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Abstract
Garcinia gummi-gutta (L.) Roxb. (Clusiaceae) is an endemic, semidomesticated, fruit-yielding tree species distributed in the
Western Ghats of India and Sri Lanka. Various bioactive phytochemicals, such as garcinol, benzophenones and xanthones
are isolated from G. gummi-gutta and have shown antibacterial, antiviral and antioxidant activities. We sequenced the total
genomic DNA using Illumina Hiseq 2000 platform and examined 241,141,804 bp high quality data, assembled into 773,889
contigs. In these contigs, 27,313 simple-sequence repeats (SSRs) were identified, among which mononucleotide repeats were
predominant (44.98%) followed by dinucleotide and trinucleotide repeats. Primers were designed for 9964 microsatellites
among which 32 randomly selected SSR primer pairs were standardized for amplification. Polymerase chain reaction (PCR)
amplification of genomic DNA in 30 G. gummi-gutta genotypes revealed polymorphic information content (PIC) across all
32 loci ranging from 0.867 to 0.951, with a mean value of 0.917. The observed and expected heterozygosity ranged from 0.00
to 0.63 and 0.896 to 0.974, respectively. Alleles per locus ranged from 12 to 27. This is the first report on the development of
genomic SSR markers in G. gummi-gutta using next-generation sequencing technology. The genomic SSR markers developed
in this study will be useful in identification, mapping, diversity and breeding studies.

[Ravishankar K. V., Vasudeva R., Hemanth B., Sandya B. S., Sthapit B. R., Parthasarathy V. A. and Rao V. R. 2017 Isolation and charac-
terization of microsatellite markers in Garcinia gummi-gutta by next-generation sequencing and cross-species amplification. J. Genet. 96,
xx–xx]

Introduction
Garcinia gummi-gutta (L.) Roxb., popularly known as ‘Mal-
abar Gamboge’ (in English) ‘uppage’ (in Kannada) belongs
to the family Clusiaceae. It is a moderate-sized dioecious
tree with round canopy, drooping branches and smooth dark
barks. It is common in lower Shola forests of the West-
ern Ghats, India, up to an altitude of 1800 mean sea level.
G. gummi-gutta is recognized in Ayurveda, the traditional
Indian system of medicine, for better digestion and is pre-
scribed against abdominal disorders and heart diseases. The
fruit rind is ground and used as a sour flavouring spice in
the preparation of curries and to garnish fish preparations. The

∗For correspondence. E-mail: kv_ravishankar@yahoo.co.in;
kvravi@iihr.res.in.

rind of the uppage fruit has been traditionally used in India
and Sri Lanka as a culinary additive and fish preserva-
tive (Samarajeewa and Shanmugapirabu 1983; Bhagyavanth
et al. 2010). Many studies showed that hydroxycitric acid
(HCA), a secondary compound present in the rind of uppage
fruit is effective in weight loss (Jena et al. 2002). The
extract obtained from this fruits has exhibited the property of
antiobesity. Recently, a number of studies have shown that
G. gummi-gutta fruit extracts are rich in HCA and are effec-
tive in reducing body weight (Shara et al. 2004; Saito et al.
2005).

Germplasm utilization and conservation requires precise
information on the genetics, genetic relationships and diver-
sity. Earlier, a few studies attempted to examine diversity
using random amplified polymorphic DNA (RAPD) and

Keywords. microsatellite markers; cross-species amplification; next-generation sequencing; Garcinia gummi-gutta.
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inter-simple sequence repeat (ISSR) markers (Mohan et al.
2012; Parthasarathy et al. 2013). However, development of
microsatellite markers have helped in fingerprinting unique
trees, assessing degree of diversity in the populations, and
identifying marker tightly linked to the important agronomic
traits like active ingredients, and resistance to biotic and
abiotic stresses. Therefore, the development of markers has
become a prerequisite for genetic studies (Bohra et al. 2011;
Dutta et al. 2011). Keeping this in view, here, we report the
development and standardization of microsatellite markers
of G. gummi-gutta using next-generation sequencing (NGS)
and their cross species transferability.

Materials and methods
Plant materials

The total genomic DNA from G. gummi-gutta was used for
genome sequencing. We have also included Garcinia indica
and Garcinia morella to examine cross species transferabil-
ity of isolated microsatellite markers. The leaf material was
obtained from the germplasm collection of the College of
Forestry, Sirsi (University of Agricultural Sciences, Dhar-
wad), India (see details in table 1 in electronic supplementary
material at http://www.ias.ac.in/jgenet/). The leaf samples
were obtained from Jaddi Gadde collection (14◦44′13.2′′N
latitude and 74◦43′03.2′′E longitude with altitude of 498 m).
The authenticated herbarium specimens were deposited to
the herbarium of College of Forestry, Department of Forest
Biology and Tree improvement.

Genome sequencing and assembly

High-quality genomic DNA was isolated from the leaves of
30 G. gummi-gutta genotypes, one genotype from each of G.
indica and G. morella (table 1 in electronic supplementary
material) following modified CTAB method (Ravishankar
et al. 2000). Total genomic DNA was sequenced using NGS
Illumina HiSeq2000 platform at M/s Genotypic Bengaluru
facility following manufactures instructions. High-quality
sequence reads (Q > 20; >70% bases in a read) were used
for de novo assembly into contigs using SOAPdenovo2 soft-
ware (Luo et al. 2012). Assembly with Kmer-63 was selected
as it has the optimal readings for N50.

Survey, identification and design primers for genomic
microsatellite markers

The Perl Script software program MISA (http://pgrc.ipk-
gatersleben.de/misa/) (Thiel et al. 2003; Ravishankar et al. 2015)
was used for identification of SSRs from assembled con-
tigs (Feng et al. 2009; Ravishankar et al. 2015). MISA
files were transferred to Microsoft Excel where SSRs were
classified into mononucleotide, dinucleotide, trinucleotide,
tetranucleotide, pentanucleotide and hexanucleotide repeats
and compound repeats. Primer pairs flanking the repeats
were designed using Primer3 software (Untergrasser et al.
2012) (table 2 in electronic supplementary material).

PCR and genotyping

We selected 50 SSR primer sets randomly and synthe-
sized with M13 tail. These M13 tailed primers were
first screened for amplification using pooled total genomic
DNA from five randomly selected genotypes. We used
fluorescence-based M13 tailing PCR method following
Schuelke (2000) to amplify the microsatellites in a quick,
accurate and efficient manner. The forward primer tailed
with 5′-GTAAAACGACGGCCAGT-3′ and reverse primer
tailed with 5′-GTTTCTT-3′. PCR was carried out in 20 μL
reaction volume containing 2 μL of 10× reaction buffer,
2.0 μL of 1 mM dNTPs, 0.9 μL (5 pmol) of forward, 0.9 μL
reverse primers (5 pmol), labelled M13 probes (HEX, NED,
VIC, TET) 1.2 μL (5 pmol), 5.0 μL (50–75 ng) of tem-
plate genomic DNA, 0.8 μL (2 U) of Taq DNA polymerase
and 7.2 μL of nuclease free water. The PCR cycling profile
was: initial denaturation at 94◦C for 2 min, followed by 35
cycles of 94◦C for 30 s, 55◦C for 30 s, 72◦C for 1 min and a
final extension at 72◦C for 5 min. PCR reaction was carried
out using thermocycler (Eppendrof Master Cycler Gradient,
Germany). Amplified products were initially separated on
3% agarose gel to confirm the amplification. Finally, 32 SSR
primers were selected based on amplification of clear PCR
products. These primers were employed for amplification of
30 genotypes of G. gummi-gutta and one genotype each of
G. indica and G. morella. The PCR products were separated
using automated DNA Sequencer (Applied Biosystems, ABI
3730 DNA Analyzer) through capillary electrophoresis, at
M/S Eurofins facility, Bengaluru.

Genetic analysis of SSR markers

The raw data generated was analysed and compiled using
Peak Scanner ver. 1.0 software (Applied Biosystems, Foster

Table 1. Details of sequenced genomic data.

Sequencing details

Total number of contigs 773889
Total number of examined sequences (bp) 241141804
Total number of identified SSRs 27313
Number of SSR containing contigs 26663
Number of SSR containing more than one SSR 631

Table 2. Simple-sequence repeat types in the G. gummi-gutta
contigs sequences.

Motif length Number of SSR Frequency (%)

Mononucleotide 12286 44.98
Dinucleotide 9638 35.29
Trinucleotide 3003 10.99
Tetranucleotide 552 2.02
Pentanucleotide 249 0.91
Hexanucleotide 58 0.21
Complex/compound 1527 5.59
Total 27313
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City, USA) for determining the exact allele size. Allele sizes
for each SSR loci were used for genetic analysis using
Cervus 3.0 software (Kalinowski et al. 2007). We have esti-
mated the number of alleles, observed heterozygosity (Ho),
expected heterozygosity (He) and PIC. Probability of iden-
tity (PI) was analysed for each SSR loci using Identity 1.0
software (Wagner and Sefc 1999).

Results and discussion

Off the wide range of DNA markers in use, microsatellites or
SSR markers are extensively employed in plant studies. SSR
markers are highly reproducible, multiallelic, PCR based,
highly polymorphic, easy to use and amenable to automa-
tion. Thus, SSRs markers are widely used for mapping, crop
breeding programmes and population genetics (Varshney et al.
2005). However, the use of microsatellite markers for study-
ing nonmodel species like G. gummi-gutta has been impeded
by lack of available genomic resources. A few years ago,
identification of genomic SSRs and subsequent conversion to
markers were expensive and time-consuming, involving con-
struction and screening of microsatellite-enriched genomic
DNA libraries (Glenn and Schable 2005). Compared to this
hybrid capture method using probes, the present NGS based
method is fast, simple, and overcomes a number of technical
difficulties. The advent of NGS technologies, such as pyrose-
quencing, has made this process less complicated and easy
(Zalapa et al. 2012). As a result, a large number of SSR mark-
ers can be developed in a short span of time and at a lower
cost. This approach is especially useful for many tree crops
where there is no sequence information available.

We used high-throughput IlliminaHiSeq 2000 platform
to develop genomic SSR markers in G. gummi-gutta. The
number of assembly of reads of the long sequences was
773,889 contigs of total length 241 Mb (table 1). An SSR
survey of genomic sequences using MISA software (http://
pgrc.ipk-gatersleban.de/misa) revealed that the 773,889 con-
tigs contained 27,313 SSRs. Mononucleotide repeats are
predominant (44.98%) followed by dinucleotide (35.29%)
and trinucleotide (14.9%) repeats (table 2). Mononucleotide
repeats are present in high number in some monocots
(rice, sorghum and Brachypodium) and also in some dicots
(Arabidopsis, Medicago and Populus) (Sonah et al. 2011).
In the present study, apart from mononucleotide repeats, din-
ucleotide repeats were the most prevalent accounting for
35.29% of all SSRs identified, followed by trinucleotide
repeats (10.29%; table 2). While the mononucleotide, dinu-
cleotide and trinucleotide repeats contribute to the major pro-
portion of SSRs (90.56%) and the rest was contributed by
tetranucleotide, pentanucleotide and hexanucleotide repeats
(table 2). The molecular mechanism of the origin and evolu-
tion of microsatellite markers are not clearly understood. The
relative dominant occurrence of repeat motif of a particular
sequence types and its length in plant genome might be the
outcome of selection pressure applied on that specific motif
during evolution. The most common mutation mechanisms
assumed to be operating are replication slippage, and unequal
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Table 4. Summary of genetic analysis.

Mean Range

Polymorphic information content 0.9173 0.867–0.951
Observed heterozygosity 0.2474 0.000–0.63
Expected heterozygosity 0.942 0.896–0.974
Allele per locus 18.8 12–27
Probability of identity 0.01631 0.0065–0.0622

Total number of alleles is 606. Total probability of identity is
4.538906e-060.

crossing over leading to addition or removal of one or more
motifs and variation in the length (Buschiazzo and Gemmell
2006; Sonah et al. 2011).

Genetic analysis and transferability of genomic SSR markers

In this study, 32 primers amplified clear PCR products in G.
gummi-gutta. A high rate of successful amplification can be
due to high-quality sequence data and the appropriate primer
parameters, such as high GC content. Genetic analysis using
32 SSR markers in 30 accessions showed PIC values ranging
from 0.867 to 0.951 with a mean value of 0.917. The mean
values of observed and expected heterozygosity are 0.2474
and 0.942, respectively. The allele per locus ranged from 12
to 27 with a mean value of 18.8. The PI values ranged from
0.0065 to 0.0623 with a mean value of 0.0163 (tables 3 and
4). The total PI was 4.538906 × 10−60.

Higher average PIC value (0.917) and average alleles
(18.8) per locus (tables 3 and 4) was observed. This may be
due to the high heterozygosity in the species, which helped to
capture a large number of alleles. In our study, 12 SSR mark-
ers (36%) had more than 20 alleles per locus, indicating the
high heterozygosity and diversity of accessions used (tables 3
and 4). The PI (the probability that two randomly selected
diploid genotypes would be identical, assuming observed
allele frequencies and random assortment) is very low for
many loci. These low PI values confirm their applicability to
DNA fingerprinting. Thus, these SSR markers can be easily
employed for genotyping individuals.

Of the 32 primer sets, 11 (34%) yielded amplification
products in G. indica DNA and 12 (36%) in G. morella DNA
(table 3) indicating successful cross amplification of SSR
markers in Garcinia.

The present study describes the isolation and characterization
of microsatellites isolated from whole-genome sequence data
of G. gummi-gutta. The NGS and mining of the G. gummi-
gutta genome helped in identification of thousands of SSR
markers. The information in this study will be an important
repertoire of molecular tools available for genetic studies,
genotyping and conservation strategies in G. gummi-gutta.
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