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ABSTRACT

This study measured the impacts of drought tolerant maize varieties (DTMVs) on productivity, welfare,
and risk exposure using household and plot-level data from rural Nigeria. The study employed an
endogenous switching regression approach to control for both observed and unobserved sources of
heterogeneity between adopters and non-adopters. Our results showed that adoption of DTMVs
increased maize yields by 13.3% and reduced the level of variance by 53% and downside risk exposure by
81% among adopters. This suggests that adoption had a “win-win” outcome by increasing maize yields
and reducing exposure to drought risk. The gains in productivity and risk reduction due to adoption led
to a reduction of 12.9% in the incidence of poverty and of 83.8% in the probability of food scarcity among
adopters. The paper concluded that adoption of DTMVs was not just a simple coping strategy against
drought but also a productivity enhancing and welfare improving strategy. The results point to the need
for policies and programs aimed at enhancing adoption as an adaptation strategy to drought stress in
Nigeria and beyond.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Agriculture in Africa is highly vulnerable to climate change and
variability (Schlenker and Lobell, 2010; Haile et al., 2017). The
occurrence of climate change-induced rainfall shock in general and
drought shock in particular affects food security in many devel-
oping countries (Wossen et al., 2016). As a result of climate change,
droughts have become more severe, longer, and more frequent
(Hyman et al., 2008). The economic costs can, therefore, be enor-
mous as drought has the potential to cause a severe food crisis,
hunger and malnutrition, as well as sustained long-term poverty
traps due to the limited adaptive capacity of smallholders (Collier
et al., 2008; Bryan et al.,, 2013). Of particular interest, at least in
the context of Africa, is the adverse effect of drought on the pro-
duction of maize, Africa's most important food crop. Maize is grown
on nearly 30 million ha of land, supporting over 300 million people
on the continent (Tambo and Abdoulaye, 2012; La Rovere et al.,
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2014; Fisher et al., 2015). However, maize is also a crop that is
highly susceptible to drought. According to Fisher et al. (2015),
around 40% of Africa's maize-growing areas face occasional drought
stress, resulting in yield losses of 10—25%. Moreover, Schlenker and
Lobell (2010) pointed out that production of maize would decline
by 22% in sub-Saharan Africa (SSA) by 2050 due to climate change.
Reducing the vulnerability of maize producers to drought shocks is,
therefore, an important entry point to improve productivity and
hence reduce the prevalence of food insecurity and poverty.
Efforts have been made to develop adaptation strategies against
drought stress. Notable among these was the DTMA project -
Drought Tolerant Maize for Africa - which was initiated with the
aim of developing and deploying drought-tolerant maize varieties
(DTMVs). As the project targeted production zones where the
rainfall patterns and climatic conditions varied considerably within
and among seasons, the varieties that were developed were
selected for high yield potential under both drought stress and
favourable growing conditions. Over 200 distinct DTMVs were
released in 13 countries across SSA with the support of the DTMA
project in the last nine years (Fisher et al., 2015). These varieties
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were endowed not only with tolerance to drought but also with
high levels of lysine and tryptophan, better nitrogen use-efficiency
and resistance to the major foliar diseases (Fisher et al., 2015).
Adoption will therefore be crucial as it might reduce the variance
and downside risk (probability of crop failure) associated with
maize production.

A drought shock, besides exacerbating current levels of food
insecurity, may lead to sustained long-term asset poverty traps as
poor farmers may sell their key assets, such as land and livestock, as
a coping measure. In addition, drought-induced crop failures can
adversely affect labour supply to agricultural production, educa-
tion, and health outcomes. The lack of formal insurance and social
safety nets in many African countries implies that the risk of
drought can be consequential and that variance and downside risk-
reducing technologies can provide substantial gains for poor and
food insecure farmers (Kostandini et al., 2013). As such, DTMVs can
serve as a risk reducing technology option in the absence of formal
insurance and safety net mechanisms (La Rovere et al., 2014; Fisher
et al,, 2015). In doing so, they will enhance food security while
acting as an insurance against crop failure. However, empirical
evidence on this insurance function is non-existent.

As production risk is the inherent feature of African agriculture,
investigating the risk reducing effects of DTMVs is one of the ob-
jectives of this paper. We considered risk exposure in addition to
productivity as both the variability and skewness of maize yield
affect adoption decisions. In this context, besides their effect on
productivity, DTMVs can generate benefits by reducing farmers'
exposure to risk in general and downside risk in particular.' Since
any firm economic understanding of the potential roles of DTMVs
under climate change and variability requires an understanding of
the dynamics and cross-sectional patterns of adoption, the paper
also examined the main determinants of adoption as well as the
potential benefits associated with it. The main contributions of this
paper are twofold: (1) to investigate how adoption affected pro-
ductivity as well as exposure to drought risk by explicitly esti-
mating its effect on the variance and skewness of maize yields; and
(2) to assess the effects of adoption on household food security and
poverty. The rest of the paper is organized as follows. Section 2
presents the conceptual framework. The data and descriptive sta-
tistics as well as the empirical estimation strategy are presented in
Section 3. The results are presented in Section 4. Section 5 con-
cludes with implications for policy.

2. Conceptual framework

Following Koundouri et al. (2006), we investigated the under-
lying effects of production risk and the risk-mitigating role of
DTMVs within the expected utility framework. In particular, we
used the moment-based (Antle, 1983) approach which enables the
flexible estimation of a stochastic production function under un-
certainty. Consider a typical maize producing farmer with a pro-
duction function y = g (X, s, w, e), where y is maize output, X is a
vector of inputs other than DTMVs, s represents improved seeds (in
this case, DTMVs), w is weather variables, e is a vector of village
fixed effects, and g (x, s, w, e) represents the corresponding pro-
duction technology, given X, s, e, and w. We assume that the pro-
duction function is strictly concave and twice differentiable with
the usual conditions g’(x,s,w,e)>0and g’ (x,s,w, e) <0. Further-
more, suppose that a typical farmer acquires input # with a unit cost

! We included skewness of yield since the variance does not distinguish between
unexpected bad events and unexpected good ones. By capturing the skewness of
maize yield, we can examine the effect of adoption of DTMVs on downside risk (e.g.,
a decrease in the probability of crop failure).

of r and DTMVs with a unit cost of ¢. In our setting, the source of
production risk is the weather conditions (w) whose distribution is
given by w ~ y(w|w), where w is the micro-climate variables such
as drought shock. This distribution is exogenous to the farmer's
action. This is the only source of risk we considered; prices p and
cost of production c&r are assumed to be non-random as farmers
are price-takers in both input and output markets.

To capture the riskiness of the production process, we followed
the approach of Di Falco and Chavas (2006), Antle (1983), and Zhang
and Antle (2016). In particular, we captured the risk component of
the production function by introducing the variance and skewness
of maize yield through the moment-based approach as follows:

E[g(X,S,e, W) _fl(xvsv e, W))k :fk(X,S,e,W, ﬁk)Vk > 2 (1)

where f;(-) = E(g(x,s, e,w) represents the mean of the production
function. Given the above equation, the first moment (mean) of the
production function is defined as:

E[g()@s,e,W)} :fl(X,S,e7W,ﬁ])ch*rx:/J,1 (2)

Similarly, the second moment (variance) of the production
function is defined as:

E[(g0x.s.e.w) — E(glx.s.ew))?] = (3)

and the third moment (skewness) of the production function is
defined as:

E|(g0x.5.e,w) — E(glx.5.e,w)))’] = u3 (4)

As shown by Antle (1987), the specification in Egs. (2)—(4) can
be further expressed as a function of all the moments of the pro-
duction function using the third order Taylor approximation of the
expected utility function as:

E[u(ﬂ-” :fl (X757 e,w, ﬁl)va(Xvsv e,w, 62)7 f3(X,S, e,w, ﬂ3)
= (K1, M2, H3)- (5)

where 7 is the net return from production. Since the farmers are
risk-averse they maximize the expected utility of net returns from
maize production in the following way:

Emax E[u(m)] = u(uy, uz, 43)- (6)

The optimum condition for the adoption of DTMVs in elasticity
form is then given by:

« s 1 /u'(m) « 1 u"(m) .
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where ,u; = %isf s, is the variance (or second central moment) of ()
and s3 is the skewness (third central moment) of 7 (Antle, 1987; Di
Falco and Chavas, 2006). From the above optimal condition, u] — ﬁ—f
captures the marginal net return of choosing DTMVs (s*) and the
term { ~1 (%sﬁ Uy +3 (Z(—S{’?%)) U;} depicts the marginal
risk premium of adopting DTMVs (Chavas, 2004; Di Falco and

Chavas, 2006; Zhang and Antle, 2016). Since DTMVs are risk-
reducing, we would expect farmers to choose them, based on the

marginal net return (uj —%) and the marginal risk premium
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Fig. 1 presents the adoption decision of farmers based on the
distribution of mean, variance, and skewness of maize yield. A
profit-maximizing farmer adopts DTMVs when the returns from
DTMVs are higher than the returns from non-DTMVs
(Tdtmws — Tndems) = 0. The term (gemys — Tngemes) captures the dif-
ference in mean returns with and without adoption. This is a
necessary condition for adoption when the risk reduction effect of
technologies is not considered. Since the mean return of variety 2
(red dotted vertical line) is higher than the mean return of variety 1
(blue dotted vertical line, Fig. 1), a profit-maximizing maize pro-
ducer will adopt variety 2. However, since most farmers are risk-
averse, adoption certainly depends on the second moment (vari-
ance) and the third moment (skewness) of yield. We assume that a
typical maize producer, who strives to avoid food shortage due to
crop failure, considers technologies that will reduce variability and
downside risk in addition to making gains in productivity. There-
fore, a risk-averse farmer is more likely to adopt variety 1 over
variety 2, as the variance of variety 1 is smaller than that of variety
2. In addition, the probability of crop failure from variety 1 is
smaller than the probability from variety 2 as shown in the shaded
(red) region. Even with a lower mean value, the farmer may still
adopt variety 1 so long as the gain from risk reduction (variability
and crop failure) is larger than the loss from the mean output.

However, the trade-off between productivity gains and risk re-
ductions is largely an empirical matter and depends on the risk
preference of farmers, the type of technology under consideration,
and the underlying insurance and credit markets. Nonetheless, the
above condition suggests that adoption should reduce risk expo-
sure (both variance and downside risk) as the technology is pro-
moted as a variety with a superior performance (in terms of risk
reduction) compared with currently available commercial varieties
under both stress and optimal growing conditions (Fisher et al.,
2015). The above theoretical model allows us to test the above as-
sumptions explicitly by estimating the effect of adoption on the
mean, variance, and skewness of maize yield.

3. Data sources and empirical strategy
3.1. Data sources

This study used household survey data collected by the Inter-
national Institute of Tropical Agriculture (IITA) from November
2014 to February 2015 for the purpose of evaluating the impact of
DTMVs on productivity, poverty, and food security in Nigeria. The
study adopted a multistage stratified random sampling technique
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Fig. 1. Adoption and variability of returns.

to collect data from a nationally representative sample of maize
producers. The sampling strategy ensured that at least one maize
farmer was sampled from each of the strata. The States in Nigeria
were divided into homogenous sub-groups based on the number of
hectares of land devoted to maize production. This gave five groups,
from which 18 major maize-producing States were randomly
selected. Following the National Bureau of Statistics (NBS) (2013)
selection of the farming households for the Living Standards
Measurement Study, we obtained the list of all Local Government
Areas (LGAs) and Enumeration Areas (EAs) in each of the selected
States from the National Population Commission. Following the
NBS recommendation for a nationally representative data collec-
tion, we randomly selected 10% of the LGAs in each of the selected
States and also satisfied the 95% confidence interval by selecting 5%
of the total EAs per LGA.

Finally, five farming households were randomly selected from
the households in each of the selected EAs. Before the actual pro-
cess of data collection two pre-tests of the survey instrument were
conducted This was designed to collect detailed information on a
range of individual and socio-economic attributes, asset holdings
and poverty measures, adoption of DTMVs, household expenditure
on food and non-food items, output of maize and other notable
crops, income from various sources, occurrence of drought shocks,
membership in formal and informal associations, and access to
credit and extension, among others. To minimize the errors usually
encountered with the use of paper questionnaires, the data for this
study were collected electronically using the “surveybe” software.

3.2. Empirical strategy

We employed a simple empirical approach based on our theo-
retical framework to understand farmers' adoption decisions about
DTMVs as well as the risk reduction roles of adoption. We first
started our specification using a moment-based approach (Antle,
1983) in which the effect of adoption is directly incorporated in
the first moment (mean), second moment (variance), and third
moment (skewness which shows downside risk) of the maize
production function in the following manner.

y=f(s,x,v,e,w,¢) +u (8)

where y is the logarithm of maize yield and s refers to the adoption
of DTMVs, which takes on a value of 1 if a farmer adopts DTMVs and
zero otherwise. Furthermore, x captures inputs of production other
than DTMVs; v consists of a vector of socio-economic farm char-
acteristics and social capital variables; e includes a set of village
dummies, and w is weather variables. Finally, ¢ is a vector of pa-
rameters to be estimated and u is the error term. To capture the
variability (variance) of maize yield, the estimated errors from the
above equation were squared and regressed on the same explan-
atory variables to estimate the second moment of net return.

u> =f(s,x,v.e,w, ) + 1 (9)

Finally, by using the estimated errors raised to the power of
three, the effect of adoption on downside risk (crop failure) was
estimated as follows.

3

u’ =f(s,x,v,ew,0) +1u (10)

However, examining the causal effect of adoption on potential
outcome indicators was not a trivial matter due to endogeneity bias
as a result of observed and unobserved heterogeneities between
adopters and non-adopters. Parameter estimates of Eqs. (8)—(10)
could therefore be biased. We employed an endogenous switch-
ing regression (ESR) approach that accounts for both observed and
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unobserved sources of bias (Lokshin and Sajaia, 2004). We assumed
that a particular farmer would consider adopting DTMVs if the
expected benefit from adoption (in terms of productivity and
welfare gain as well as the reduction of exposure to risk) is positive
(Huang et al., 2015). If we allow the gain from adoption to be A},
then Af>0 implies that the benefit from adoption is greater than
that of non-adoption. The latent variable (A;) can therefore be
expressed in the following manner:

A; =f(s,%,v.e,w,z,7) + u; with A=1{A;>0 (1)

where the vector z represents our instruments (variables that affect
the decision to adopt DTMVs but not the outcome indicators) and vy
is a vector of parameters to be estimated. The outcome function
conditional on adoption can then be specified as an ESR model in
the following manner.

Regimel : Yi; =f(s,x,v,e,w, 1) + e; ifAj =1 (12)

Regime2 : Yo, = f(s,x,v,e,w,(35) + &; if Aj =0 (13)

where Y;; represents the yield for adopters and Y,; for non-
adopters and ¢; is the error term of the outcome variable. Identifi-
cation of the ESR model requires at least one additional variable as
an instrument in Eq. (11). In our setting, adoption of DTMVs can be
endogenous as adopters may share common unobserved charac-
teristics, such as entrepreneurship skills and management ability,
which directly affect adoption and the productivity level of
households (omitted variable bias). Following the literature (e.g.,
Bellemare, 2012), we used willingness to take risk for new maize
varieties as an instrumental variable for our identification strategy.
In the survey, we collected data on each respondent’s willingness to
take risks on seeds of new maize varieties during the planting stage.
Since agricultural production is inherently risky, due to the lag
between production decision and output realization, willingness to
take risk on new maize varieties captures unobserved variations
among respondents' respective marginal utilities derived from the
use of new varieties (Bellemare, 2012). As such, it controls for
variations in the different sources of unobserved heterogeneity
among respondents (e.g., time preference, risk preferences, entre-
preneurship skill of the farmer, etc.) that affect the decision to
adopt DTMVs. The variable willingness to take risk was measured
by a dummy variable which takes on a value of 1 if the respondent
is willing to try any type of new maize varieties and zero, otherwise.

The error terms in the selection Eq. (11) and the outcome Egs.
(12) and (13) are assumed to have a trivariate normal distribution
with mean zero and covariance matrix (Q) in the following manner:

2
a Ul# J2ﬂ

s
Q= |oyg o7 .
2
ou2 . 05
where 02 = var(u;), 03 =var(ey), 03 =var(e;), o1, = cov(, 1),

024 = cov(u;, &2) Further, oﬁ is estimable up to a scale factor and can
be assumed to be equal to 1 (Maddalla, 1983) and cov(eq, &3) is not
defined as Y; and Y, cannot be observed simultaneously. Moreover,
the correlation between the error term of the selection equation
and the  outcome equation is not  zero (i.e.,
corr(u;, e1)#0&corr(u;, e5)*+0) which creates selection bias. ESR
addresses this selection bias by estimating the inverse mills ratios
(A1; and A»;) and the covariance terms (g4, and 0,,) and including
them as auxiliary regressors in Egs. (12) and (13). If g1, and o, are
significant, we reject the absence of selection bias. The ESR model

estimates can then be used to estimate ATT (Average treatment
effect on treated households) and ATU (Average treatment effect on
untreated households) as follows:

E(Y1i|Ai = 1) =f(s,x,v,e,w, 1) + \jjo1, (14)
E(Y5i|A; = 0) = f(s,x,v,e,w,33) + Ao, (15)
E(Y2i|A; = 1) =f(s,x,v,e,w,3;) + Ajjo2, (16)
E(YqilAi = 0) = f(s,x,v,e,w, 1) + hi01, (17)

The ATT and ATU are then defined as:

ATT = E(YyilA; = 1) — E(YailA; = 1) (18)

ATU = E(Y3;|A; = 0) — E(Y2il4; = 0) (19)

The above estimates of ATT provide the effect of adoption on
mean maize yield. However, given our objective of examining the
role of adoption on risk exposure, we extended the above specifi-
cation to capture the role of adoption on the variance and skewness
of maize yield (to capture downside risk, such as crop failure.
Following the same logic of Egs. (18) and (19), estimates of ATT and
ATU for the second moment of maize yield (variance) were calcu-
lated as:

ATT = E(uf)A = 1) — E(u3Ai = 1) (20)

ATU = E(u};/A; = 0) — E(u3/A; = 0) (21)

Similarly, estimates of ATT and ATU for the third moment of
maize yield (skewness) will be calculated as:

ATT = E(ufA = 1) — E(ujjAi = 1) (22)

ATU = E<u§i|A,- - 0) - E<u§,-|A,- = 0) (23)

In the context of ESR the error terms are assumed to be normally
distributed. Hence, by construction the distribution is symmetric
and the skewness is zero. Therefore, we ran an OLS specification
and obtained the error terms and used them as dependent vari-
ables in the ESR specification for estimating the distribution of
variance and skewness.

3.3. Descriptive statistics

3.3.1. Outcome indicators

Table 1 presents the descriptive statistics of all outcome in-
dicators and controls used for our analysis. The outcome indicators
include per-capita expenditure (food, non-food, and total), maize
yield, poverty headcount ratio, and seasonal food scarcity. For
poverty, we followed the approach of Foster et al. (1984), and used
per-capita total expenditure to determine households' poverty
status. Formally, the headcount ratio (Pg) is calculated as:

_1
TN«
1

M=

Py I(X, <2) (24)

I
—_

where X), is the per capita total expenditure and N is the relevant
population size. z is a poverty line. I(-) is an indicator function
which takes on a value of 1 for X, <z and a value of zero for X, > z.



110 T. Wossen et al. / Journal of Environmental Management 203 (2017) 106—113

Table 1
Descriptive statistics by adoption status for DTMVs.

Full sample Adopters Non-adopters Mean

(N =2084) (N=592) (N=1492) difference
Maize yield (kg/ha) 2127 2502 1978 524***
Per capita food expenditure 51211 59481 47968 11513**
Q)
Per capita non-food 55429 67594 50657 16397
expenditure (¥)
Per capita total expenditure 106641 127076 98625 28450***
Q)
Poverty headcount ratio 0.72 0.69 0.73 —0.04*
(1 = poor)
Food scarcity (1 = yes) 0.176 0.13 0.19 —0.06™**
Household size 7.29 7.8 7.1 0.7***
Education (years of 73 6.9 7.5 -0.6**
schooling)
Age 48.7 494 48.3 1.1*
Sex (1 = male, 0.91 0.907 0.91 —0.006
0 = otherwise)
Distance from seed market 17.35 16.36 17.75 —1.4**
(km)
Willingness to take risk 0.27 0.36 0.24 0.12*
(1 =yes)
Total value of assets (&) 532411 556995 522657 34337***
Roofing material of the 0.88 0.93 0.86 0.08***
house (1 = has a sheet)
Land tenure (1 = has 0.87 0.88 0.86 0.02
tenure, 0 = otherwise)
Plot size (ha) 2 248 1.83 0.65
Drought shock 0.30 0.81 0.14 0.67***
(1 = experienced
drought, 0 = otherwise)
Member in informal 0.68 0.62 0.70 —0.08***
associations (1 = yes,
0 =no)
Number of years of 42.11 42.85 41.82 0-1.03
residence in the village
Access to electricity 0.45 0.49 0.44 0.05*
(1 = yes, 0 = otherwise)
Labour (man-days) 1024 116.1 97 19.1*
NPK fertilizer (kg) 206.3 303.8 167.5 136.2%**
Urea fertilizer (kg) 106.5 166.3 83 83.3***
Use of pesticide (1 =yes) 0.44 0.38 0.46 —0.8***
Use of herbicide (1 = yes) 0.81 0.78 0.82 —0.04*
Good soil (1 = yes) 0.76 0.82 0.74 0.08***
Medium soil (1 = yes) 0.21 0.16 0.22 —0.06™**
Poor soil (1 = yes) 0.03 0.02 0.04 -0.02
Use of soil and water 0.45 0.42 0.47 —0.05**
conservation (1 = yes)
Men managed plots 0.67 0.66 0.67 0.013
(1 =yes)
Women managed plots 0.07 0.06 0.07 -0.01
(1 =yes)
Jointly managed plots 0.26 0.28 0.26 0.02
(1 =yes)
Row planting (1 = yes) 0.65 0.60 0.66 —0.06"**
Intercropping (1 = yes) 0.35 0.38 0.34 0.04

b <001, " p <005 *p<0.1l.

Our final outcome indicator, seasonal food scarcity, was measured
by a dummy variable which takes on a value of 1 if the household
did not have enough food to eat in any of the preceding 12 months
and zero otherwise.

For all outcome indicators, we assessed the existence of any
significant differences in the means between adopters and non-
adopters using t-test and found statistically significant differences
for all outcome indicators. However, it is worth noting that these
results do not show causality. Fig. 2 reports the distribution of
maize yield between adopters and non-adopters and shows that
the average yield was slightly higher among adopters. In addition,
the left tail of the distribution further suggests that the skewness of
maize yield was lower among adopters. Further the

Kdensity of maize yield

4 6
Maize yield (log)

Adopters = ====- Non-adopters

Fig. 2. Distribution of maize yield among adopters and non-adopters.

Table 2
OLS estimates of the effects of adoption on mean, variance and skewness of maize
yields.

Average yield Variance of yield Skewness of yield

Adoption 0.111* —0.354*** 0.993***
(0.0491) (0.0936) (0.384)

Other controls Yes Yes Yes

Location dummies  Yes Yes Yes

N 2084 2084 2084

Robust standard errors are reported in parentheses, *** p < 0.01, ** p < 0.05. Other
controls include: education, sex, age, Distance from seed source, use of labour,
fertilizer, pesticide, and herbicide, plot management dummies, soil fertility
dummies, management practice dummies, drought shock. Location dummies were
North-West, South-South, North-Central, North-East and South-West.

Kolmogorov—Smirnov equality-of-distributions test suggested that
the two distributions are different.?

3.3.2. Socio-economic and plot variables

In addition to outcome variables of interest, Table 1 also pre-
sents the description of the main socio-economic and plot-level
variables. Our main variable of interest, adoption of DTMVs, was
measured by a dummy variable that takes on a value of 1 if a given
farmer adopts them and zero otherwise. Based on economic theory,
we included control variables at household and village levels. These
include household characteristics such as age, household size, and
education, membership in different social groups, occurrence of
drought shocks as well as wealth indicators such as land size, the
value of farms, and non-farm assets. We assumed that the above
key household characteristics affected farmers' adoption decisions
as well as their productivity and ultimate poverty status. In addition
to household characteristics, we also included location dummies to
account for common market and weather shocks as well as the
general economic condition at the State level. Table 1 showed that
the average household size is about 7.3 members for the whole
sample. While comparing household size between adopters (7.8
members) and non-adopters (7.1 members), we found significant
differences between the two groups. About 90% of the household
heads were male and their average age was about 48 years. In terms
of self-reported shocks, about 30% of the respondents had experi-
enced drought shocks. However, about 81% of adopters have

2 Equity of the two distributions is rejected at 1% as the p-value on Combined K-S
is less than 0.01.
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Table 3
Effect of adoption on the mean, variance and skewness of maize yield.

Outcome variables Farm household type Decision stage Effect of Change (%)
and treatment effect To adopt Not to adopt adoption
Average maize yield Adopters (ATT) 7.52 6.64 0.88*** 13
Non-adopters (ATU) 7.82 7.14 0.67*** 9.4
Average variance (risk) ATT 0.69 1.49 —0.79"** -53
ATU 0.91 1.18 —0.27*** —-229
Average skewness ATT -0.51 2.7 2.2 81
(downside risk exposure) ATU -1.26 -1.8 0.54*** 30

**p<0.01,* p<0.05 *p<0.1.
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Fig. 3. Effect of adoption under drought conditions.

reported experiencing drought shocks while only 14% of non-
adopters have reported experiencing drought shocks. This results
suggests that farmers adopt DTMVs in response to drought shocks.
Table 1 further presented the difference in means between
adopters and non-adopters. The results revealed significant sys-
tematic differences between them in terms of several key socio-
economic characteristics. Clearly, a simple comparison of adopters
and non-adopters in terms of the main outcomes of interest
without accounting for the differences in observable characteristics
would bias the estimated impacts of DTMVs.

Table 1 further shows input allocation decisions of adopters and
non-adopters. The descriptive statistics revealed that the applica-
tion of chemical fertilizer was significantly higher among adopters
compared with non-adopters. Similarly, labour use (measured in
man-days) was significantly higher among adopters than non-
adopters. The use of pesticide and herbicide was also relatively
high.

4. Empirical results
4.1. OLS results

Table 2 presents the effects of adoption on mean, variance, and
downside risk exposure.® Estimated results showed that adoption
has a statistically significant effect on productivity, with adoption
increasing maize yields by 11%. Moreover, adoption has a negative
and statistically significant effect on the variance of maize yield.
This result showed that adoption reduced the variability of maize
yield. However, variance does not distinguish between unexpected

3 The full estimated results are available in Table 1 of the online supplementary
material.

good and bad outcomes. In the context of food insecure small-
holders, avoiding unexpected bad outcomes is very important. As a
result, we reported the effect of adoption on downside risk
(skewness of maize yield). The regression results for the skewness
function show that adoption significantly reduced exposure to
downside risk as the coefficient on adoption is positive and sta-
tistically significant. As such, adoption can serve as insurance for
farmers by reducing the risk of crop failure.

Our results suggested that DTMVs have a win-win outcome as
these varieties increased yield and reduced variability and the
probability of crop failure. However, these results should be inter-
preted with caution as we did not control for the potential endo-
geneity of adoption. In the next section, we present an ESR model
where we controlled for unobserved heterogeneity.

4.2. Endogenous switching regression results

Herein, we present our counterfactual analysis. Unlike the OLS
results presented in the previous section, the ESR model accounted
for both observable and unobservable sources of heterogeneity
between adopters and non-adopters.* We used the ESR model re-
sults to compare the distribution of mean, variance, and skewness
of maize yield with and without adoption. In particular, we inves-
tigated the distribution of mean, variance, and skewness of maize
yield among adopters (ATT) and current non-adopters of DTMVs
(ATU). The results revealed that adoption increases average yield by
13.3%. This result shows that maize yield among adopters would
have declined by 13.3% if they had not adopted DTMVs. Similarly,
the maize yield of non-adopters would have increased by 9.4% if
they had adopted DTMVs. ATT results suggest that adoption
significantly increased productivity and hence food security among
current adopters. In addition, ATU results suggested that further
dissemination efforts will increase resilience and food security in
the region as a significant share of farmers are still non-adopters
(for this group, productivity would have increased by 9.4% had
they adopted DTMVs).

Our results were in line with the regional on-farm trial values in
yield gain as IITA reported a significantly higher yield for DTMVs
compared with commercial hybrid maize varieties and local vari-
eties in Nigeria. In particular, their on-farm regional trial data
showed that DTMVs out-yielded commercial hybrid maize varieties
by a minimum of 6% and local varieties by 33%. Table 3 also presents
ATT and ATU on the variance and skewness of maize yield. Adoption
was found to significantly reduce exposure to risk. For instance, the
risk (variance) faced by adopters would have increased by 0.79
units (about 53%) if they had not adopted DTMVs. Similarly, the
downside risk (crop failure) faced by adopters would have
increased by 2.2 units (about 81%) if they had not adopted DTMVs.

4 The full ESR results are presented in Table 2 in the online supplementary
material.



112 T. Wossen et al. / Journal of Environmental Management 203 (2017) 106—113

Table 4
Effect of adoption on poverty and food security.

Outcome variables

Farm household type and treatment effect

Decision stage Adoption effects Change (%)

To adopt Not to adopt
Per-capita total expenditure Adopters (ATT) 11.51 10.74 0.77*** 7.2
Non-adopters (ATU) 12.17 11.27 0.90*** 7.98
Per-capita food expenditure ATT 10.74 10.14 0.60*** 5.9
ATU 11.39 10.44 0.945*** 9
Per-capita non-food expenditure ATT 10.75 9.83 0.92%** 9.4
ATU 11.65 10.26 1.4 13.6
Food scarcity® ATT 0.03 0.185 —0.155*** 83.8
ATU 0.15 0.64 —0.49** 76.5
Poverty headcount ratio ATT 0.704 0.808 —0.104*** 12.9
ATU 0.535 0.725 —0.19"** 26.2

<001, " p <0.05 *p<0.1.

2 For food security, we used switch probit command of stata and hence values are probabilities.

These results underscored the fact that DTMVs are both yield
enhancing and risk reducing. The ATU results further suggested
that non-adopters would have benefited significantly in terms of
reduction to risk exposure if they had adopted DTMVs. In particular,
the variance they face would have declined by 23% and downside
risk by 30%. These results further affirm that further dissemination
of DTMVs to non-adopters will be crucial to increase food pro-
duction, resilience, and food security.

To add further novelty, we estimated heterogeneity effects by
classifying villages into three main groups based on drought
severity index. The drought severity index was calculated using the
African flood and drought monitor data from Princeton University.
Based on the drought severity index, we found that about 38% of
the villages have not experienced any drought while 35% and 27% of
the villages experienced mild and moderate drought conditions,
respectively.” Fig. 3 below reports estimated effects for each
respective group. We found a small but positive effect on mean
yield (about 5.7%) and an insignificant effect on the variance and
skewness of maize yield under normal (no drought) condition.
However, under mild and moderate drought conditions, we found
significant effects on the mean, variance and skewness of maize
yield, suggesting that DTMVs were important adaptation strategies
to drought stress.®

Next, we present the welfare effects of adoption. We used per-
capita food, non-food, and total expenditure, expressed in natural
logarithms, poverty headcount ratio, as well as food security in-
dicators to examine the role of adoption on welfare. The results are
based on our counterfactual analysis using ESR model results for
welfare outcome indicators.” The results (Table 4) show that
adoption had a significant effect on all welfare indicators. Our result
showed that if adopters of DTMVs had not adopted them, the
observed poverty rate in the sample would have been higher by
12.9%. This result suggested that the gain in maize productivity due
to adoption had eventually reduced the incidence of poverty by
12.9%. Similarly, estimates of ATU suggested that the incidence of
poverty would have declined by 26.2% for current non-adopters. In
terms of consumption expenditures, the result shows that per
capita food expenditure of adopters would have declined by 5.9%

5 The drought severity index conditions are normally categorized into five groups
(incipient drought, mild drought, moderate drought, severe drought and extreme
drought). However, in our data, we were able to identify only no drought, mild
drought and moderate drought conditions.

6 Extended discussion on this results is available in the online supplementary
material.

7 Note that ESR results for total expenditure, food expenditure, and non-food
expenditure are not reported here owing to space limitations but are available
upon request.

and total consumption expenditure by 7.2% had they not adopted
(i.e., they would have had 5.9% less expenditure per capita on food
and 7.2% less on total consumption). ATU results further suggest
that per capita food expenditure of non-adopters would have
increased by 9% and total consumption by 8%, had they adopted
DTMVs.

When it comes to food scarcity, ATT and ATU results show the
importance of adopting DTMVs. In particular, if adopters had not
adopted, the probability of experiencing seasonal food scarcity
would have increased by 83.8%. Similarly, if non-adopters had
adopted, the probability of experiencing seasonal food scarcity
would have declined by 76.5%. Given the significant positive gains
in welfare among current adopters and expected benefits for non-
adopters, should they adopt DTMVs further efforts to increase
dissemination will lead to higher impacts in terms of improving
total food production and food security in Nigeria.®

After establishing the causal effect of adoption on a range of
outcomes of interest, we then calculated the number of individuals
who have managed to overcome poverty as a result of adoption,
following the procedure of Zeng et al. (2015). In particular, we
combined information on parameter estimates on poverty head-
count ratio as well as adoption rates to determine the number of
individuals lifted above the poverty line as a result of adopting
DTMVs. According to FAOSTAT (2014), about 5.85 million ha were
allocated for maize production in Nigeria in 2014. Taking into ac-
count the average maize land among adopters, the total number of
maize producing farmers in Nigeria is estimated to be around 9.2
million. Given an adoption rate of 28%, a parameter estimate of
12.9% on poverty headcount ratio, and the above-mentioned
number of maize farmers, close to 0.27 million farmers have
managed to escape poverty as a result of adopting DTMVs.” Given
the average family size of 7.8 among current adopters in Nigeria
(See Table 1), the total number lifted above the poverty line be-
comes 2.1 million individuals'’.

5. Conclusions and implications

Using household and plot-level data from rural Nigeria, this
paper assessed the impact of adopting DTMVs on the productivity,
risk exposure, and welfare among maize farming households. With
the aim of providing consistent estimates of the impact of adoption

8 Robustness checks using matching techniques are presented in the online
supplementary material.

9 Calculated as 9.2%0.280.104.

10 Calculated as (0.27*7.8). We assumed perfect income distribution within a
family.
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on productivity and welfare outcomes, the study employed an
endogenous switching regression approach that controls for both
observed and unobserved heterogeneity between adopters and
non-adopters. In doing so, the study not only evaluated the extent
to which adoption affected productivity and welfare outcomes but
also examined its implication on risk exposure focusing on variance
and downside risk. Our main results are summarized as follows:
first, adoption increased yield. In particular, if adopters had not
adopted DTMVs, their yield would have declined by 13.3%. Sec-
ondly, without adoption the level of variance among adopters could
have increased by 53% and downside risk exposure by 81%.
Furthermore, ATU results suggested that for non-adopters, the
variance they face would have declined by 23% and downside risks
by 30% if they had adopted DTMVs. Thirdly, the productivity-
enhancing and risk-reducing roles of DTMVs have a significant ef-
fect on household welfare. In particular, our results showed that per
capita food expenditure of adopters would have been lower by 5.9%
and total consumption expenditure by 7.2%, had they not adopted
DTMVs. Moreover if adopters had not adopted, poverty would have
been 12.9% higher and the probability of seasonal food scarcity
would have increased by 84%. Altogether, adoption had a “win-win”
outcome by improving productivity and reducing risk. These results
re-affirmed that interventions against drought stress through crop
genetic improvements will have a paramount role to play in terms
of enhancing food security and reducing the farmer's exposure to
drought risk. The results further underscored that future dissemi-
nation efforts will be crucial as current adoption rates are quite low,
despite the reported benefits.
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