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Abstract
When urban areas expand without concomitant increases in wastewater treatment capacity, vast
quantities of wastewater are released to surface waters with little or no treatment. Downstream of
many urban areas are large areas of irrigated croplands reliant on these same surface water
sources. Case studies document the widespread use of untreated wastewater in irrigated
agriculture, but due to the practical and political challenges of conducting a true census of this
practice, its global extent is not well known except where reuse has been planned. This study
used GIS-based modeling methods to develop the first spatially-explicit estimate of the global
extent of irrigated croplands influenced by urban wastewater flows, including indirect wastewater
use. These croplands were further classified by their likelihood of using poor quality water based
on the spatial proximity of croplands to urban areas, urban wastewater return flow ratios, and
proportion of wastewater treated. This study found that 65% (35.9 Mha) of downstream irrigated
croplands were located in catchments with high levels of dependence on urban wastewater flows.
These same catchments were home to 1.37 billion urban residents. Of these croplands, 29.3 Mha
were located in countries with low levels of wastewater treatment and home to 885 million urban
residents. These figures provide insight into the key role that water reuse plays in meeting the
water and food needs of people around the world, and the need to invest in wastewater
treatment to protect public health.
1. Introduction

Despite significant investments in wastewater treat-
ment infrastructure, levels of treatment in rapidly
urbanizing, low-income urban areas are not keeping
pace with population growth [1, 2]. Globally, less than
10% of collected wastewater receives any form of
treatment [3, 4]. Concomitantly, agriculture is the
largest water user in most countries, representing 70%
of total global water withdrawals [5]. The reuse of
untreated wastewater return flows in irrigated
agriculture is commonplace downstream of urban
areas [6]. As upstream regions have urbanized, surface
© 2017 IOP Publishing Ltd
water sources have become effluent dominated,
resulting in widespread indirect or de facto water
reuse [7]. In other instances, farmers deliberately
extract water from drains or sewage pipes [8]. In these
cases, regional water scarcity and/or readily available
access to wastewater are primary motivations.
Wastewater provides a consistent, reliable source of
water where other sources do not exist [9].

The use of wastewater (both treated and untreat-
ed) in irrigated agriculture has been documented in
more than sixty countries, though the true scale of the
practice is likely underestimated [10, 11]. Using
government reported statistics and case studies,
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Jiménez and Asano estimated that, globally, upwards
of 4.5Mha of croplands were irrigated with wastewater
[12]. Their estimate does not capture the reuse of
diluted, untreated wastewater downstream of urban
areas [11]. A global projection by Scott et al estimated
that 20 Mha of croplands were irrigated with raw,
diluted, or partially treated wastewater. This widely
cited number is an estimate based on expert opinion
rather than on a spatially-explicit analysis [10].
Although numerous case studies indicate that irriga-
tion with raw, diluted, or partially treated wastewater is
widespread, the true extent of irrigation with
untreated wastewater remains a knowledge gap.

Van der Hoek identified a key challenge in
quantifying the extent of agricultural water reuse:
the ambiguity of the term wastewater irrigation [10].
Most of what is documented is the direct reuse of
wastewater, defined as the practice of using wastewater
from sewers or wastewater treatment plants to irrigate
crops without intermediate discharge to a receiving
waterbody [12]. However, the majority of agricultural
water reuse globally is the indirect or de facto reuse that
occurs when wastewater is a dominant component of
available surface water flows. Effluent fromwastewater
treatment plants can constitute a major portion of
available surface water downstream of urban areas
[13]. Consequently, alternate water reuse strategies
such as industrial or domestic reuse or spatial
redistribution of wastewater return flows, can have
significant impacts on downstream farmers reliant on
these urban wastewater return flows [14].

The use of wastewater in irrigated agriculture is
often economically motivated. The reliability of
wastewater flows can allow farmers to cultivate higher
value, more water intensive vegetable crops than they
could in the absence of the wastewater source [15–17].
Ensink et al documented that farmers in Pakistan were
willing to pay more for wastewater than canal water
because the nutrients in wastewater allowed them to
reduce expenditures on fertilizers [18]. Similarly,
farmers in Mexico protested the construction of a
wastewater treatment plant, fearing that the facility
would reduce concentrations of nutrients relative to
the existing untreated wastewater [19]. Despite these
benefits, the use of untreated wastewater can pose
substantial health risks to those cultivating, selling,
and consuming these agricultural products [20, 21].

Anecdotal evidence and case studies suggest that
where treatment is lacking or insufficient, irrigation
with untreated wastewater is a long-standing and
widespread practice. However, its true extent, and
therefore the magnitude of its risks, costs, and benefits
remain largely unknown [6, 8]. Understanding the
scale of wastewater reuse in irrigated agriculture is
essential for garnering the attention of policy makers
and sanitation practitioners such that infrastructure is
selected in a manner sensitive to downstream water
quality and quantity, public health, and the livelihoods
of farmers reliant on wastewater for irrigation.
2

The objective of this study was to develop a globally
consistent, spatially-explicit estimateof theglobal extent
and distribution of the indirect reuse of wastewater in
irrigated agriculture. In particular, we sought to identify
irrigated croplands where wastewater constitutes a large
proportion of available surface water and the subset of
croplands likely to be irrigated with water with high
levels of fecal contamination. A land use focused
methodology was developed to understand the spatial
relationships between upstream wastewater discharges
(both treated and untreated) and downstream agricul-
tural water users.
2. Methods
2.1. Classification overview and major data sources
A GIS-based algorithm was developed to classify
irrigated croplands as a function of hydrologic
connectivity between irrigated croplands and nearby
urban extents, wastewater return flows, and regional
levels of wastewater treatment. These methods were
developed to quantify indirect reuse, but areas of direct
reuse were also quantified when intersecting a stream
channel. The two main outcomes were identifying: (1)
the global extent of wastewater dependent irrigated
croplands and (2) the subset of those croplands with a
high likelihood of irrigation with untreated wastewater.

Wastewater dependent croplands were defined as
irrigated croplands locatedwithin40kmdownstreamof
anurban areawith a population exceeding 50 000 and in
a catchment where wastewater constituted at least 20%
of available bluewater. This second variable (wastewater
as a percent of available blue water) is analogous to
urban wastewater return flows (i.e. the volume of water
returned to surface water bodies following use, divided
by available blue water in the catchment). This usage is
distinct from other common return flow ratio metrics
focused on agricultural drainage or similar [14].
Irrigated croplands with a high likelihood of untreated
reuse were defined as the subset of wastewater-
dependent croplands located in countries where less
than 75% of wastewater received some form of
treatment (figures 1 and S1 stacks.iop.org/ERL/12/
074008/mmedia).Data sources aredescribed in tableS1.

2.2. Classification methods
2.2.1. Data pre-processing and identification of
downstream irrigated croplands
The focus of this analysis (parts 1 and 2 in figure 1 and
S1) was to reduce the MIRCA2000 irrigated croplands
data [22] to only include peri-urban irrigated crop-
lands located downstream of urban areas [23]. The
maximum monthly irrigated croplands data from
MIRCA2000 were limited to those within 40 km of an
urban area with a population exceeding 50 000. These
data were then overlaid with the stream channel
network from the global drainage basin database [24]
and all irrigated cropland gridcells not intersecting a
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Figure 1. Overview of irrigated croplands classification logic.
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stream channel were removed from consideration.
On-stream irrigated cropland gridcells were then
joined to urban areas and compared on the basis of
their relative flow accumulation and position in the
stream network (see online supplementary informa-
tion). The product of this analysis will be referred to as
downstream irrigated croplands (DSIC) for the
remainder of this paper.
3

Two primary rationales were used in selecting a
population threshold of 50 000. Review of the
International Utility Benchmarking Network (IBNET)
data [25] showed that sewerage and wastewater
treatment were uncommon in low and middle income
cities of less than 50 000 people. We previously found
that a population threshold of 50 000 reached a
reasonable balance between overestimating croplands
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occurring around small towns and omitting larger
towns with urban croplands [26]. A maximum
distance threshold of 40 km from urban areas was
selected based on the review of water quality data
downstream of urban areas with low levels of
wastewater treatment [27–30], with the intent to
select a distance likely to be sufficient to reduce fecal
contamination to the low levels required to reduce
health risks to farmers and consumers of raw produce
to acceptable levels [31, 32]. Additional analyses using
thresholds of 10 and 20 kmwere also conducted to test
the sensitivity of the results to this assumption.

2.2.2. Classification of DSIC by wastewater return
flow ratio
The DSIC identified in the previous step were
classified using catchment wastewater return flow
ratio (RFR) to develop a measure of the relative
dependence of DSIC on upstream wastewater flows
(figure 1, part 3). The RFR of a catchment measures
upstream urban wastewater discharges as a fraction of
available blue water. RFR was used in this analysis as an
indicator of the contribution of urban wastewater
flows to downstream water availability. We used the
catchment-scale RFR developed through the AQUE-
DUCT database, which was developed based on FAO’s
AQUASTAT database and global hydrologic modeling
efforts [33, 34].

2.2.3. Classification of DSIC by percent of urban
wastewater treated
DSIC in high RFR catchments were further classified to
estimate their likelihood of using untreated or partially
treated wastewater for irrigated agriculture (figure 1,
part 4). The best data currently available on urban
wastewater collection and treatment are the compila-
tions by Baum et al [35], the Environmental Perfor-
mance Index (EPI) [36], andSato et al [37].All three rely
heavily on the FAO AQUASTAT database and/or Joint
Monitoring ProgramCountry reports [34]. IBNETdata
record information on sewerage and wastewater
treatment reported by municipal utilities around the
world, but only include a small subset of cities within
participating countries [25]. After reviewing these
datasets, we decided to integrate the three national
level datasets tominimize data gaps (figure S2,methods
in the online supplementary information). Given that
this study is not modeling concentrations of pathogens
or health risk, but the likelihood of untreated reuse, the
broader availabilityof national level datamotivated their
use. The outcome of this step was the classification of
DSIC by their relative likelihood of untreated waste-
water reuse.

2.3. Additional data analysis
2.3.1. Downstream irrigated croplands by geographic
region and distance downstream of urban areas
For each country, the sum of the DSIC area was
divided by the total area of irrigated croplands to
4

estimate the fraction of irrigated croplands located
downstream of large urban areas. The area of DSIC
was also summed by catchment then divided by total
catchment area to assess the fraction of the catchment
land area allocated to DSIC. The methods described
in sections 2.2–3 were repeated using 10 and 20 km
buffers around urban areas to quantify the variation
in the extent and distribution of DSIC 10, 20, and 40
km downstream of urban areas.

2.3.2. Urban population living in wastewater
dependent catchments and catchments with a high
likelihood of untreated agricultural water reuse
GRUMP urban area boundaries [23] with populations
exceeding 50 000 people were intersected with GDBD
catchment boundaries. The urban population densi-
ties associated with these urban areas [38] were then
used to estimate the urban population within each
catchment with DSIC. These values were then cross-
tabulated against each of the different wastewater
dependence and treatment classes.

2.3.3. Comparison of catchment area, DSIC, and
population across wastewater treatment classes
The total catchment area (global non-polar land
surface area), area of catchments containing DSIC,
DSIC area, and population living in catchments with
DSIC were summed for each wastewater dependence
and treatment class for between class comparisons.

2.4. Validation
Estimates of overall accuracy and Kappa coefficients
were used to validate the classification methods used
to identify downstream irrigated croplands (2.2.1.)
and irrigated croplands with a high likelihood of
untreated wastewater reuse (2.2–3). An assessment of
the available blue water and consumptive use data
used to calculate return flow ratio in the AQUEDUCT
database is included in Gassert et al [33]. See SI for
additional details and confusion matrices.

To validate the DSIC classification algorithm, 400
irrigated cropland gridcells were randomly selected. Of
these, 50% had been classified as DSIC and 50% had
not. The validation gridcells were compared to the
DEM, hydrography, and urban area GIS layers to
evaluate whether the automated classification algo-
rithm correctly differentiated downstream irrigated
cropland pixels.

The UNGEMS water quality data on riverine fecal
coliform concentrations [39] were used to validate the
sub-classification of wastewater dependent irrigated
croplands into those with a high or low likelihood of
untreated reuse. Since the objective of this task was
validation of the classification of the untreated reuse
likelihood of DSIC, the UNGEMS data were pared
down to only include monitoring stations that
intersected DSIC and had multiple measures of fecal
coliform from the year 2001 onwards (n ¼ 63
stations). These stations covered eleven countries and
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more than 8858 fecal coliform measurements. DSIC
classified as having a ‘high likelihood of untreated
reuse’ and for which the mean observed fecal coliform
concentrations exceeded 1000 CFU/100 ml were
considered to be in agreement. Likewise, DSIC where
observed fecal coliform concentrations were less
than 1000 CFU/100 ml and classified as ‘not having
a high likelihood of untreated reuse’ were also
considered to be in agreement. A fecal coliform
concentration of 1000 CFU/100 ml was selected based
on its common usage as a threshold for irrigation
water quality [20, 40, 41].
3. Results
3.1. Extent of peri-urban croplands downstream of
urban areas
55.1 Mha of irrigated croplands were located within 40
km downstream of or within an urban area. This area
of DSIC constitutes approximately 26% of the global
irrigated croplands identified by Portmann et al [42].
5

The mean percentage of DSIC across all countries was
23% (figure 2). Countries with high percentages of
DSIC covered diverse hydrologic and socioeconomic
conditions, including small island states/territories
(mostly urban irrigated croplands), some European
countries, and low to middle income countries with
large urban areas (figure 2).

3.2. Wastewater dependence of downstream irrigated
croplands as a function of urban wastewater return
flow ratio
65% of DSIC (35.9 Mha) were located in catchments
where the RFR exceeded 20% (figures 3 and 4). 22.4
Mha (41%) of DSIC were located in catchments where
wastewater return flows constituted the majority of
available blue water (>50%), while 15.7 Mha (28%)
were located in catchments where the RFR exceeded
80%—indicating that wastewater constituted an
extremely high proportion of available surface water.
Catchments with high values for these indicators were
clustered around northern India, northern China, and
Pakistan.
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Inmanyof these catchments, particularly thosewith
monsoonal climates, surface runoff varies considerably
between seasons, creating substantial seasonal variabili-
ty in water availability. During low-flow periods, the
RFR of catchments may be considerably higher than
indicated here. 26.2Mha (48%) ofDSICwere located in
a catchment with high seasonal variability in available
water. Figure S3 shows catchments classified by both
RFR and seasonal variability.

The distribution of DSIC across RFR classes was
markedly different than the distribution of the land
area of all catchments or catchments containing DSIC
(figure S4). DSIC were disproportionately located in
catchments with a RFR exceeding 20% (65% of DSIC)
as compared to both the distribution of the land area
of all catchments (14%) and the area of catchments
with DSIC (30%). Urban populations residing in
catchments with DSIC followed a similar distribution.
1.37 billion urban residents lived in catchments
containing DSIC and a RFR exceeding 20% while
488 million people resided in catchments with
extremely high wastewater dependence (RFR≥80%).

3.3. Distribution of wastewater dependent
downstream irrigated croplands by level of urban
wastewater treatment
In regions with low levels of wastewater treatment,
DSIC were disproportionately located in catchments
6

with high, and in many cases, extremely high levels of
wastewater dependence (figure 4). 45.1 Mha (82%)
of DSIC were located in a country where less than
75% of wastewater received some form of treatment
(figure 4). Of these croplands, 29.3 Mha (65%) were
located in a wastewater dependent catchment (RFR
≥ 20%). This subset of wastewater dependent
croplands (29.3 Mha) will be referred to as irrigated
croplands with a high likelihood of untreated
wastewater reuse. 885 million urban residents lived
in catchments with a high likelihood of untreated
wastewater reuse in irrigated agriculture. 14.7
million urban residents and 2.9 Mha of DSIC were
present in catchments where the RFR exceeded 80%
and less than 5% of wastewater was treated Including
total catchment populations, not just urban pop-
ulations, would further increase the potentially
affected populations.
3.4. Regional distribution of downstream irrigated
croplands between wastewater dependent catchments
and those with a high likelihood of untreated reuse
There was considerable variation in the spatial
distribution of irrigated croplands with a high
likelihood of untreated reuse across different countries
and regions (figures 5 and S5–7; table S3). Five
countries, China, India, Mexico, Pakistan, and Iran,
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accounted for 25.1 Mha (85.7%) of DSIC with a high
likelihood of untreated reuse (table S2). 42% of
wastewater dependent irrigated croplands were locat-
ed in countries where less than 25% of wastewater was
treated. The mean level of wastewater treatment across
all countries/territories was 23.8% with a median of
18.6%. The United States contained large areas of
wastewater dependent DSIC (2.8 Mha), but, because
most wastewater was treated, these DSIC were unlikely
to have a high likelihood of untreated reuse.
3.5. Distribution of wastewater dependent
downstream irrigated croplands by distance
downstream
The analyses presented above (40 km limit) were
repeated for downstream distances of 10 and 20 km
(figure S8). 26.8 Mha of DSIC were within 10 km, 5.7
Mha were within 10 to 20 km, and 3.4 Mha were
within 20 to 40 km of urban areas. Wastewater
dependent DSIC within most regions followed a
similar pattern. In Southeast Asia, North Africa, and
Sub-Saharan Africa 92%, 98%, and 99% of DSIC,
respectively, were located within 10 km of urban areas.
South Asia was a notable exception, with the majority
(56%) of DSIC located 10 to 40 km downstream of
urban areas.

3.6. Validation of classification methods
When data were available to do so, classification
methods were independently validated for classifica-
tion accuracy and inter-rater agreement (Cohen’s
kappa) (tables 1, S4, and S5). Some initial assumptions
were made following a critical review of the literature
and/or available data. In those instances, the impact of
different threshold values on study results was
examined (figures 4 and S8). Further details on the
validation methods, confusion matrices, and critical
reviews are included in the online supplementary
information (tables S4–S5).
7

4. Discussion
4.1. Interpretation of findings
Lack of a comprehensive, spatially-explicit global
estimate of wastewater reuse in irrigated agriculture
was a primary motivation for this study. Quantifying
indirect reuse has proven particularly challenging for
previous studies as it often occurs as an unplanned or
de facto practice downstream of urban areas with
wastewater discharges. In this assessment, our
methods primarily captured indirect reuse and
instances of direct reuse occurring in close proximity
to stream channels.

We used a spatially based decision tree approach to
integrate disparate datasets on irrigated croplands,
hydrography, water use, wastewater collection and
treatment. Starting with a base of all irrigated
croplands (identified via MIRCA2000), we identified
35.9 Mha of DSIC in wastewater dependent catch-
ments, of which 29.3 Mha were located in countries
with low levels of wastewater treatment (figure 4).
Reuse of untreated wastewater appears to be the most
common form of agricultural water reuse, but it is
generally poorly accounted for under traditional water
accounting and management approaches.

A major challenge in both this analysis and global
monitoring efforts more broadly is the lack of
municipal level data on the level of wastewater
treatment and proportion of flows treated. However,
even when data are available, they often do not reflect
the true operational status of wastewater treatment
plants that may be present [43]. This paucity of data
motivated our use of national level data on urban
wastewater treatment. Even at the national scale,
previous researchers have identified major data gaps in
the quantification of the proportion and quantity of
wastewater receiving some form of treatment [35–37].
While comprehensive higher resolution data would
obviously provide more accurate local estimates, we



Table 1. Summary of assumptions, and methods used for review and validation.

Analysis or assumption Validation

method/

metric

Validation data/review Results Interpretation

Identification of downstream

irrigated croplands

Assessment of

classification

accuracy

(overall

accuracy

þkappa)

Manual review of

hydrography, urban land

cover data, flow

accumulation and flow

direction rasters relative to

irrigated cropland location

Overall accuracy: 0.96

Kappa: 0.92

DSIC classification

algorithm is effectively

classifying DSIC.

Irrigated croplands within

40 km downstream of an

urban area have a higher

likelihood of using surface

water sources whose

quantity and/or quality has

been influenced by municipal

wastewater discharges

Sensitivity

analysis þ
critical review

DSIC and ‘high likelihood of

untreated reuse’ DSIC within

10, 20, and 40 km of urban

areas

Wastewater dependent

DSIC within 10 km or

urban area: 26.8 Mha

(74.6%)

High likelihood DSIC

within 10 km of urban

areas: 21.3 Mha (72.7%)

While a threshold of 40 km

downstream was used, most

wastewater dependent

irrigated croplands were

located within 10 km of

urban areas

National level data on

wastewater treatment as a

proxy for high/low level of

wastewater treatment

Critical review Review of utility level data

from IBNET relative to

national data on wastewater

data

Treatment of the full

effluent volume and/or

treatment to at least a

secondary level was

uncommon in low and

middle income countries.

National statistics generally

overestimate the true level

of treatment from a water

quality perspective.

Catchment return flow ratioa

þ percent of wastewater

treated is an effective proxy

for identification of rivers

likely to be influenced by

untreated municipal

wastewater flows

Assessment of

classification

accuracy

(overall

accuracy þ
Kappa)

Comparison of untreated

reuse classification algorithm

results to WHO fecal

coliform threshold for the

use of wastewater in

irrigated agriculture (1000

CFU/100 ml) (data from

UNGEMS)

Overall accuracy: 0.86

Kappa: 0.69

Classification algorithm is

effectively differentiating

irrigated croplands with a

high vs. low likelihood of

dependence on untreated

wastewater

a Assessment of input data used to estimate RFR (available blue water and consumptive use) was included in [33].
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believe that the uncertainty introduced by using
national level data resulted in conservative national
and global estimates. Municipal-level estimates of
wastewater treatment in the IBNET data tended to be
lower than national estimates across all city size classes
suggesting that our values present a conservative
estimate of the fraction of untreated wastewater
entering surface water irrigation sources. Where data
on wastewater treatment were present in the IBNET
data, secondary treatment was uncommon, further
supporting the assumption that the national values are
quite conservative and likely overestimate the true
level of wastewater treatment.

The reuse of wastewater in agriculture can present
health risks when upstream wastewater flows are
inadequately treated. The use of poor quality water in
irrigated agriculture has the potential to impact
farmers, laborers, market vendors, and consumers
across the produce supply chain. However, the level to
which these risks are realized depends upon irrigation
and cultivation practices, crop type, post-harvest
handling, food safety and preparation practices (e.g.
raw versus cooked) [20, 44, 45]. While our study does
not address the crop types being grown in downstream
irrigated croplands, past studies suggest that, particu-
larly in low and middle income countries, vegetable
8

crops are grown more often in these regions than in
rural areas [46].

Even when wastewater flows are treated, upstream
wastewater return flows are generally not subject to
traditional water rights apportionments, potentially
leaving farmers vulnerable to municipal reallocation of
wastewater flows for other types of water reuse (e.g.
industrial, indirect potable, etc), alteration of flow
timing, and overall reductions in flows resulting from
water conservation efforts [14, 47, 48]. We found that
65% of DSIC were located in a catchment with high
levels of dependence on urban wastewater flows. These
same catchments were home to 1.37 billion urban
residents of whom 885 million lived in areas where less
than 75% of wastewater is treated. These figures
highlight the role of indirect wastewater reuse in
meeting the water and food needs of people around
the world.

4.2. Comparison to previous assessments of water
reuse in irrigated agriculture
The top five country level estimates of wastewater
dependent irrigated croplands likely to be practicing
untreated reuse identified in this study were compared
in table 2 to the national areas of wastewater reuse
identified in Annex 2 of Jiménez and Asano [12],



Table 2. Comparison of areas of agricultural water reuse identified in this study as compared to the areas included in the inventory
compiled by Jiménez and Asano [12]. Countries included are those with the five largest areas of likely untreated reuse.

From this study From Jiménez and Asano [12]
P

WWdependent

irrigated croplands

(this study)

Country Urban

WW

treatment

(%)

P
DSIC with a high

likelihood of untreated

reuse (RFR >20% and

WWT �75%) (ha)

Irrigated

with

WW

(ha)

Irrigated

with

treated

WW (ha)

Type of wastewater

irrigation described in

Jiménez and Asano

Original

sources

P
Area irrigated

with WW (untreated

þ treated) (Jiménez

and Asano)

China 71.2 10.4 � 106 1.3 �
106a

0þ Unclear (discussion focused

on direct, municipal reuse,

but text indicates indirect

reuse common)

WRIS 8.0

India 22.0 8.9 � 106 73 000 ND Direct, untreated (data from

1985 inventory of 200

sewage farms)

WRIS;

AAST, 2004;

EPA, 2004

122

Pakistan 1.2 2.9 � 106 32 500 ND Direct, treated (partially) WRIS; EPA,

2004

88

Mexico 53.9 1.5 � 106 190 000 70 000 Direct and some indirect,

treated and untreated

Jimenez,

2006; WRIS

5.6

Iran 4.2 1.4 � 106 þb þb Unclear WRIS;

AAST, 2004;

EPA, 2004;

Jimenez,

2006

ND

a Jiménez and Asano indicate ‘Data are confusing’.
b Jiménez and Asano indicate ‘No data are available, although the practice is reported’
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which is the most comprehensive estimate of
agricultural reuse area prior to our study. While the
overall trends in both studies were similar, the areas of
irrigated croplands (likely to be practicing untreated
reuse) identified by our study were much larger than
those enumerated by Jiménez and Asano. Both studies
were in agreement that China was the nation with the
largest area of wastewater irrigation (table 2).
However, we found an irrigated area eight times
greater than those captured through the surveys and
government statistics used by Jiménez and Asano.

Two reasons the reuse of untreated wastewater has
been so difficult to account for are that unplanned
practices are difficult to quantify via census based
methods and the obfuscation of accurate data about
this practice for political or economic reasons [12].
These factors, plus our focus on indirect reuse, were
the likely reasons we identified larger areas.

4.3. Limitations
The spatial resolution of the irrigated croplands data
(9.2 km) is a central consideration when interpreting
results. The irrigated croplands captured in the source
data (MIRCA2000) tend to be large, contiguous areas
[49]. Small, disconnected urban and peri-urban plots
would generally not be captured, though these plots
can be using the poorest quality water (e.g. irrigating
directly from sewers) [8, 50, 51] and can make
substantial contributions to the production of food
calories [52].

This study focused primarily on catchments where
the wastewater RFR exceeded 20%. However, in
9

catchments with high seasonal variability in water
availability, wastewater return flows may constitute a
significantly larger or smaller proportion of available
water at different times of year. When considering
health risks associated with the use of untreated
wastewater or poor quality water for irrigation, even a
wastewater RFR of a few percent could be enough to
cause concentrations of waterborne pathogens in
surface water sources to exceed WHO thresholds for
acceptable risk [40]. The RFR and urban area
population thresholds adopted here were purposely
conservative. These results likely represent lower limits
of both the area of wastewater dependent irrigated
croplands and irrigated croplands with a high
likelihood of untreated reuse.

In-stream concentrations of waterborne patho-
gens will vary spatially and temporally with a wide
range of variables, including levels of exposure to solar
radiation, flow velocities, association with settleable
materials, and influent pathogen concentrations [53].
Given the range of factors potentially confounding
predictions of waterborne pathogens downstream of
urban areas, we instead opted for a land-use centric
approach, focused on irrigated croplands and classifi-
cation of watershed characteristics indicative of
dependence on urban wastewater flows and untreated
wastewater. In this analysis, we utilized downstream
distance thresholds of 10, 20, and 40 km. Previous
research has shown a strong association between
watershed land use composition and waterborne
pathogen concentrations across diverse contexts
[54–57]. Large strides have been made recently in
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global water quality models, but their resolution is still
coarse (0.5 degrees) [58–60] or their coverage not
global [61]. They are thus limited in their applicability
to the typologies of agricultural water reuse investi-
gated here.

Given these limitations, our results are most
appropriately interpreted at the national to regional
scales to identify areas with a high likelihood of
wastewater dependence or untreated reuse. More
detailed studies accounting for wastewater treatment
infrastructure, flows, and water allocation at the basin
scale are needed to better understand the extent of
health risks and vulnerability posed by indirect water
reuse at finer spatial resolutions and for specific
stakeholder groups. For studies focused on specific
catchments or agricultural activities downstream of
urban areas, watershed scale models and assessments
are more appropriate tools for evaluating the risks
experienced by farmers and consumers.
5. Conclusion

Our analysis provides the first spatially-explicit global
estimates of the extent to which irrigated croplands are
influenced by wastewater, both treated and untreated,
finding 35.9 Mha of irrigated croplands located in
wastewater dependent catchments (RFR ≥ 20%), of
which 82% (29.3 Mha) are located in countries where
less than 75% of wastewater is treated. 86% of these
irrigated croplands were located in five countries:
China, India, Pakistan, Mexico, and Iran.

Our work found that the scale of the practice of
wastewater irrigation is at least 50% larger than
previous, highly uncertain estimates (4.5 to 20 Mha)
extrapolated from case studies and government statis-
tics. This study is also the first to develop methods
explicitly including indirect reuse in its estimates of
agricultural water reuse. Urban wastewater return flows
and other non-consumptive uses are often poorly
accounted for in large-scale water resourcesmodels, but
clearly makemajor contributions to farmers dependent
on surface water for irrigation.

Considerable strides have been made in increasing
access to improved sanitation in urban areas, but for
achieving the Sustainable Development Goal (SDG) 6,
further significant investments in wastewater treatment
are needed. Evenwhen untreated wastewater constitutes
a small percentage of flow, concentrations of pathogens
in irrigation source water can far exceed those
recommended in WHO guidelines. This study sheds
further light on the often complicated ways in which
urban areas impact agricultural water quality in
downstream peri-urban and rural environments. Fur-
ther work is needed to ensure that urban sanitation
policies not only address the protection of surface water
quality for ecological reasons, but also recognize the
waterquantity andqualityneedsofdownstreamfarmers.
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