In view of the results of [1],
we know that I0(Lη, y = 0) = IP1

(Lη
1 , y′ = 0) + 1 and by induction

hypothesis

IP1
(Lη

1 , y′ = 0) = −

(

1 +

r
∑

i=2

miλi +
∑

i∈B

λiıP1
(f ′

i , y
′)

)

.

We end since ı0(fi, y) = mi if i /∈ B and ı0(fi, y) = mi + ıP1
(f ′

i , y
′) for

i ∈ B.

Theorem 16. There is a weak logarithmic model D = (S, λ) for (F , D)
at P , relatively to S.

Proof: Let us do induction on NP (F , D). The case NP (F , D) = 0 is
done just by looking at the local situations. Let us consider the induction
step.

Assume first that π1 is non-dicritical for F . Recall that CPF =
E1 ∩ SingF1 = E1 ∩ Sing(F1, D1) and by Proposition 4 we have CPF =
CPS. Put CPS = {Ps}k

s=1 and Is = {i; Ps ∈ Γi
1}. The sets S(s) =

{E1} ∪ {Γi
1}i∈Is

are representative sets of separatrices for (F1, D1) at
Ps. By induction hypothesis, we get a list of residues λ(s) = {1} ∪
{λi}i∈Is

such that D(s) = (S(s), λ(s)) is a weak logarithmic model for
(F1, D1) at Ps. Let us define λ = {λi}r

i=1. We are going to show that
D = (S, λ) is a weak logarithmic model for (F , D) at P . Let L(s) be
a logarithmic foliation defined by a D(s)-logarithmic form at Ps. Then,
by Theorem 14, IPs

(L(s), E1) = IPs
(F1, E1) and by Lemma 15, we have
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that IPs
(L(s), E1) = −

∑

i∈Is
λimi. Thus

−1 =

k
∑

i=1

IPi
(F1, E1) = −

k
∑

i=1

miλi.

Hence λ0 =
∑k

i=1 miλi = 1 and thus Dπ1
= D(s) locally at Ps. Up to

apply induction, we have to show the following properties:

(1) D is 1-faithful and E1 is in the support of Dπ1
. This follows since

λ0 6= 0.
(2) Sing(Dπ1

, D1) = Sing(F1, D1) ∩ E1. This set is the tangent cone
CPS.

Let us assume now that π1 is F -dicritical. Take a point Q ∈ CPS and
consider the set SQ = {Γi

1}i∈IQ
corresponding to the curves Γi in S such

that Q ∈ Γi
1. By induction hypothesis applied to (F1, D1) at Q, we get

a C-divisor D∗
Q = (SQ, λ∗

Q) that is a weak logarithmic model. Consider

µQ =
∑

i∈IQ
miλ

∗
i and let us prove that µQ 6= 0. Take the 1-form ηQ at

P given by

ηQ =
∑

i∈IQ

λ∗
i

dfi

fi

,

and assume that µQ = 0. Then π∗
1ηQ defines a D∗

Q-logarithmic folia-

tion L∗
Q and, in view of Theorem 14, we know that (L∗

Q, D1) dominates

(F1, D1) at Q. In particular, the exceptional divisor E1 is dicritical for
L∗

Q. But this contradicts Proposition 10. Hence µQ 6= 0. Now, since

CPS has at least two points (Proposition 4) we can take non-null coeffi-
cients ǫQ such that

∑

Q∈CPS ǫQµQ = 0. Put λi = ǫQλ∗
i if i ∈ IQ. Then

the C-divisor D = (S, λ = {λi}r
i=1) gives the desired weak logarithmic

model.

5. The escape set

Assume that D = (S, λ) is a weak logarithmic model for (F , D). Let
η be a D-logarithmic 1-form and Lη the foliation η = 0. Two natural
questions arise

(1) Once we have fixed the representative set of separatrices S, deter-
mine the projective classes of λ that give a weak logarithmic model
for (F , D).

(2) Determine the “extra singularities” that can appear in the reduction
of singularities of (Lη, D).

Some answers to these questions are given by the properties of the escape
set.
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Let σ : M∗ → (M, P ) be a D-admissible morphism. Next proposition
is devoted to define and give the first properties of the escape set Escσ D.
Let us first define Escσ,D(η) for a D-logarithmic 1-form η. We say that
Q ∈ E∗ = σ−1(P ) is in the escape set Escσ,D(η) if and only if Q /∈
SuppDσ and σ∗(η) is either singular or does not have normal crossings
with E∗ at Q. Note that if Q /∈ SuppDσ then σ∗η defines a closed
holomorphic form, and hence σ∗η = dh, for a local holomorphic function
h at Q.

Proposition 17. Assume that D = (S, λ) is faithful and let σ : M∗ →
(M, P ) be a D-admissible sequence of blowing-ups. Consider two D-
logarithmic 1-forms η and η∗. Then Escσ,D(η) = Escσ,D(η∗). (We call
this set Escσ D). Moreover, for any component of F ∗ of E∗ = σ−1(P )
not contained in SuppDσ the set F ∗ ∩ Escσ D has at most k − 2 points,
where k is the number of points in F ∗ ∩ SuppDσ.

Proof: Working by induction on the number of blowing-ups, it is enough
to prove the following statement:

Assume that the first blowing-up π1 produces a divisor E1

not contained in SuppDπ1
. Then E1 ∩ Escπ1,D(η) depends

only on D and has no more than kPS − 2 points, where kPS
is the number of elements in the tangent cone CPS.

Let us prove this statement. Take the precedent notations and assume
that

η =

r
∑

i=1

λi

dfi

fi

+ α,

where 0 = λ0 =
∑r

i=1 λimi and νP (fη) = m − 1. Up to a choice of
suitable coordinates, we may assume that Inmifi = (y + cix)mi with
ci = cs if i ∈ Is, where the Is are pairwise disjoint and {1, 2, . . . , r} =
∪k

s=1Is. Note that k = kPS. Denote ns the number of elements of Is.
Let us write fη = Adx + Bdy. Note that xInm−1A = −yInm−1B 6= 0.
Moreover Inm−1B = H(x, y)K(x, y), where

H(x, y) =

r
∏

i=1

(y + cix)mi−1
k
∏

s=1

(y + csx)ns−1;

K(x, y) =
k
∑

s=1

µs

k
∏

l=1,l 6=s

(y + clx)

and µs =
∑

i∈Is
λimi. Note that K(1, y) is a polynomial of degree

≤ k−2 (recall that x divides K(x, y)). Taking coordinates (x′, y′) in the
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first chart of the blowing-up, the points in the escape set are exactly the
points not in the support such that x′ = 0 and K(1, y′) = 0, hence, their
position depend only on D and they are no more than k − 2. Moreover,
if K(1, y) is of degree exactly k − 2, then the origin of the second chart
is not in the escape set.

Consider the transform Lη
σ of Lη by σ. Note that Lη

σ is given by σ∗η =
0. Let F ∗ be a component of E∗ = σ−1(P ) not contained in SuppDσ

(recall that in view of Proposition 13 this is equivalent to say that F ∗

is a dicritical component for Lη
σ). Consider a point Q ∈ F ∗ \ SuppDσ.

If Q /∈ Escσ D then σ∗η is non-singular and transversal to F ∗ and hence
Q /∈ Sing(Lη

σ, σ−1(P )). Thus, if we define

Escσ(Lη) = Sing(Lη
σ, σ−1(P )) \ SuppDσ,

we get that Escσ(Lη) ⊂ Escσ(D). But the converse is not true, as we
will show in some examples.

In the case of a weak logarithmic model, taking σ = π, we see that

Escπ(Lη) = Sing(L′, D′) \ Sing(F ′, D′).

Corollary 18. For any F ′-dicritical component F ′ of D′, the number
of points in Escπ(Lη) ∩ F ′ is smaller or equal than vD′F ′ − 2.

Proof: It is enough to note that for any F ′-dicritical component F ′ of D′,
the points of F ′ in the support SuppDπ coincide with the intersections
of F ′ with the other components of D′.

In order to get a weak logarithmic model, the escape set Escπ D can be
fixed to be an arbitrarily chosen point in each F ′-dicritical component F ′

of E′ of valence vD′F ′ ≥ 3. Moreover, this produces a unique choice of
the projective class of λ. Let us outline the proof of this statement. Take
the notations as in the proof of Proposition 17. Recall the polynomial

K(x, y) =

k
∑

s=1

µs

k
∏

l=1,l 6=s

(y + clx)

where µs =
∑

i∈Is
λimi. There is a unique choice of the µs such that

K(1, y) is a non-null constant polynomial. This gives by induction the
desired selection of λ, by putting the escape point at the infinity of the
first chart of the blowing-up. More generally, we can fix vD′F ′−2 points
with multiplicity in each F ′ to get a unique projective class of λ.

Example 19 (One dicritical blowing-up). The case that we get a non-
singular foliation under the first (dicritical) blowing-up has been con-
sidered by M. Klughertz [7], [8]. She provides a rational model for the
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equisingularity type of the foliation, but her presentation is not in terms
of a representative set of separatrices as we propose. In our terms, this
case corresponds for instance to foliations having separatrices fi = 0 for

fi = (y + cix)mi + xmi+1, i = 1, 2, . . . , r.

Let us select λ = {λi}r
i=1 such that the escape set of the C-divisor is

in the infinity. If all the mi = n, one can verify by a long but elemen-
tary computation that xr−2 divides fη and we get as consequence that
Escπ L = ∅. Nevertheless, already in the case mi = 2 and r = 5, if we
consider the separatrices given by (y + cix)2 + δix

3 = 0 for general δi,
we get Escπ L 6= ∅.
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