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TOPOLOGICAL LINEAR COMPACTNESS FOR

GROTHENDIECK CATEGORIES.

THEOREM OF TYCHONOFF.

APPLICATIONS TO COALGEBRAS

P. Enache, C. Năstăsescu and B. Torrecillas

Abstract

We show the Tychonoff’s theorem for a Grothendieck category
with a set of small projective generators. Strictly quasi-finite ob-
jects for semiartinian Grothendieck categories are characterized.
We apply these results to the study of the Morita duality of dual
algebra of a coalgebra.

Introduction

The classical Morita theory duality of module categories (cf. [17]
and [24]) was extended to Grothendieck categories by Colby and

Fuller [6] and a weaker form by Ánh and Wiegandt [4]. Many authors
have considered this theory in general Grothendieck categories (cf. [12]
and [20]) and also in particular Grothendieck categories (e.g. graded
modules aver graded rings [16], modules over rings with enough idem-
potents [3], comodules over a coalgebra [13]). Linear compact objects
with respect to a topology play a crucial role in the analysis of Morita
dualities in Grothendieck categories (see [4], [12]).

In this paper we study linear compact objects in Grothendieck cat-
egories. The first section is notational and moreover it contains some
preliminary results. Section 2 is devoted to characterizing linear com-
pact objects in semiartinian Grothendieck categories (Theorem 2.3).

In Section 3 we consider the Tychonoff’s theorem. This theorem is
a classical result for linear compact modules over unitary rings, which
does not remain true for general Grothendieck categories. We obtain a

2000 Mathematics Subject Classification. 16W30, 18E15, 16D90.
Key words. Tychonoff’s theorem, coalgebras, quasi-finite objects, semiartinian
Grothendieck categories, Morita duality.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13269493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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positive answer for Grothendieck categories having a set of small pro-
jective generators. This result applies for right semiperfect coalgebras,
graded rings and rings with local units.

In Section 4 we study the linear compactness of the dual algebra of a
coalgebra. For this algebras the discrete linear compactness is equivalent
to the noetherian property, and when the coalgebra is almost connected,
the topological linear compactness is equivalent to the almost noetherian
property (Theorem 4.8). Furthermore, we show that if this algebra has
a right Morita duality it has a self-duality.

1. Notation and preliminary results for categories

Let C be an abelian category with direct products. Recall that a
topology τ on an object X ∈ C is a filter base (Xi)i∈I of subobjects of X .
For a subobject Y of X the τ -closure of Y is given by Y = ∩I(Y +Xi),
thus Y is τ -closed if Y = ∩I(Y +Xi). Y is open if it belongs to the filter
generated by (Xi)i∈I , i.e. Xi ⊆ Y for some i (see [4]).

Let A and B be two abelian categories with direct products and let
F : A → B be an exact functor which commutes with direct products,
then

i) If (X, τ) is a topological object with (Xi) the filter base, then
(F (X), τ ′) is a topological object with filter base (F (Xi)). This is
clear because F commutes with intersections.

ii) If Y ⊆ X is a τ -closed, then F (Y ) ⊆ F (X) is τ ′-closed. Indeed,
we note that, since F is exact, F commutes with finite sums and,
moreover, since F preserve direct products F commutes with ar-
bitrary intersections. Thus

F (Y ) = F (∩i∈I(Y +Xi)) = ∩i∈IF (Y +Xi) = F (Y ).

iii) Let (Xi, τi) be a family of objects of A. We can construct the
topological product object (

∏

i∈I Xi, τ), where τ is the product
(Tychonoff) topology. Throughout this paper, we shall always as-
sume that

∏

i Xi is endowed with the product topology.

Definition 1.1. A topological object X is linearly compact if for every
filter base (Xi) of closed subobjects of X , the canonical morphism

X −→ lim
←−

X/Xi

is an epimorphism.
X is discrete linearly compact if X is linearly compact with respect

to the topology defined by the filter base {0}.
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The next result shows the behavior of linearly compact objects under
localization.

Lemma 1.2. Let T be any localizing subcategory of the Grothendieck
category A, and let T : A → A/T be the localizing functor. Assume
that T commutes with direct products. If (X, τ) is linearly compact then
(T (X), τ ′) is linearly compact, where τ ′ is the linear topology induced
by τ via functor T .

Proof: If τ is the linear topology given by the filter base (Xi)i∈I , then τ ′

is given by the filter base (T (Xi))i∈I . If Y ⊆ T (X) is a closed subobject
relative to τ ′, we consider Z = ψ−1

X (S(Y )) where S is the right adjoint
to T and ψX : X → ST (X) is the unit of the adjoint situation. Thus,
T (Z) = T (S(Y )) = Y . Moreover,

T (Z) = ∩i∈I(T (Z) + T (Xi)) = ∩i∈I(Y + T (Xi)) = Y

since Y is closed. Hence if we have a filter base of closed subobjects (Yj)j

of T (X), there exists a filter base (Zj)j of closed subobjects of X such
that T (Zj) = Yj . Now

X −→ lim
←−

X/Zj −→ 0

is exact. Since T is exact and it commutes with direct products then
T commutes also with direct projective limits so the following sequence

T (X) −→ T (lim
←−

X/Zj) ∼= lim
←−

T (X)/Yj −→ 0

is exact. Thus T (X) is linearly compact in A/T .

Example 1.3. Let A be a Grothendieck category and P ∈ A be a
projective object. We consider the class

CP = {A ∈ A | HomA(P,A) = 0}.

It is easy to see that CP is a TTF class. Following [10], we can consider
the quotient category A/CP and the canonical functor

A
TP // A/CP .
SP

oo

Since CP is a TTF class it is well-known that TP commutes with direct
products. Hence, by Lemma 1.2, if M is linearly compact then TP (M)
is also linearly compact.

Moreover, we recall that if P is small, then, by [5, Theorem 1.2],

A/CP ∼= R-Mod

where R = EndA(P ).
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Following [23] the ring R is said to be a ring with local units if for
every finite subset X of R there exists an idempotent e ∈ R such that
X is contained in the ring eRe. For a ring R with local units we denote
by R-MOD the category of all left R-modules M with the property that
RM = M . Clearly the category R-MOD is a Grothendieck category.
Recently, the interest for this class of rings has been motivated by the
fact that for certain H-comodule algebras (e.g. H a Hopf algebra with a
nonzero integral) its associated Doi-Hopf module category is isomorphic
to the category of R-MOD for certain ring R with local units (see [8]). It
is well-knonw (see [23]) that {Re | e2 = e} is a generating set of finitely
generated projective modules in R-MOD. The following result connects
rings with local units with Grothendieck categories.

Proposition 1.4. Let A be a Grothendieck category with a set (Pi)i∈I

of small projective generators. Then there exists a ring R with local units
such that A is equivalent to the category R-MOD.

Proof: See [5, Theorem 3.1] and [2].

2. Quasi-finite objects

Recall that an object X satisfies AB − 5∗ if for any subobjet Y and
an inverse family of subobjects {Xi}i∈I of X , then

Y + ∩i∈IXi = ∩i∈I(Y +Xi).

As in the case of R-modules, it is easy to show that any discrete linearly
compact object satisfies AB − 5∗ and that the class of linearly compact
objects is a Serre subcategory. A semiartinian object is called quasi-finite
if its socle has finite generated homogeneous component. A semiartinian
object is strictly quasi-finite if any quotient is quasi-finite.

The next lemma can be shown using the same argument as [13,
Lemma 2.7 and Proposition 2.8].

Lemma 2.1. Let T be any localizing subcategory of the semiartinian
Grothendieck category A, and let T : A → A/T be the localizing functor.

i) If X is a simple object of A/T , then there exists a simple object
Y ∈ A such that T (Y ) ∼= X.

ii) If M is a strictly quasi-finite object in A, then T (M) is strictly
quasi-finite.
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Let {Si | i ∈ I} be a complete set of representatives of the isomor-
phism types of simple objects of A. For every i ∈ I, let Ti : A →
A/TE(Si) denote the localization functor, where

TE(Si) = {X ∈ A | Hom(X,E(Si)) = 0}.

Proposition 2.2. Let A be a semiartinian Grothendieck category. An
object A is strictly quasi-finite if and only if Ti(A) is artinian for any i.

Proof: Let A be strictly quasi-finite, then by Lemma 2.1 Ti(A) is strictly
quasi-finite in the quotient category A/T(E(Si). This category has an
unique isomorphic type of simple module, hence strictly quasi-finite
of Ti(A) implies that Ti(A)/B is quasi-finite for any subobjectB of Ti(A).
Therefore Ti(A)/B is finitely cogenerated and Ti(A) is artinian.

Conversely, assume that Ti(A) is artinian for every i ∈ I. Since the
functors Ti are exact, it is enough to prove that A is quasi-finite. Let S
be a simple object and consider the unique i ∈ I such that S ∼= Si. If Ai

denotes the largest subobject of A such that Ai ∈ TE(Si), then we have
an exact sequence

0 −→ Ai −→ A −→ A/Ai −→ 0.

Then Hom(Si, Ai) = 0 and Hom(Si, A) ≤ Hom(Si, A/Ai). Thus, we can
assume that Ai = 0, that is, A is TE(Si) torsionfree. The socle soc(A) is
then a direct sum of copies of Si and, since Ti(A) is artinian, we have
that Ti(soc(A)) ≤ Ti(A) is artinian as well. Therefore, soc(A) consists
of a direct sum of finitely many copies of Si

∼= S.

By [19, Proposition 2.5], if A is a semiartinian object in A satisfy-
ing AB − 5∗, then A is strictly quasi-finite.

Theorem 2.3. Let A be a semiartinian Grothendieck category. Assume
that every simple object of A has a projective cover. The following prop-
erties of an object M are equivalent:

1) M is discrete linearly compact;
2) M is AB − 5∗;
3) M is strictly quasi-finite.

Proof: It remains to show that 3) ⇒ 1). Let {Si : i ∈ I} be a complete
set of representatives of the isomorphism types of simple objects of A.
For every i ∈ I, we may consider the localizing subcategory

TE(Si) = {X ∈ A | Hom(X,E(Si) = 0}.
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Let Ti : A → A/TE(Si) denote the localization functor. By [5, Theo-
rem 3.3] every TE(Si) is a TTF-class. Since the projective cover of the
simple modules form a family of finitely generated projective generators
by [5, Theorem 3.2], Ti has a left adjoint functor Hi. Hence Ti commutes
with projective limits. Let

M
pλ

−→Mi −→ 0

be an inverse system of epimorphisms. Then

Ti(pλ) : Ti(M) −→ Ti(Mλ)

are epimorphisms. Since M is strictly quasi-finite Ti(M) is an artinian
object. Hence

lim
←−

Ti(pλ) : M −→ lim
←−

Ti(Mλ)

is an epimorphism. Thus

Ti(lim←−
pλ)

is an epimorphism for any i. Since Ti is exact and ∩KerTi = 0, then

lim
←−

pλ : M −→ lim
←−

Mλ

is an epimorphism.

3. The theorem of Tychonoff for Grothendieck
categories

Theorem 3.1. Let A be a Grothendieck category with a set of small
projective generators and let (Xk, τk)k∈Λ be a family of topological ob-
jects. If (Xk, τk) is linearly compact for every k ∈ Λ, then (

∏

k∈ΛXk, τ)
is linearly compact.

Proof: By Proposition 1.4 we have that A ∼= R-MOD where R is a ring
with local units. Now we observe that if (Mi)i∈I is a family of objects in
R-MOD, then the direct product of this family in R-MOD is equal to
R
∏

i∈I Mi = ∪e

∏

i∈I Mi, where
∏

i∈I Mi is the usual cartesian product
and e runs over all the idempotents of R. Moreover, the same statement
holds for inverse limits. These two observations join with the definition
of linearly compact object reduce the problem to the case of unitary
rings of the form eRe, where e ∈ R is idempotent. But for unitary rings
the result is true (see [22, Theorem 28.7].

Remark 3.2. An alternative proof of the preceding result and the classical
result for linearly compact modules over unitary rings can be given using
Lemma 1.2, Proposition 1.4 and Example 1.3.
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Examples.

1. Right semiperfect coalgebras

If C is a right semiperfect coalgebra then MC is a semiartinian
Grothendieck category and simple objects have projective covers. The
next result shows that Tychonoff’s theorem holds in MC when C is right
semiperfect.

Corollary 3.3. Let C be a semiperfect coalgebra and let (Mi)i∈I be
a family of linearly compact right comodules, then

∏

i∈I Mi is linearly

compact in MC (here we consider the direct product in the category MC

with the product topology).

In general the result is not true for the category of comodules, as we
can show in the following

Counterexample 3.4. Let C = k[x] be the Hopf algebra of the poly-
nomials in one indeterminate x over a field k of characteristic zero; its
structure of coalgebra is given by ∆(x) = x ⊗ 1 + 1 ⊗ x and ǫ(x) = 0.
In this case C∗ = K[[x]] and MC is isomorphic to the subcategory of
torsion K[[x]]-modules. Take Ui = K[[x]]/(xi) for i = 1, 2, . . . . Then
the Ui are artinian objects, so Ui are (discrete) linearly compact in MC

and C∗-Mod. Consider

M ′ = t

(

∞
∏

i=1

Ui

)

⊆M =

∞
∏

i=1

Ui,

where t is the classical torsion radical on K[[x]].
We will see that M ′, the product of Ui in MC , is not linearly compact

with respect to the product topology. Let

Hi = ((x)/(xi)×K[[x]]/(xi+1)× · · · ) ∩M ′.

Clearly each Hi is a closed submodule of M ′. Consider the set of coset
ai = (0, . . . , 1 + xi, 0, . . . ) +Hi, then (x)ai ⊆ Hi. This set of cosets has
the finite intersection property but not the intersection property.

2. Graded rings

Let R = ⊕σ∈GRσ be a graded ring. Since {R(σ), σ ∈ G} is a fam-
ily of small projective generators in R-gr, then the products of linearly
compact graded modules are linearly compact (see [16] for details about
linearly compact graded modules).
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3. Rings with local units

Linearly compact modules for this category has been considered in [3].
From the proof of Theorem 3.1 it follows that the Tychonoff’s theorem
is valid for modules over ring with local units.

4. Linear compactness of the dual algebra of a coalgebra

Let C be a coalgebra and let C∗ = Homk(C, k) be its dual convolution
algebra. Denote by CM the category of left C-comodules.

A right Morita duality is an additive contravariant category-equiva-
lence between two categories of Mod-R and S-Mod which are both closed
under submodules and factor modules and contains all finitely generated
modules. This is equivalent to say that there exists a (S,R)-bimod-
ule such that (a) ER and SE are injective cogenerators and (b) the
right and left multiplication induces isomorphisms EndR(E) ∼= S and
EndS(E) ∼= R. If S = R, then we say that R has a right Morita self-
duality. It is well-known the connection between Morita duality theory
and the notion of linear compactness (see [18]). First, we examine the
Morita duality theory for C∗.

Proposition 4.1. Let C be a coalgebra. If C∗ possesses a right Morita
duality then C∗ is left noetherian.

Proof: If C∗ has a right Morita duality, then C∗ is right linearly com-
pact [18, Theorem 1]. Hence C∗/J is right linearly compact, therefore
it has finite Goldie dimension, then it is semisimple, where J denotes
the Jacobson radical of C∗. Thus C∗ has only a finite number of isomor-
phic types of simple modules. If follows that CC∗ has finite generated
socle. Since the injective envelope of each simple right C∗-module is
reflexive, then CC∗ , as finite cogenerated, is reflexive. For any right
C∗-submodule X of C, we have that (C/X)C∗ is reflexive. Hence C/X
has a finite generated socle and it is finitely cogenerated. Therefore C
as right C∗-module is artinian. As CC∗ is quasi-injective, we can apply
[1, Corollary 4.4] and C∗ is left noetherian.

Theorem 4.2. Let C be a coalgebra. C∗ has a Morita self-duality if
and only if C∗ is both sides noetherian.

Proof: Assume that C∗ is left noetherian, then by [7, Theorem 3.2]
the class of rational left C∗-modules is closed under injective envelopes.
Hence the left C∗-module C is injective. By [11, Theorem 2], C as right
C∗-module is linearly compact. Hence CC∗ has a finitely generated socle,
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then C is an almost connected coalgebra. Hence C is an injective cogen-
erator of C∗-Mod. By a similar argument, C is also an injective cogenera-
tor of Mod-C∗. Since C satisfies that EndC∗(CC∗) = EndC∗(C∗C) = C∗,
then C∗CC∗ gives a sef-duality of C∗.

The other implication follows from Proposition 4.1 and its left side
version.

Proposition 4.3. Let M be a left C-comodule (then M is also a right
C∗-module). The following conditions are equivalent:

i) C∗M∗ is discrete linearly compact;
ii) M∗ is a left noetherian C∗-module;
iii) M is artinian as a left C∗-comodule.

Proof: i) ⇒ iii) Let X be a right C∗-submodule of M and consider
Y = soc(M/X). We have the following commutative diagram of right
C∗-modules

0

��

Y

��

0 // X // M // M/X // 0

By taking dual we obtain a commutative diagram of left C∗-modules

0 // (M/X)∗

��

// M∗ // X∗ // 0

Y ∗

��

0

Hence Y ∗ is left linearly compact. If Y = ⊕ISi, then Y ∗ =
∏

I S
∗
i ,

but Y ∗ linearly compact implies that I is finite. Hence M/X is finitely
cogenerated and therefore M is artinian as right C∗-comodule.
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iii) ⇔ ii) We can apply [1, Corollary 4.3]. We note that C is quasi-
injective as right C∗-module, HomC∗(M,C) ∼= Homk(M,k) = M∗ and
any submodule of M is closed.

iii) ⇒ i) Let Xi be an inverse family of left C∗-submodules of M∗.
Since M∗ is left noetherian, then the Xi’s are finitely generated. Now
by [1, Proposition 4.1] and Xi = HomC∗(M/Yi, C) = (M/Yi)

∗ for
some Yi ⊆ MC∗ , and the Yi will form a direct system. From the ex-
act sequence

0 −→ Yi −→M −→M/Yi −→ 0

we obtain

0 −→ (M/YI)
∗ −→M∗ −→ Y ∗

i −→ 0

so M/Xi
∼= Y ∗

i . Now

lim
←−

M∗/Xi = lim
←−

Y ∗
i
∼= (lim
−→

Yi)
∗ = (∪iYi)

∗.

Since ∪iYi ⊆M , it follows

M∗ −→ (∪iYi)
∗ −→ 0.

Corollary 4.4. C∗ is left linearly compact for the discrete topology if
and only if C∗ is left noetherian.

B. J. Müller [18] showed that for commutative rings the existence of
Morita dualities implies the existence of self dualities.

Corollary 4.5. Let C be a coalgebra. If C∗ has a right Morita dualiy
then C∗ has a self-Morita duality.

Proof: If C∗ has a right Morita duality, then C∗ is left noetherian by
Proposition 4.1. Moreover, by [18, Theorem 1] C∗

C∗ is discrete linearly
compact, then Corollary 4.4 implies that C∗ is right noetherian. By
Theorem 4.2, C∗ has self-Morita duality.

Let R be a k-algebra. A left R-module M is called almost noether-
ian if every cofinite submodule of M is finitely generated. Submodules,
quotients, and extensions of almost noetherian modules are almost noe-
therian. The algebra R is left almost noetherian if its almost noetherian
as a left module.We call R almost noetherian if it is left and right almost
noetherian. See [7, Section 1.1] for further details on almost noetherian
modules and algebra.

The coradical filtration on C induces a filtration on C∗ ,

(1) C∗ ⊇ C⊥
0 ⊇ C

⊥
1 · · · .

The two-sided ideal J = C⊥
0 is the Jacobson radical of C.
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Proposition 4.6. Let C be a coalgebra and R the graded dual ring of
gr(C). Denote by gr(C∗) the graded ring associated to the filtration (1).
Then

i) gr(C∗) ∼= R as graded rings.
ii) C∗ is complete with respect to (1).

Lemma 4.7. C∗ is linearly compact with respect to (1) if and only if C∗
i

is linearly compact for the discrete topology for all i.

Proof: It follows from [22, Theorem 28.15] and the fact that C∗/C⊥
i
∼=

C∗
i and C∗ is complete with respect to (1).

It is well-known that the category of right C-comodules MC is iso-
morphic to Rat(C∗-Mod), the subcategory of C∗- Mod consisting of all
rational left C∗-modules. Rat(C∗- Mod) is closed under submodules,
quotients and arbitrary direct sums. In the sense of [21], it is a heredi-
tary pretorsion class in C∗- Mod. See loc.cit. for further detail on torsion
classes. The left exact preradical associated to Rat(C∗- Mod) is the ra-
tional functor RatC(−) : C∗-Mod → C∗- Mod. Given M ∈ C∗- Mod,
RatC(M) is the sum of all rational modules contained in M . The left
linear topology FC on C corresponding to Rat(C∗-Mod) is the fam-
ily of all closed (in the weak-* topology) and cofinite left ideals of C∗.
If I ∈ FC there is a finite-dimensional left coideal W of C such that
I = W⊥. Recall that a coalgebra C is called almost connected if its
coradical C0 is finite dimensional.

Theorem 4.8. If C∗ is linearly compact for the topology (1), then C∗

is almost noetherian. Moreover, if C is almost connected both conditions
are equivalent.

Proof: Assume that C∗ is linearly compact for the topology (1). Since
C∗/C⊥

0
∼= C∗

0 is discrete linearly compact it follows that C is almost
connected. Then since C⊥

i is open, it follows that C∗/C⊥
i is linearly

compact for the discrete topology. But C∗/C⊥
i
∼= C∗

i , hence C∗
i is lin-

early compact. Now the exact sequence

0 −→ C1 −→ C0 −→ C0/C1 −→ 0

induces
0 −→ (C1/C0)

∗ −→ C∗
1 −→ C∗

0 −→ 0.

Thus (C1/C0)
∗ is linearly compact. Assume that C1/C0 = ⊕ISi, then

(C1/C0)
∗ ∼=

∏

I S
∗
i . It follows that I is finite because (C1/C0)

∗ is lin-
early compact. Hence C1/C0 is finite dimensional, and C1 is finite di-
mensional. Using induction we obtain that Ci is finite dimensional for
all i. By [7, Theorem 2.8], C∗ is almost noetherian.
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Suppose that C∗ is almost connected, then J is in FC . If C∗ is almost
noetherian, by [7, Theorem 2.8], we have that Rat is a torsion radical

and hence Jn ∈ FC for all n. Now C⊥
i = J i+1 = J i+1. Thus the

J-adic topology and the topology defined by (1) coincide. Therefore C∗

is complete for the J-adic topology and C∗/J i ∼= C∗
i is finite dimensional

for all i. Now the result follows from Lemma 4.7.
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An introduction”, Monographs and Textbooks in Pure and Applied
Mathematics 235, Marcel Dekker, Inc., New York, 2001.

[9] C. Faith, “Algebra. II. Ring theory”, Grundlehren der Mathematis-
chen Wissenschaften 191, Springer-Verlag, Berlin-New York, 1976.



Theorem of Tychonoff 69

[10] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90
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[12] J. L. Gómez Pardo and P. A. Guil Asensio, Linear compact-
ness and Morita duality for Grothendieck categories, J. Algebra
148(1) (1992), 53–67.
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