
Publ. Mat. 50 (2006), 71–85

FOURIER RESTRICTION TO CONVEX SURFACES OF

REVOLUTION IN R3

Faruk Abi-Khuzam and Bassam Shayya

Abstract

If Γ is a C3 hypersurface in R
n and dσ is induced Lebesgue mea-

sure on Γ, then it is well known that a Tomas-Stein Fourier restric-
tion estimate on Γ implies that Γ has a nowhere vanishing Gauss-
ian curvature. In a recent paper, Carbery and Ziesler observed
that if induced Lebesgue measure is replaced by affine surface
area, then a Tomas-Stein restriction estimate on Γ implies that Γ
satisfies the affine isoperimetric inequality. Since the only prop-

erty needed for a hypersurface to satisfy the affine isoperimetric in-
equality is convexity, this raised the question of whether a Tomas-
Stein restriction estimate can be obtained for flat but convex hy-
persurfaces in R

n such as Γ(x) = (x, e−1/|x|m), m = 1, 2, . . . . We
prove that this is indeed the case in dimension n = 3.

1. Introduction

Let Γ be a C3 hypersurface in Rn and dσ a measure on Γ. A Tomas-
Stein Fourier restriction estimate for the pair (Γ, dσ) is an inequality of
the form

(1) ‖f̂‖L2(dσ) . ‖f‖
L

2n+2
n+3 (Rn)

for f ∈ C0(R
n).

The existence of restriction estimates such as (1), as well as their
connection with the geometry of Γ, or with the decay of the Fourier
transform of dσ, has been a subject of great interest. See [9, pp. 368–373]
for some important applications of these estimates.

The choice of the measure dσ is not completely arbitrary. It usually
reflects some aspect of the geometry of Γ. Two important choices of dσ
are induced Lebesgue measure and affine surface area. In the former
case, if Γ is assumed to have non-vanishing Gaussian curvature, (1) is a
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classical result of Tomas and Stein (see [10] and [9]). Conversely, if (1)
holds with induced Lebesgue measure, then a result of Iosevich and Lu [3]
(see also [2]), implies that Γ has non-vanishing Gaussian curvature. The
proof of this converse uses, among other things, a Knapp-type scaling
argument. To see how this argument goes, consider the special case
where Γ is a surface of revolution given by Γ(x) = (x, φ(x)), where
φ(x)=γ(|x|), and γ : [0, b) → R is increasing and satisfies γ(0)=γ′(0)=0.
For 0 < δ < b, let Sδ = {(x, γ(|x|) : |x| ≤ δ} and let fδ be a smoothed-
out characteristic function of Sδ. It is then easy to see that ‖fδ‖L2(dσ) .

δ(n−1)/2, and that |f̂δ dσ| & δn−1 on a (C/δ) × · · · × (C/δ) × (C/γ(δ))
box in Rn (for a suitable constant C). Now if (1) holds then, by duality,
the equivalent adjoint restriction estimate

(2) ‖f̂ dσ‖
L

2n+2
n−1 (Rn)

. ‖f‖L2(dσ)

also holds. Applying (2) to fδ we obtain

(3) δ2 . γ(δ)

and this implies that γ′′(0) 6= 0. In particular γ cannot have vanishing
Gaussian curvature at the origin. A more elaborate argument shows that
the same conclusion holds in general.

In the latter case, say when Γ(x) = (x, φ(x)), the affine surface area
on Γ is given as the pushforward under Γ of the (n − 1)-dimensional
measure |Kφ(x)|1/(n+1) dx, where Kφ(x) = det(Hess φ (x)) is the affine
curvature of Γ. To see what kind of geometry on Γ may be expected,
take the case of a surface of revolution considered above. The radial
assumption on φ, e.g. φ(x) = γ(|x|), simplifies matters and one computes
that

Kφ(x) = γ′′(|x|)
(

γ′(|x|)
|x|

)n−2

.

If we then take dσ in the adjoint restriction estimate (2), which is equiv-
alent to (1), to be affine surface area and use the function fδ in it, we
arrive [1] at the inequality

∫ δ

0

∣∣∣∣∣γ
′′(r)

(
γ′(r)

r

)n−2
∣∣∣∣∣

1/(n+1)

rn−2 dr .
(
δn−1γ(δ)

)(n−1)/(n+1)
.

But now this inequality does not imply non-vanishing curvature. Rather,
it is satisfied by any convex γ, regardless of how flat it is at the origin,
e.g. it is satisfied by γ(t) = e−1/tm

, m any positive integer. In fact, even
if φ is not radial, there is a similar scaling argument that can be applied,
and it leads to the conclusion that φ satisfies the affine isoperimetric
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inequality of affine differential geometry, which is certainly true when-
ever φ is convex. For more details we refer the reader to [1, pp. 409–410],
[5, Chapter 5], and [6].

An earlier result of Sjölin [8] had already established that, if the
dimension n = 2, and φ is convex, then the restriction inequality holds
true for affine surface area. The strength of this result, along with the
above considerations, suggested that, perhaps, the geometric condition
of convexity of φ could imply a restriction result for affine surface area
in higher dimensions. But if only convexity is to be used, functions
such as φ(x) = e−1/|x|m have to be admitted. In attempting to prove
this result, i.e. to show that convexity implies restriction, Carbery and
Ziesler [1] considered the implications of a decay assumption on the
Fourier transform of dσ.

Kenig, Ponce and Vega [4] proved that if the decay assumption

(4)

∣∣∣∣∣

∫

B(0,b)

e−2πiξ·Γ(x)|Kφ(x)| 12 +iα dx

∣∣∣∣∣ .
(1 + |α|)N

|ξn|

was true for all real α and some integer N , then (2) holds1. When
testing (4) on φ(x) = e−1/|x|m , Carbery and Ziesler [1] found that it did
not hold true in dimension n = 3. This, of course, did not mean that
there was no restriction result for φ(x) = e−1/|x|m . More recently, the
same restriction question was addressed in [7]. A consequence of the
results there implies that if φ(·) = γ(| · |), where γ is convex, γ(0) =
γ′(0) = 0, γ(3)(t) non-negative, and if

sup
0<t<b

tγ′′(t)

γ′(t)
≤ C < ∞,

then the restriction estimate (1) holds for affine surface area in di-
mension n = 3. Testing this last condition on γ(t) = e−1/tm

, where
0 < t < bm, bm = m/(3m + 3)), one finds that

sup
0<t<bm

tγ′′(t)

γ′(t)
= sup

0<t<bm

(m

tm
− m − 1

)
= ∞.

Once again, the function e−1/tm

was precluded from the result.
It turns out that, at least for surfaces of revolution Γ(x) = (x, φ(x)),

φ(x) = γ(|x|), a Tomas-Stein restriction estimate for affine surface area

1This connection between decay and restriction is valid in dimensions n = 2, 3. In
dimensions n ≥ 4, one has to modify things slightly by inserting a smooth cut-off
function into both (2) and (4), see [1] for further details.
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does hold in the presence of convexity, if we add the condition that

(5) sup
0<t<b

γ(t)γ′′(t)

γ′(t)2
≤ C < ∞.

Now testing this condition on γ(t) = e−1/tm

one finds that

(6) sup
0<t<bm

γ(t)γ′′(t)

γ′(t)2
= sup

0<t<bm

(
1 − m + 1

m
tm
)

≤ 1.

We thus have a Tomas-Stein restriction result that includes the sur-
faces Γ(x) = (x, e−1/|x|m) in R3.

The purpose of this paper is to obtain restriction estimates for convex
surfaces of revolution in R3. A major role is played by the function

γ(t)γ′′(t)

γ′(t)2

and our results only require the boundedness of certain Lp0 norms of this
function. In particular, we obtain a Tomas-Stein restriction estimate for
surfaces of revolution in R3 satisfying (5). We find it useful to prove
our results in a little more general setting. In Section 2 we introduce a
family of measures dσγ , state a general (Lp, Lq) restriction result for such

measures, and obtain as a corollary the result on Γ(x) = (x, e−1/|x|m).
In Section 3 we present the main component of our proof. In Section 4
we prove our results.

2. Statement of results

Let 0 < b ≤ ∞, and denote by B(0, b) the ball in R2 of center 0 and
radius b. Let C([0, b)) be the set of all real-valued functions γ ∈ C3([0, b))
such that γ(0) = γ′(0) = 0, γ′′(t) > 0 for 0 < t < b, and γ(3)(t) ≥ 0
for 0 ≤ t < b.

Suppose 0 ≤ λ ≤ 1, 1 ≤ p, p0 ≤ ∞, 4 ≤ q ≤∞, and 1/p+2/q ≤ 1.
For γ ∈ C([0, b)), let dσγ be the pushforward under the map x →
(x, γ(|x|) of the two-dimensional measure

(7)

(
γ′(|x|)3−2λγ′′(|x|)λ

|x|γ(|x|)1−λ

) p′

2q

dx

with the understanding that when p′ = q = ∞, p′/(2q) is set to be equal
to 1/4; so that p′/(2q) = 1/4 on the sharp line 1/p + 2/q = 1 including
the point (1/p, 1/q) = (1, 0).
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Theorem 1. If 1/p + 2/q = 1 − 1/p0, then

(8) ‖f̂dσγ‖Lq(R3) ≤ Cq

∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) λ

2q

∥∥∥∥∥
Lp0(B(0,b))

‖f‖Lp(dσγ)

for all (f, γ) ∈ C0(R
3) × C([0, b)), where Cq = 4(27/6π)3/(2q).

Notice that if λ = 1, then the density of the measure (7) is

|Kγ(|·|)(x)|p′/(2q), so if in addition 1/p + 2/q = 1, then dσγ is the same
affine surface area measure we described in Section 1.

Corollary 1. Suppose γ ∈ C([0, b)) is such that
∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) 1

2q

∥∥∥∥∥
Lp0(B(0,b))

< ∞.

Let λ = 1 and dσ = dσγ . If 1/p + 2/q = 1 − 1/p0, then

‖f̂dσ‖Lq(R3) . ‖f‖Lp(dσ)

for all f ∈ Lp(dσ).

For example if γ(t) = e−1/tm

, then by (6),
∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) 1

2q

∥∥∥∥∥
Lp0(B(0,bm))

≤ (πb2
m)1/p0 < ∞

for 1 ≤ p0 ≤ ∞, and so the adjoint restriction estimate in Corollary 1
holds for γ(t) = e−1/tm

whenever 4 ≤ q ≤ ∞ and 1/p + 2/q ≤ 1.
If, as another example, we take γ(t)=−t log(1−t), which is in C([0, 1)),

then
∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) 1

2q

∥∥∥∥∥
Lp0(B(0,1))

≈
∥∥∥∥∥

(
− log(1 − | · |)

| · |

) 1
2q

∥∥∥∥∥
Lp0(B(0,1))

is finite for 1 ≤ p0 < ∞ but not for p0 = ∞ (except if q = ∞), and so the
adjoint restriction estimate in Corollary 1 holds for γ(t) = −t log(1 − t)
whenever 4 ≤ q ≤ ∞ and 1/p + 2/q < 1.

3. Main estimate

Let B̃ = B(0, b) ∩ {x = (x1, x2) ∈ R2 : x1, x2 > 0}. The purpose of
this section is to prove the following proposition.
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Proposition 1. Suppose 0 < b ≤ ∞ and γ ∈ C([0, b)). Then

∫

B̃

∫

B̃

h(u + v, γ(|u|) + γ(|v|))
(

γ′(|u|)3
|u|γ(|u|)

γ′(|v|)3
|v|γ(|v|)

) 1
4

du dv

≤ (27/6π)3/2‖h‖L1(R3)

for all Lebesgue measurable h : R3 → [0,∞].

Proof: Denoting the integral on the left-hand side of the inequality by I,
and changing into polar coordinates, we have

I=

∫ b

0

∫ b

0

∫ π
2

0

∫ π
2

0

h(reiθ+seiφ, γ(r)+γ(s)) dθ dφ

(
r3γ′(r)3s3γ′(s)3

γ(r)γ(s)

)1
4

dr ds.

The change of variable x = reiθ + seiφ (cf [7]) shows that

∫ π
2

0

∫ θ

0

h(reiθ + seiφ, γ(r) + γ(s)) dφ dθ

≤
∫
√

r2+s2<|x|<r+s

2 h(x, γ(r) + γ(s))√
(|x|2 − (r − s)2)((r + s)2 − |x|2)

dx.

So

∫ π
2

0

∫ π
2

0

h(reiθ + seiφ, γ(r) + γ(s)) dφ dθ

≤
∫
√

r2+s2<|x|<r+s

4 h(x, γ(r) + γ(s))√
(|x|2 − (r − s)2)((r + s)2 − |x|2)

dx

≤
∫
√

r2+s2<|x|<r+s

4 h(x, γ(r) + γ(s))√
(2rs)((r + s)2 − |x|2)

dx

≤
∫

|x|<r+s

2 h(x, γ(r) + γ(s))

(rs)
3
4

√
r + s − |x|

dx,
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where we have used the inequality r + s ≥ 2
√

rs. It follows that

I ≤ 2

∫ b

0

∫ b

0

∫

|x|<r+s

h(x, γ(r) + γ(s))√
r + s − |x|

dx

(
γ′(r)3γ′(s)3

γ(r)γ(s)

) 1
4

dr ds

= 2

∫

B(0,2b)

∫ b

0

∫ b

0

h(x, γ(r)+γ(s))
χE(r, s)√
r + s − x

(
γ′(r)3γ′(s)3

γ(r)γ(s)

)1
4

dr ds dx

= 4

∫

B(0,2b)

∫ b

0

∫ b

0

h(x, γ(r)+γ(s))
χF (r, s)√
r + s − x

(
γ′(r)3γ′(s)3

γ(r)γ(s)

)1
4

dr ds dx

= 4

∫

B(0,2b)

II dx,

where E = {(r, s) ∈ (0, b)× (0, b) : r + s > |x|}, F = {(r, s) ∈ E : s < r},
and

II =

∫ b

0

∫ b

0

h(x, γ(r) + γ(s))
χF (r, s)√
r + s − x

(
γ′(r)3γ′(s)3

γ(r)γ(s)

) 1
4

dr ds.

To estimate II, we shall first apply the change of variable

r = r(t, y) = γ−1(y sin2 t)

s = s(t, y) = γ−1(y cos2 t),

which is defined on the open set

Ω =
{
(t, y) ∈ R2 :

π

4
< t <

π

2
, y > 0

}
;

so, with a slight abuse of notation, (r, s) is now a mapping from Ω to R2.
The Jacobian of this mapping is

J(r,s)(t, y) =
2y sin t cos3 t + 2y sin3 t cos t

γ′(γ−1(y sin2 t))γ′(γ−1(y cos2 t))
=

y sin 2t

γ′(r)γ′(s)
.

But2

γ(r) = y sin2 t and γ(s) = y cos2 t,(9)

so

γ′(r)
∂r

∂t
= y sin 2t and γ′(s)

∂s

∂t
= −y sin 2t,(10)

2To simplify the notation, we are writing r, s, ∂r/∂t, and ∂s/∂t for r(t, y), s(t, y),
∂r/∂t(t, y), and ∂s/∂t(t, y) respectively.
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and so

y sin 2t =
√

γ′(r)γ′(s)

√
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣.

Thus

J(r,s)(t, y) =
1√

γ′(r)γ′(s)

√
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣.

But also

γ′(r)γ′(s)

γ(r)γ(s)

∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣ =
y2 sin2 2t

(y sin2 t)(y cos2 t)
= 4,

so
(

γ′(r)3γ′(s)3

γ(r)γ(s)

) 1
4

J(r,s)(t, y) =

(
4
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
) 1

4

.

Next, to determine the domain of integration in the ty-plane, we make
the following observations. By the convexity of γ, γ(r) + γ(|x| − r), as a
function of r, increases on the interval (|x|/2, |x|). So

2 γ(
|x|
2

) ≤ γ(r) + γ(|x| − r) < γ(r) + γ(s)

whenever |x|/2 < r < |x| and |x| − r < s, which are in turn satis-
fied whenever s < r < |x| < r + s. Also by the convexity of γ,

2 γ(
|x|
2

) ≤ γ(|x|) ≤ γ(r) < γ(r) + γ(s)

whenever r ≥ |x| and s > 0. Thus

2 γ(
|x|
2

) < γ(r) + γ(s) < 2 γ(b)

whenever 0 < s < r < b and |x| < r + s. But, by the definition of the
mapping (r, s),

y = γ(r) + γ(s)

for all (t, y) ∈ Ω, so

2 γ(
|x|
2

) < y < 2 γ(b)

whenever 0 < s < r < b and |x| < r + s. For any such (fixed) y, the
range of (r, s) is a curve in R2 that “enters” the closure of the domain
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of integration of II when t = π/4 (i.e. when s = r) and “leaves” when
t = τ(y) for some τ(y) ∈ (π/4, π/2]. Thus

II =

∫ 2 γ(b)

2 γ( |x|
2

)

∫ τ(y)

π
4

h(x, y)
1√

r + s − |x|

(
4
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
) 1

4

dt dy

=

∫ 2 γ(b)

2 γ( |x|
2

)

h(x, y)

∫ τ(y)

π
4

√
2√

r + s − |x|

(
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
) 1

4

dt dy.

Now, by the definition of τ(y),

r + s = r(t, y) + s(t, y) ≥ |x| for
π

4
≤ t ≤ τ(y),

so, in particular,

r(τ(y), y) + s(τ(y), y) ≥ |x|,
and hence

r + s − |x| ≥ r + s − (r(τ(y), y) + s(τ(y), y)) for
π

4
< t < τ(y).

Thus

II≤
∫ 2 γ(b)

2 γ(
|x|
2

)

h(x, y)

∫ τ(y)

π
4

√
2√

r+s−r(τ(y), y) − s(τ(y), y)

(
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
)1

4

dt dy.

The rest of the proof will be devoted to estimating

1√
r + s − r(τ(y), y) − s(τ(y), y)

(
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
) 1

4

for 2γ(|x|/2) < y < 2γ(b) and π/4 < t < τ(y).
We start by examining the function ∂r/∂t + ∂s/∂t. By (10),

∂r

∂t
+

∂s

∂t
=

y sin 2t

γ′(r)
− y sin 2t

γ′(s)

is negative for π/4 < t < π/2 (since γ′(s) < γ′(r)), so
∣∣∣∣
∂r

∂t
+

∂s

∂t

∣∣∣∣ =
y sin 2t

γ′(s)
− y sin 2t

γ′(r)

= 2y

(
cos t

γ′(s)
sin t − sin t

γ′(r)
cos t

)

= 2y

√
cos2 t

γ′(s)2
+

sin2 t

γ′(r)2
sin(t − φ),
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where φ = φ(t) is defined by

sin φ =
(sin t)/γ′(r)√
cos2 t
γ′(s)2 + sin2 t

γ′(r)2

, cosφ =
(cos t)/γ′(s)√
cos2 t
γ′(s)2 + sin2 t

γ′(r)2

.

We shall need precise information about φ and ∂2r/∂t2 + ∂2s/∂t2. For
this we need the following easy, but important, observation. By integra-
tion by parts,

∫ ρ

0

2γ′(α)γ′′(α) dα = 2γ(ρ)γ′′(ρ) − 2

∫ ρ

0

γ(α)γ(3)(α) dα

for 0 < ρ < b, and since γ(3) is nonnegative, we get

(11) γ′(ρ)2 ≤ 2γ(ρ)γ′′(ρ) for 0 < ρ < b.

(This is the only place where we use the assumptions that γ is C3 and
γ(3) is nonnegative; everywhere else we need only require of γ to be C2

and convex.)
Differentiating both sides of (10) with respect to t, we have

γ′′(r)

(
∂r

∂t

)2

+ γ′(r)
∂2r

∂t2
= 2y cos 2t

and

γ′′(s)

(
∂s

∂t

)2

+ γ′(s)
∂2s

∂t2
= −2y cos 2t.

This combined with (11) gives

γ′(r)2

2γ(r)

(
∂r

∂t

)2

+ γ′(r)
∂2r

∂t2
≤ 2y cos 2t

and

γ′(s)2

2γ(s)

(
∂s

∂t

)2

+ γ′(s)
∂2s

∂t2
≤ −2y cos 2t.

But by (9) and (10),

γ′(r)2

2γ(r)

(
∂r

∂t

)2

= 2y cos2 t and
γ′(s)2

2γ(s)

(
∂s

∂t

)2

= 2y sin2 t,

so

γ′(r)
∂2r

∂t2
≤ −2y sin2 t and γ′(s)

∂2s

∂t2
≤ −2y cos2 t,
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and it follows that

(12) γ′(r)

(
∂2r

∂t2
+

∂2s

∂t2

)
≤ −2y < 0

for π/4 < t < π/2.
Going back to φ, we have

tan φ =
γ′(s)

γ′(r)
tan t.

Now if we let m(ρ) = γ′(ρ)2/γ(ρ), 0 < ρ < b, then by (11), m′(ρ) ≥ 0
and it follows that m(s) ≤ m(r). Hence

tan φ =

√
m(s)γ(s)√
m(r)γ(r)

tan t ≤
√

γ(s)√
γ(r)

tan t = cot t tan t = 1,

and hence 0 < φ ≤ π/4. Thus

∣∣∣∣
∂r

∂t
+

∂s

∂t

∣∣∣∣ ≥ 2y

√
cos2 t

γ′(s)2
+

sin2 t

γ′(r)2
sin(t − π

4
)

= 2y

√
cos2 t

(y sin 2t)2

(
∂s

∂t

)2

+
sin2 t

(y sin 2t)2

(
∂r

∂t

)2

sin
(
t − π

4

)

=

√
1

sin2 t

(
∂s

∂t

)2

+
1

cos2 t

(
∂r

∂t

)2

sin
(
t − π

4

)

>

√(
∂r

∂t

)2

+

(
∂s

∂t

)2

sin
(
t − π

4

)

≥
√

2
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
(

2

π

)(
t − π

4

)

for π/4 < t < π/2. Thus
√

∂r
∂t

∣∣∂s
∂t

∣∣
∣∣∂r

∂t + ∂s
∂t

∣∣ <
π

2
√

2

1

t − π
4

for π/4 < t < π/2.
As we saw above, ∂r/∂t+∂s/∂t is negative on the interval (π/4, π/2).

Also by (12),

∂2r

∂t2
+

∂2s

∂t2
< 0,
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so ∂r/∂t + ∂s/∂t, as a function of t, is decreasing on (π/4, π/2), and
so |∂r/∂t + ∂s/∂t| is increasing there. Now applying the mean value
theorem, we obtain

r + s − r(τ(y), y) − s(τ(y), y) ≥ (τ(y) − t)

∣∣∣∣
∂r

∂t
+

∂s

∂t

∣∣∣∣

for π/4 < t < τ(y). Thus

(
∂r
∂t

∣∣∂s
∂t

∣∣) 1
4

√
r + s − r(τ(y), y) − s(τ(y), y)

≤ 1√
τ(y) − t

(
∂r
∂t

∣∣∂s
∂t

∣∣) 1
4

∣∣∂r
∂t + ∂s

∂t

∣∣ 12

<

√
π

2
√

2

1√
τ(y) − t

1√
t − π

4

for π/4 < t < τ(y). Thus

∫ τ(y)

π
4

√
2√

r + s − r(τ(y), y) − s(τ(y), y)

(
∂r

∂t

∣∣∣∣
∂s

∂t

∣∣∣∣
) 1

4

dt

≤
√

π√
2

∫ τ(y)

π
4

dt√
(τ(y) − t)(t − π

4 )

=
π3/2

21/4
.

Thus

II ≤ π3/2

21/4

∫ 2 γ(b)

2 γ( |x|
2

)

h(x, y) dy

and consequently

I ≤ 27/4π3/2

∫

B(0,2b)

∫ 2 γ(b)

2 γ( |x|
2

)

h(x, y) dy dx ≤ (27/6π)3/2 ‖h‖L1(R3).

4. Proof of Theorem 1

Let f be a continuous function on R3 which is compactly supported
in the third variable, and let γ ∈ C([0, b)). It is enough to show that

‖f̂dσ‖Lq(R3) ≤ (27/6π)3/(2q)

∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) λ

2q

∥∥∥∥∥
Lp0(B(0,b))

‖f‖Lp(dσ),

where dσ = χE dσγ and E = {(x1, x2, x3) ∈ R3 : x1, x2 ≥ 0}. If q = ∞,
then this follows easily from Hölder’s inequality. So we may assume
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q < ∞. Then the relation 1/p + 2/q = 1 − 1/p0 tells us that p, p0 > 1.
Also, since

‖f̂dσ‖Lq(R3) = ‖f̂dσf̂dσ‖1/2

Lq/2(R3)
= ‖ ̂fdσ ∗ fdσ‖1/2

Lq/2(R3)
,

and since q/2 ≥ 2, it is enough by the Hausdorff-Young inequality to
establish that

∫
h|f |dσ ∗ |f |dσ

≤ (27/6π)3/q

∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) λ

2q

∥∥∥∥∥

2

Lp0(B(0,b))

‖f‖2
Lp(dσ)‖h‖Lq/2(R3)

for any nonnegative Lebesgue measurable function h on R3. But by
Hölder’s inequality,

∫
h|f |dσ ∗ |f | dσ ≤ ‖f‖2

Lp(dσ)‖h‖Lp′(dσ∗dσ),

so we need to have

‖h‖Lp′(dσ∗dσ) ≤ (27/6π)3/q

∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) λ

2q

∥∥∥∥∥

2

Lp0(B(0,b))

‖h‖Lq/2(R3).

Now this follows from Proposition 1 by writing

‖h‖p′

Lp′(dσ∗dσ)

=

∫

B̃

∫

B̃

hp′

(x+y, γ(|x|)+γ(|y|))M(x)
p′

2q M(y)
p′

2q
N(x)

λp′

2q N(y)
λp′

2q

N(x)
λp′

2q N(y)
λp′

2q

dx dy,

where

M(·) =
γ′(| · |)3−2λγ′′(| · |)λ

| · |γ(| · |)1−λ
and N(·) =

γ(| · |)γ′′(| · |)
γ′(| · |)2 ,
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and applying Hölder’s inequality to get

‖h‖p′

Lp′(dσ∗dσ)

≤
(∫

B̃

∫

B̃

N(x)
λrp′

2q N(y)
λrp′

2q dx dy

) 1
r

×
(∫

B̃

∫

B̃

hq/2(x + y, γ(|x|) + γ(|y|))M(x)
1
4 M(y)

1
4

N(x)
λ
4 N(y)

λ
4

dx dy

) 2p′

q

=

(∫

B̃

N(x)
λp0
2q dx

) 2
r

×
(∫

B̃

∫

B̃

hq/2(x+y, γ(|x|) + γ(|y|))
(

γ′(|x|)3
|x|γ(|x|)

γ′(|y|)3
|y|γ(|y|)

)1
4

dx dy

)2p′

q

≤
(∫

B̃

N(x)
λp0
2q dx

) 2p′

p0
(
(27/6π)3/2‖hq/2‖L1(R3)

) 2p′

q

≤ (27/6π)3p′/q

∥∥∥∥∥

(
γ(| · |)γ′′(| · |)

γ′(| · |)2
) λ

2q

∥∥∥∥∥

2p′

Lp0(B(0,b))

‖h‖p′

Lq/2(R3)
,

where r is the dual exponent to q/(2p′) (so that rp′ = p0).
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