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In memory of Professor Klaus Doerk

Abstract

In this paper we study the set of Fitting classes which are right
extensible by soluble groups ordered by the inclusion relation. The
consideration of the associated lattices gives rise to new Fitting
classes and it allows to obtain some injectivity criteria for general
Fitting classes.

All considered groups are assumed to be finite. Set

T = {T; T is a Fitting class such that T = TS},

where S is the class of soluble groups. The classes in T have a partic-
ular interest in the Theory of Fitting classes of finite groups which are
not necessarily soluble. For instance, in a previous paper the authors
show that, if T ∈ T , then each intermediate Fitting class F between T∗

and 〈T, b(T)〉 is injective (that is each group has F-injectors) —in partic-
ular, each Fitting class in Locksec(S) is injective, in accordance with a
wider conjecture of Shemetkov [4, 11.117]—, being normal Fitting classes
precisely those belonging to Locksec(〈T, b(T)〉).

In this paper we study the set T ordered by the inclusion relation.
The consideration of the lattices associated to T gives rise to new Fitting
classes, as the complement in XN of the class of generalized nilpotent
groups and the complement in TN of the class of nilpotent-constrained
groups.

The notations and terminology are referred to [1]. We denote by
E the class of all (finite) groups. Recall that a class of groups F is a
Fitting class if (i) N E G ∈ F implies N ∈ F, and (ii) N, M E G ∈ E,

2000 Mathematics Subject Classification. 20D10.
Key words. Finite group, Fitting class, lattice, preboundary.
∗Supported by MTM2004-06067-C02-01.
†Supported by MTM2004-08219-C02-01.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13269483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


352 M. J. Iranzo, J. P. Lafuente, F. Pérez-Monasor

N, M ∈ F implies NM ∈ F. If F is a class of groups, the product GF

of all normal subgroups of G ∈ E which belong to F is called the radical

of G with respect to F. The Fitting product of two Fitting classes F

and G is F � G = (G ∈ E; G/GF ∈ G). The product of two classes of
groups F and G is the class FG of the groups G ∈ E which have a normal
subgroup N such that N ∈ F and G/N ∈ G. For a set of groups X,
〈X〉 denotes the smallest Fitting class containing X. The boundary of
the Fitting class F is the set b(F) of the groups X such that X 6∈ F

and N sn G, N 6= G implies N ∈ F (where N snG means that N is a
subnormal subgroup of G). Each group X ∈ b(F) is single-headed (that
is X has a unique maximal normal subgroup, denoted Cos(X)) and b(F)
is subnormally independent (that is X sn Y ∈ b(F), X 6= Y implies

X 6∈ b(F)). A group G ∈ E is perfect if G = G′. b(F) is the set of all
perfect groups X ∈ b(F). Set Fb = 〈Cos(X); X ∈ b(F)〉, Fm = 〈b(F)〉
and Fs = 〈G ∈ F; G′ = G〉. If X is a class of groups, D0X denotes the
class of all groups which are a direct product of elements of X. If F ⊆ X

are Fitting classes, we set XF = (G ∈ X; G/GF ∈ D0Σ), where Σ is the
class of all nonabelian simple groups.

A class m of groups is a preboundary if it is subnormally indepen-
dent and consists of single-headed groups. Denote by P the set of all
preboundaries of perfect groups. If m ∈ P and G ∈ E, set bm(G) =
{X sn G; X ∈ m}. The map b: T → P is a bijection whose inverse
h: P → T is given by h(m) = (G ∈ E; bm(G) = ∅) if m ∈ P [1, XI 4.4].

We begin with

Theorem 1. (T ,⊆) with the operations

T ∧R = T ∩R, T ∨R = 〈T, R〉S,

if T, R ∈ T , is a complete, distributive and atomic lattice. T has no

coatoms.

Proof: It is immediate that (T ∩R)S = T ∩R, and therefore (T ,⊆) is
a complete lattice.

Denote by ∨ and ∧ the corresponding lattice operations. We have
that, if T, R ∈ T , then T∧R = T∩R. And immediatly T∨R = 〈T, R〉S.

Let us see that the lattice is distributive. We must show that, if
T, R, K ∈ T , then

T ∩ FS = HS,

where F = 〈R, K〉 and H = 〈T ∩R, T ∩ K〉. As T ∩ FS = (T ∩ F)S, this
is equivalent to

(T ∩ F)S = HS.



Lattices of Fitting Classes 353

Clearly H ⊆ T ∩ F. Let us assume that HS 6= (T ∩ F)S. Then there
exists

X ∈ (T ∩ F)S ∩ b(HS).

X is a perfect and single-headed group, hence X ∈ T∩F. As F = 〈R, K〉,
X ∈ SnR ∪ SnK by [1, XI 4.14]. Therefore X ∈ (T ∩R) ∪ (T ∩ K) ⊆ H,
a contradiction.

The lattice is atomic as a particular case of Proposition 4 and has no
coatoms as a consequence of Proposition 7.

Remarks 2. i) If T, R ∈ T and T 6= E 6= R, then 〈T, R〉S 6= E. In
particular, the unique elements of T which have a complement are S

and E.
Suppose, to have a contradiction, that 〈T, R〉S = E. Let X ∈ b(T),

Y ∈ b(R) and take S ∈ Σ. Then the regular wreath product W =
(X × Y ) o S is perfect and single-headed, by [1, A 18.8]. By hypothesis,
W ∈ 〈T, R〉, hence either W ∈ T or W ∈ R, by [1, XI 4.14], against
X 6∈ T and Y 6∈ R.

ii) Let T, R ∈ T , T 6⊆ R 6⊆ T. Then 〈T, R〉 is strictly contained in
T ∨R.

To see it, consider

H = (G ∈ E; G/(GTGR) ∈ N).

By [1, IX 2.1], H is a Fitting class which contains both T and R. Let us
assume that G ∈ T is such that T, R ⊆ G. Let G ∈ H. Then GTGR ∈ G

and G/(GTGR) ∈ N. Thus G ∈ GS = G. Therefore H ⊆ T ∨R.
Let us take R ∈ R ∩ b(T) and T ∈ T ∩ b(R) and form the regular

wreath product G = (T × R) o S3. By [1, X 1.15], T and R are Lockett
classes. Then, by [1, X 2.1], G/(GTGR) ∼= S3 6∈ N. Therefore G 6∈ H.
But G has a subgroup H such that H/(HTHR) ∼= C3 ∈ N and G/H ∼=
C2, that is G ∈ HS. In particular G ∈ (T ∨R) \ 〈T, R〉.

If X and Y are classes of groups, we set

X ·Y = (G ∈ E; G = GXGY).

Notice that if X and Y are Fitting classes, not necessarily X · Y is a
Fitting class (see [1, Remark (b) after IX 2.1]). If m ∈ P , we write

Em(G) = 〈X ; X ∈ bm(G)〉.

Lemma 3. Let F be a Fitting class and n ⊆ b(F). Then we have:

〈F, n〉 = F · 〈n〉 = (G ∈ E; G = GF En(G)).
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Proof: Let G ∈ E. If X ∈ bn(G), then Cos(X) = XF.
Set X = (G ∈ E; G = GF En(G)). Let us see that it is a Fitting class.
If G ∈ X, then G/GF

∼= En(G)/ En(G)F ∈ D0Σ [2, Lemma 6]. Let
N E G. Then bn(N) ⊆ bn(G). Thus, if bn(N) = {X1, . . . , Xr}, then

NGF/GF = X1GF/GF × · · · ×XrGF/GF,

hence

N = N ∩NGF = N ∩X1 . . .XrGF = N ∩ En(N)GF = En(N)NF ∈ X.

On the other side, if N, M E G, G = NM , N, M ∈ X, then

G = NM = NF En(N)MF En(M) ≤ GF En(G),

hence G ∈ X. Therefore X is a Fitting class.
Obviously X ⊆ 〈F, n〉, hence X = 〈F, n〉.
Set L = 〈n〉. As En(G) ≤ GL, we have GF En(G) ≤ GFGL for each

G ∈ E. As L = 〈n〉 ⊆ 〈F, n〉 = X, we have

GFGL ≤ GF En(G) ≤ GFGL,

hence GF En(G) = GFGL.

Proposition 4. If E 6= T ∈ T , then

[T,→) = {H ∈ T ; T ⊆ H}

is atomic. Moreover there is a bijective correspondence between the set

of atoms of [T,→) and b(T).

Proof: Let us see that H ∈ T is an atom in [T,→) if and only if H =
〈T, X〉S, where X ∈ b(T).

Assume that H is an atom in [T,→). Let X ∈ H ∩ b(T). Then

T ⊂ 〈T, X〉S ⊆ H

hence H = 〈T, X〉S. Assume conversely that X ∈ b(T), H ∈ T and

T ⊂ H ⊆ 〈T, X〉S.

Take Y ∈ b(T) ∩ H. As Y is perfect, then Y ∈ 〈T, X〉. Then Y ∈ SnX ,
by [1, XI 4.14], hence Y ∼= X because Cos(X) ∈ T. Therefore H =
〈T, X〉S.

Now if T ⊂ H ∈ T , let X ∈ b(T) ∩ H. Then 〈T, X〉S ⊆ H, hence
[T,→) is atomic.

Finally we can show as above that if X, Y ∈ b(T), then 〈T, X〉S =
〈T, Y 〉S if and only if X ∼= Y .
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The classes T ∈ T for which b(T) is maximal in (P ,⊆), where P is
the set of all preboundaries of perfect groups, are precisely those with
Tb = T∗ [2, Proposition 13]. We have

Proposition 5. Let E 6= T ∈ T . If H is an atom in [T,→), then

Hb = H∗.

Proof: By Proposition 4, H = 〈T, X〉S, where X ∈ b(T). Now if Y ∈ H

is perfect and single-headed, then either Y ∈ T or Y ∼= X , by [1, XI 4.14],
hence Hs = 〈Ts, X〉.

On the other hand, if S ∈ Σ, then X o S ∈ b(H), because X is perfect
and single-headed by [1, A 18.8 (d)], hence X ∈ Hb.

We proceed now to show that Ts ⊆ Hb. Let Y ∈ T perfect and
single-headed and take G = X × Y . Let S ∈ Σ and W = G o S. W is
perfect and single-headed again by [1, A 18.8 (d)]. Assume that W ∈ H.
Then W ∈ 〈T, X〉, hence either W ∈ T or W sn X , by [1, XI 4.14], a
contradiction. As Cos(W ) ∈ H, we have that W ∈ b(H). Therefore
Cos(W ) ∈ Hb, hence Y ∈ Hb. And Ts ⊆ Hb.

Finally
H∗ = 〈Hs, Hb〉 = 〈Ts, X, Hb〉 = Hb,

by [3, 1.1].

Remark 6. As a consequence of Proposition 5 we have that {T ∈ T ; Tb =
T∗} is not a sublattice of T . Take any T ∈ T such that Tb 6= T∗

and T 6= E (for instance the class C of N-constrained groups, see [2,
Example (iii)]) and two different atoms H, K ∈ [T,→). Then Hb = H∗

and Kb = K∗, by Proposition 5, but (H ∩ K)b = Tb 6= T∗ = (H ∩ K)∗.

Proposition 7. Let S 6= H ∈ T . Then the set of coatoms of

(←, H] = {G ∈ T ; G ⊆ H}

is in bijective correspondence with the maximal elements of

psh(H) = (X ∈ H; X is perfect and single-headed)

ordered by the relation “to be subnormally embedded”.

Proof: Let us assume that T is a coatom in (←, H]. Then, if X ∈ H ∩
b(T), we have H = 〈T, X〉S. If Y is a perfect and single-headed group
in H and X sn Y , then X ∼= Y , by [1, XI 4.14], and X is maximal.
Further if Z ∈ H ∩ b(T), then

〈T, X〉S = H = 〈T, Z〉S.

Therefore X ∈ 〈T, Z〉S, hence X sn Z and X ∼= Z by the maximality
of X . Thus H ∩ b(T) = (X).
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Assume now that X is a maximal element in psh(H). Consider

m = (b(H) \ (Y ; X sn Y )) ∪ (X).

Clearly m ∈ P . Let T = h(m). Let us see that H = 〈T, X〉S. Suppose
that there exists Y ∈ T ∩ b(H). As b(T) = m, it follows that X sn Y ∈
b(H), hence X ∈ T, a contradiction. Therefore T ⊆ H, hence 〈T, X〉S ⊆
H. Suppose Y ∈ H∩b(〈T, X〉S). Y is a perfect and single-headed group;
by the maximality of X we have that X is not subnormally embedded
in Y . Therefore, if Z sn Y , then Z 6∈ m. Thus Y ∈ h(m) = T, a
contradiction. So H = 〈T, X〉S and T is a coatom in (←, H].

Corollary 8. If T ∈ T is such that Tb 6= T∗, then each perfect and

single-headed group in T is strictly subnormally embedded in another

perfect and single-headed group in T.

Proof: Assume the contrary. Then psh(T) has maximal elements for the
relation “to be subnormally embedded”, hence there exists a coatom K

in (←, T], by Proposition 7. But then T is an atom in [K,→), hence
Tb = T∗ by Proposition 5, against the hypothesis.

We know that T ∈ T if and only if there exist Fitting classes F and X

such that F ⊆ X ⊆ XF with T = T(F, X), where T(F, X) = (G ∈ E; GX ∈
F) [2, Theorem 8]. We set B(X) for the boolean of X.

Lemma 9. If F is a Fitting class, we write

XF = {X; X is a Fitting class such that F ⊆ X = XF}.

Then

i) The map

f : B(b(F))→ XF

given by f(m) = 〈F, m〉 if m ⊆ b(F), is an isomorphism of inclusion-

ordered sets.

ii) (XF,⊆) with the operations

X ∧Y = X ∩Y, X ∨Y = X ·Y,

if X, Y ∈ XF, is a complete, distributive, complemented and atomic

lattice.

Proof: i) Let us see that, if F is a Fitting class and F ⊆ X, then X ∈ XF

if and only if X = 〈F, X ∩ b(F)〉. Set m = X ∩ b(F).
If X = 〈F, m〉, then G ∈ X implies G = GF Em(G), by Lemma 3, hence

G/GF
∼= Em(G)/Em(G)F ∈ D0Σ. Therefore X = XF.

Assume conversely that X ∈ XF. Obviously 〈F, m〉 ⊆ X. Let G ∈ X.
As X = XF, we have G/GF ∈ D0Σ. We may assume that G 6∈ F.
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Let N/GF be a minimal normal subgroup of G/GF. Take X sn G a
minimal supplement of GF in N . Then X is perfect and single-headed
and Cos(X) = XF, hence X ∈ b(F) ∩ X = m. It follows that G =
GF Em(G) ∈ 〈F, m〉, and X ⊆ 〈F, m〉.

Therefore f is a well defined bijection between the boolean of b(F)

and XF. Let m, n ⊆ b(F). If m ⊆ n, then obviously f(m) ⊆ f(n). Finally,
assume that 〈F, m〉 ⊆ 〈F, n〉. Let X ∈ m. Then X ∈ 〈F, n〉, hence X ∈ n

by [1, XI 4.14], as n is subnormally independent.

ii) It suffices to show that, if m, n ⊆ b(F), X = 〈F, m〉 and Y = 〈F, n〉,
then X · Y = 〈F, m ∪ n〉. Now G ∈ X · Y ⇐⇒ G = GXGY ⇐⇒
G = GF Em(G) En(G) (by Lemma 3) ⇐⇒ G ∈ 〈F, m ∪ n〉, as obviously
Em(G) En(G) = Em∪n(G).

Theorem 10. Let F be a Fitting class and set

TF = {T ∈ T ; T = T(F, X), X ∈ XF}.

Then we have

i) If T ∈ T , then T ∈ TF if and only if b(T) ⊆ b(F).

ii) The map

τF : XF → TF

given by τF(X) = T(F, X) if X ∈ XF is a lattice antiisomorphism.

iii) TF is a complete, distributive, complemented and atomic lattice.

Proof: i) By [1, XI 4.7], b(T) ⊆ b(F) is equivalent to Tb ⊆ F ⊆ T.
By [2, Proposition 3], if T ∈ TF, then Tb ⊆ F ⊆ T. Conversely, if

T ∈ T and Tb ⊆ F ⊆ T, set X = (G ∈ E; G = GFGM), where M = Tm.
Then X ∈ XF and T = T(F, X) by [3, 1.3, 1.4], hence T ∈ TF.

ii) Consider the composition

B(b(F))
f
−→ XF

τF

−→ TF,

where f(m) = 〈F, m〉, if m ⊆ b(F). Then

τF f(m) = T(F, 〈F, m〉) = (G ∈ E; GF Em(G) ∈ F)

= (G ∈ E; Em(G) ∈ F) = (G ∈ E; Sn(G) ∩m = ∅)

= h(m),

hence τF f is the restriction of h to B(b(F)). Moreover if T ∈ TF, taking

m = b(T), we have that h(m) = T and, by i), m ⊆ b(F). Therefore τF f
is a bijection between B(b(F)) and TF.
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Let T, R ∈ TF. Then, by i), Tb ⊆ F ⊆ R, and, by [1, XI 4.7], T ⊆ R if
and only if b(R) ⊆ b(T). Therefore τF f is an antiisomorphism of ordered
sets. Now, by Lemma 9, we have that f is an isomorphism, hence τF is
also an antiisomorphism.

iii) That follows now immediately from Lemma 9.

Corollary 11. Let T, R ∈ T . Then the following assertions are equiv-

alent

i) There exists a Fitting class F such that T, R ∈ TF.

ii) b(T) ∪ b(R) is a preboundary.

iii) b(T) ∪ b(R) = b(T ∩R).

Proof: i) =⇒ iii) by Theorem 10. Of course iii) =⇒ ii). If b(T)∪b(R)
is a preboundary, as it consists of perfect groups, then, by [1, XI 4.3],

H = h(b(T) ∪ b(R))

is a Fitting class (incidentally belonging to T ) such that b(H) = b(T) ∪
b(R). In particular b(T) ⊆ b(H) and b(R) ⊆ b(H), hence T, R ∈ TH, by
Theorem 10, and we have finally that ii) =⇒ i).

Remarks 12. Let F be a Fitting class.

i) Obviously max(TF) = E. On the other hand, min(TF) = h(b(F))
by Theorem 10. And it is immediate that

h(b(F)) = (G; Socn(G/GF) = 1).

ii) TF is not a sublattice of T . If T, R ∈ TF, then b(T ∩R) = b(T) ∪
b(R), by Corollary 11, hence the infimum of two elements in TF coincides
with that in T . But the question changes for the supremum: it suffices
to consider that TF is complemented and Remark 2 (i).

In fact, for all T, R ∈ T , b(T) ∩ b(R) ⊆ b(〈T, R〉S), with equality if
and only if b(T) ⊆ b(R) or b(R) ⊆ b(T).

To see it, let us assume first that b(〈T, R〉S) ⊆ b(T) ∩ b(R) and
suppose moreover that T 6⊆ R 6⊆ T. Take X ∈ R ∩ b(T), Y ∈ T ∩ b(R)
and W as in Remark 2 (i); then W ∈ b(〈T, R〉S)\(b(T)∩b(R)), against
the hypothesis. We may assume therefore that T ⊆ R. Then 〈T, R〉S =
R, hence b(R) ⊆ b(T) ∩ b(R) and so b(R) ⊆ b(T).

Let us assume now that b(R) ⊆ b(T). Then T ⊆ R by [1, XI 4.4],
hence b(〈T, R〉S) = b(R) ⊆ b(T) ∩ b(R).

iii) If b(F) = m ∪ n and m ∩ n = ∅, then T = h(m) and R = h(n)
are mutual complements in TF, Tm = 〈m〉 and Rm = 〈n〉. Obviously
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m ⊆ Rs and n ⊆ Ts. In fact, 〈m〉 ⊂ Rs and 〈n〉 ⊂ Ts. For if X ∈ m, take
any S ∈ Σ and suppose that X o S 6∈ R; then X o S ∈ b(R) = n, as X o S
is perfect and single-headed with cosocle in R, by [1, A 18.8], which
contradicts that m∪n is subnormally independent; therefore X oS ∈ Rs;
but X o S 6∈ 〈m〉 by [1, XI 4.14] because m is subnormally independent.
Analogously 〈n〉 ⊂ Ts. In particular, Tm ⊂ R∗ and Rm ⊂ T∗, by [1,
XI 4.15].

iv) By Theorem 10 (i) and [2, Proposition 13], there exists T ∈ TF

such that Tb = T∗ if and only if b(F) is maximal in (P ,⊆). In this
case such a T is unique, namely T = h(b(F)) = FS = F∗; moreover,
F ∈ Locksec(T), hence F is injective, by [3, 3.4].

v) If F and G are two Fitting classes, then TF = TG if and only if
b(F) = b(G), by Theorem 10 (i). Therefore TF = Th(b(F)).

In particular, by [2, Proposition 13], if T ∈ T satisfies Tb = T∗, then
there is a unique E ∈ {TF; F is a Fitting class} such that T ∈ E , namely
E = TT.

In general, given T ∈ T , the set of lattices TF according to Theorem 10
for which T ∈ TF is

{TH; H ∈ T , Tb ⊆ H ⊆ T}

by [1, XI 4.7]. Observe that if T ∈ TH, H ∈ T , then the complement
of T in TH is

R = h(b(H) \ b(T)) = h(b(H) ∩ T).

We have T ∩ R = min(TH) = H. On the other hand if G is a Fitting
class such that T ∩G ⊆ H, then

G ∩ b(R) = G ∩ b(H) ∩ T ⊆ H ∩ b(H) = ∅,

hence G ⊆ R. Therefore R is the greatest Fitting class G such that
T ∩G ⊆ H.

If H, K ∈ T , Tb ⊆ H, K ⊆ T and R, resp. L, is the complement of T

in TH, resp. TK, then H ⊆ K if and only if R ⊆ L.
Indeed if H ⊆ K, then R ∩ T = H ⊆ K, hence R ⊆ L. And if R ⊆ L,

then H∩b(K) = T∩R∩b(K) ⊆ T∩L∩b(K) = K∩b(K) = ∅, hence H ⊆ K.

Example 13. Let N be the class of nilpotent groups and consider the
class

C = (G; F(G) = F*(G))

of N-constrained groups. Then C = T(N, Ñ), where Ñ = (G; G =
F*(G)) is the class of generalized nilpotent groups (see [1, IX 4.14]). We

noted in [2, Example (iii)] that Cb = N and Cm = Ñ.
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Let F be a Fitting class such that C ∈ TF. The complement of b(C)

in the boolean B(b(F)) is

n = (X ∈ b(F); Z(X) < Cos(X)).

By Lemma 9 and Theorem 10, the complement of C in TF is R = h(n).
Let us see that N ⊆ Rb. Let p be a prime, take S ∈ Σ such that p is a
divisor of n = |S| and consider the regular wreath product W = Cp o S.
Set X = W ′. From [1, A 18.4], with M = {(x1, . . . , xn)∈Cn

p ; x1 . . . xn =
1}, we have that X = MS is perfect and single-headed; Z(X) is the
diagonal subgroup of Cn

p and, as p | n, we have that Cp
∼= Z(X) < M =

Cos(X), hence X ∈ n, Cp ∈ 〈Cos(G); G ∈ n〉 = Rb, and N ⊆ Rb.
Consider the case F = N. We have that

b(N) = (X ; X is perfect and single-headed and Cos(X) = F(X)).

Now obviously 〈Cos(G); G ∈ n〉 ⊆ N, hence Rb = N and Rm =
〈n〉 = (G; G = F(G) En(G)), by [2, Proposition 7]. On the other hand

〈N, b(C)〉 = 〈b(C)〉 = Ñ and, by Lemma 9, Ñ and 〈n〉 are mutual com-

plements in XN. Therefore Ñ ∩ 〈n〉 = N and

Ñ · 〈n〉 = (G; G = F*(G)G〈n〉) = N �D0Σ.

Thus for each group G ∈ E we have

F*(G)/ F(G)×G〈n〉/ F(G) = (G/ F(G))D0Σ,

the nonabelian socle of G/ F(G). Moreover

min TN = (G; Socn(G/ F(G)) = 1) = T(N, N �D0Σ) = h(b(N)).

By [2, Proposition 3 (ii)] it follows that

R = h(n) = T(N, 〈n〉) = (G; G = CG(G〈n〉/ F(G)))

is the complement of C in TN. Observe that Cb = N = Rb ⊆ Rm ⊆ Cs,
hence C∗ = Cs by [3, 1.1]. Analogously R∗ = Rs.

Assume now that F ∈ Locksec(S), that is, S∗ ⊆ F ⊆ S. As S∗ = Sb,
this is equivalent to b(S) ⊆ b(F), by [1, XI 4.7], and then, immediatly,
to b(S) = b(F). Let us see that in this case Rb = S∗. Let X ∈ b(S)
and set Y = Cos(X). If Y = Z(X), in particular Y ∈ N ⊆ Rb. If
Z(X) < Y , then X ∈ n, hence Y ∈ Rb. Therefore Sb ⊆ Rb. On the
other hand, b(R) = n ⊆ b(S), hence Rb ⊆ Sb and equality holds. Let
us see further that min TF = S. If we assume the contrary, then there
exists X ∈ min TF∩b(S). Thus Cos(X) ∈ S∗ ⊆ F. As Socn(X/XF) = 1,
it follows X ∈ F, against F ⊆ S. Hence in fact min TF = S. Observe
in particular that maxXS∗

= 〈S∗, b(S)〉 = 〈b(S)〉 = S∗ � D0Σ, the
smallest normal Fitting class, and that maxXS = 〈S, b(S)〉 = S�D0Σ,



Lattices of Fitting Classes 361

the class of all groups G which induce an inner automorphism on each
nonabelian chief factor of G, which is also a normal Fitting class by [1,
X 3.28], as S � (S∗ �D0Σ) = S �D0Σ.

In [3, 2.8–9] we saw that BL = {〈T, b(T)〉; T ∈ T } is exactly the set
of normal Fitting classes defined by Blessenohl and Laue [1, X 3.20].
Consider BL ordered by the inclusion relation.

Theorem 14. The map

ν : T → BL

given by ν(T) = 〈T, b(T)〉 is an isomorphism of ordered sets. In partic-

ular BL is a complete, distributive and atomic lattice.

Proof: If T, R ∈ T and T ⊆ R, then immediatly

b(T) = (b(R) ∩ b(T)) ∪ (R ∩ b(T)).

Therefore ν(T) ⊆ ν(R).
Assume now that 〈T, b(T)〉 ⊆ 〈R, b(R)〉, where T, R ∈ T . We see

that T ⊆ R. Assume the contrary and let X ∈ T ∩ b(R). Take S ∈ Σ
and consider Y = X o S. Y is a perfect and single-headed group with
Cos(Y ) ∈ T, hence either Y ∈ T or Y ∈ b(T). In any case Y ∈ 〈T, b(T)〉,
hence Y ∈ 〈R, b(R)〉. By [1, XI 4.14], we have Y ∈ R or Y ∈ b(R), in
contradiction with X sn Y , X 6= Y and X ∈ b(R).
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