

Sustainable Intensification Assessment Training

3 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)

Photo: K. Chung

Outline

Day 1

- 1. Intro to SI assessment framework
- 2. Experience with indicators by domain
- 3. Selecting indicators

Day 2

- 1. Tradeoffs and synergies
- 2. Data analysis and visualizations

Day 3

- 1. Participatory methods
- 2. Presentations and feedback

Objectives

At the end of our time, you will...

- 1. Be able to use the framework to select indicators and metrics relevant to project
- 2. Have considered, for the selected indicators:
 - what data sources are available?
 - what metrics and methods are feasible?
- 3. Be able to identify tradeoffs and synergies
- Have used the tradeoff exercise for your own project
- 5. Have skills in presenting output from indicators

TIMELINE

- Accra Meeting, 2013, donor community
 - Arusha, Tanzania, 2014, Int'l research partners

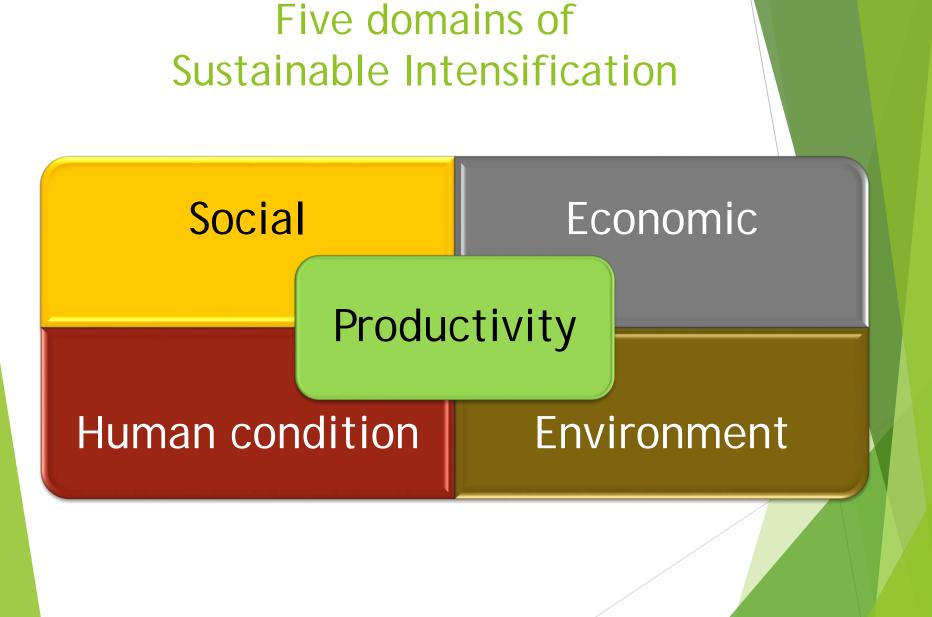
 San Jose, CA, February 2015, U.S. universities, int'l partners, donors, NGOs

- SI Assessment Framework Working Group
- Vara Prasad, SI Innovation Lab, KSU
- Sieg Snapp, Michigan State Univ.
- Cheryl Palm, University of Florida
- Mark Musumba, University of Florida
- Philip Grabowski, Michigan State Univ.

Steering committee

- Vara Prasad (KSU, Chair)
- Jerry Glover (USAID)
- Peter Thorne (ILRI/AfricaRISING)
- Bernard Vanlauwe (IITA)
- Gundula Fischer (IITA)
- Fred Kizito (CIAT)
- Bruno Gerard (CIMMYT)
- Sieglinde Snapp (MSU)
- Cheryl Palm (UF)

Project Objective


- The goal of the project is to develop and recommend indicators and metrics for SI within a framework of five domains at four scales.
- Use by agricultural scientists working in research for development projects -- but is flexible and can be used by scientists interested in sustainable intensification more broadly.

What the framework is not intended to do

- The framework is **not** intended to define or quantify absolute 'sustainability' or pre-determine an ultimate state of sustainability or specific practices that lead to sustainability.
- It is not intended to cover all dimensions or scales of sustainability but only those commonly focused on by agricultural R&D projects, but flexible enough to be adaptable to different scales of interest.
- It is **not** intended to replace other frameworks used by individual programs or projects, but rather **to provide a simplified, common framework that facilitates cross-program learning and assessment**.

SI Indicators are not new

- MESMIS framework (Ridaura-Lopez et. al, 2005) over 20 case studies in Mexico and Latin America
- Framework for sustainability and decision support (Zurek et al. 2015)
- System for Environmental and Agricultural Modelling - Linking European Science and Society - Integrated Framework (van Ittersum et al., 2008)
- Indicators for SI across 5 domains progress and gaps (Smith et al. 2016)

SI indicators by domain and scale

Adapted from the Accra Meeting, 2013, donor community meeting

1) PRODUCTIVITY

- Crop productivity
- Fodder production
- Yield variability
- Yield gap

2) <u>ECONOMIC</u>

- Profitability
- Market participation
- Variability of profitability

SCALE

Landscape+

Farm/Household Scale

Field/Animal Herd Scale

5) <u>SOCIAL</u>

- Equity (gender & marginalized groups)
- Level of collective action
- Conflicts over resources

4) <u>HUMAN</u>

- Nutrition
- Food Security
- Food Safety

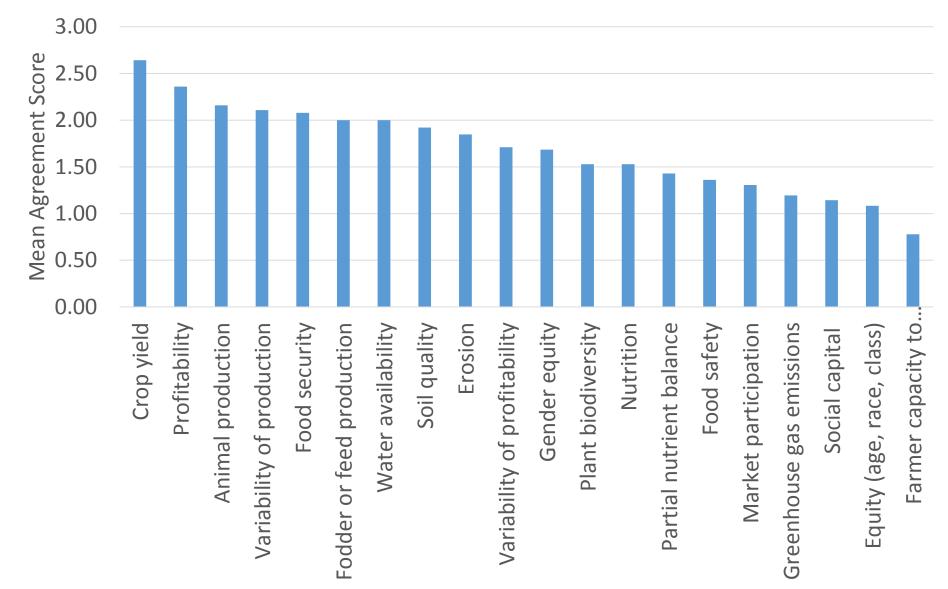
3) ENVIRONMENTAL

- Plant biodiversity
- Nutrient balance
- Soil physical properties

Approach

- Synthesis of literature and stakeholder expertise to obtain list of indicators, metrics and methods at the four scales and identify gaps.
- Engage scientists and project managers –Mali, Ethiopia, Tanzania, Malawi, Rwanda
- Online survey of 44 scientist working on sustainable agriculture

Tree Lucerne - Ethiopia


Farm survey - Malawi

Results from Online Survey

Commonly measured indicators used by 44 researchers involved in SI who participated in an on-line survey

Productivity	Economic	Environment	Human Condition	Social
Yield (75%)	Profitability (59%)	Soil carbon (34%)	Production of nutritious foods (25%)	Gendered rating of technology (43%)
Yield variability (50%)	Labor requirements (52%)	Crop water availability (30%)	Capacity to experiment (23%)	Gender equity impact (27%)
Crop residue production (45%)	Input use efficiency (48%)	Nutrient Partial Balance (27%)	Dietary diversity (18%)	Conflicts over resources (11%)

Indicators of sustainable intensification, ranked by average level of agreement (maximum, 3 = strongly agree and minimum, -3 = strongly disagree)

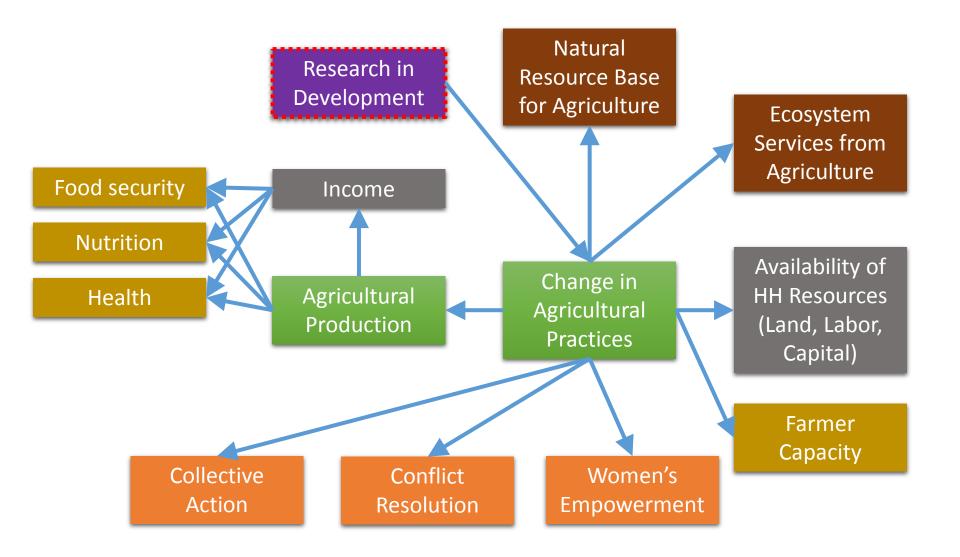
What are some challenges identified?

- Scale at which the indicator is assessed
 - Capacity, time, and costs
- Sample size (number of participants)
 - Extrapolating from field experiments
- Indicator gaps
 - Social domain (gender indicators)
- Need for alternative methods
 - For indicators that we cannot measure directly, how can scientist link management practice to indicators?

	Indicators	Field	Farm/Hh	Landscape+	Measurement Method
Productivity	Crop & animal productivity				
Economic	Gross Margin				
Environment	Nutrient Balance				
Human condition	Food Security				
Social	Equity (gender, class, age)				

Defining terms

- <u>Indicator</u> a "quantitative or qualitative factor or variable that provides a simple and reliable basis for assessing achievement, change or performance" (ISPC, 2014).
- <u>Metric</u> "represent the values on which indicators are built." They are computed by aggregating and combining raw data, for example, yield (harvest per hectare) or height-for-age. (ISPC, 2014)
- <u>Measurement Method</u> a set of activities to generate raw data (observations such as weight, height, plot size, etc.) that can be used to compute metrics

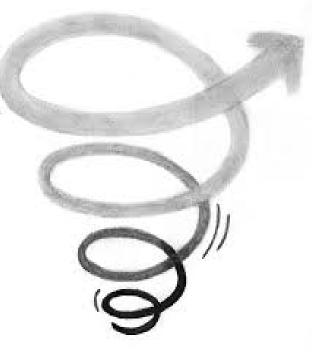

Three primary uses of the SI indicator assessment framework

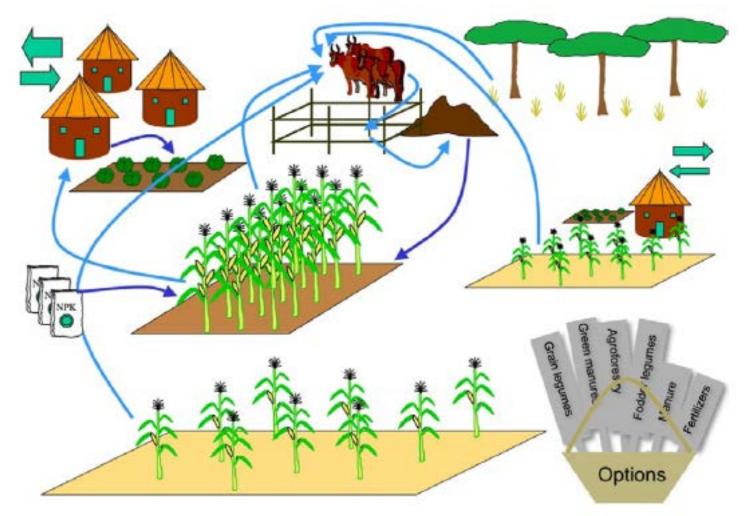
- Guide for indicator identification and selection
- 2. Assessing performance of technologies
- 3. Examine trade-offs and synergies

Objective driven assessment

- What is the objective of the project? What indicators have been selected to assess performance of this objective?
 - Use indicator assessment framework, for selection of indicators across domain
- In the process we try to learn
 - What happened (descriptive analysis) in meeting objective
 - What were the trade-offs and synergies across other indicators?
 - Why it might have happened?
 - What would we want to see happen?

There are multiple goals for sustainable intensification


Examples of trade-offs


- Within a domain
 - Land for legumes vs. Land for maize
- Across domains
 - Crop residues Fodder vs. Soil fertility
 - Input use Production vs. Pollution
- Across spatial scales
 - Farm profitability →agricultural expansion→ habitat loss
- Across time
 - Near term production sacrifice for long term stability
- Across groups in a typology
 - Crop growers vs. Herders

There are synergies as well

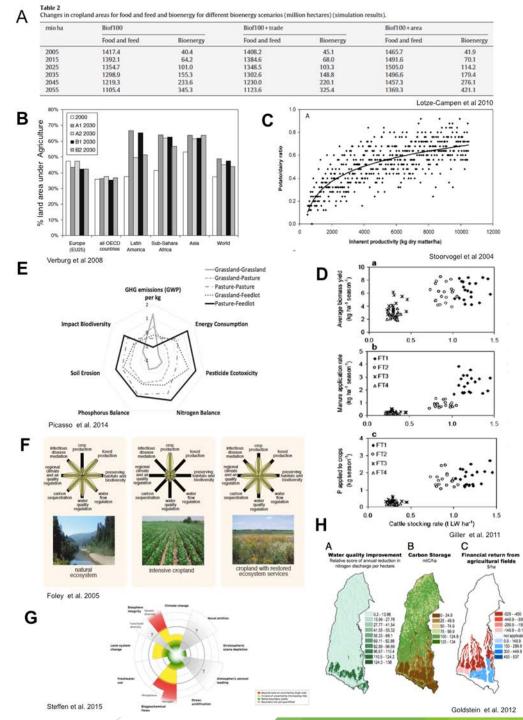
- Fertilizer use may stimulate production that leads to improved carbon cycling
- Multi-purpose legumes can build soil fertility and provide a source of nutritious food
- Push-pull systems like Desmodium and Napier grass can help control maize stem borers and provide soil benefits (nitrogen, cover, Striga suppression)

Farming systems have complex interactions

Giller et al. 2011 Communicating complexity: Integrated assessment of tradeoffs concerning soil fertility management within African farming systems to support innovation and development. *Agricultural Systems* 104 p.191-203

Methods for Trade-off Analysis

- Participatory research methods
 - Resource flow mapping; Participatory scenario development
 - Games and role plays; Fuzzy Logic Cognitive Mapping
- Empirical analyses Experiments
- Simulation models
- Optimization models detailed further in Kanter et al. 2016

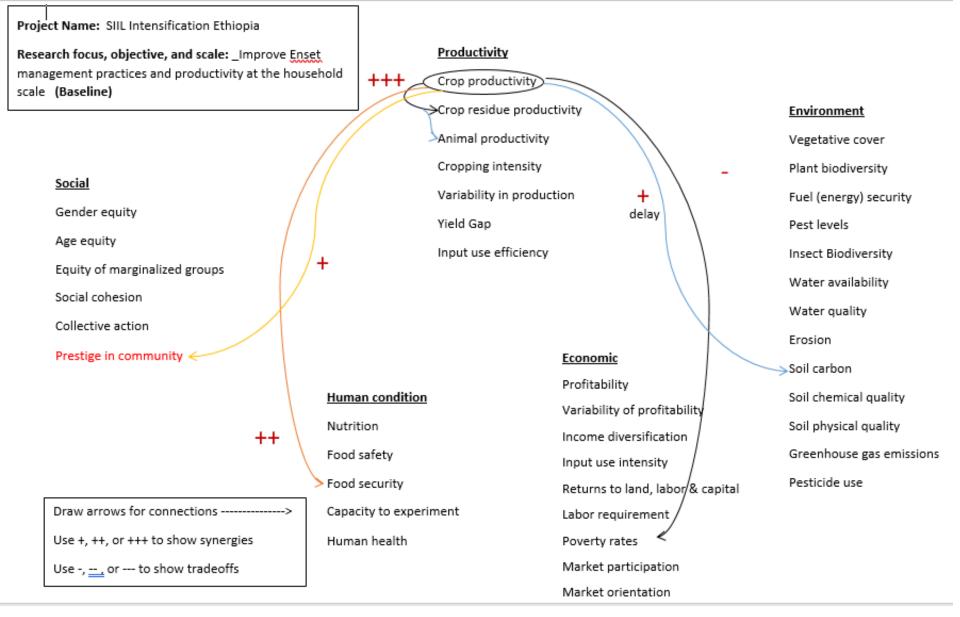

Klapwijk et al. 2014 Analysis of trade-offs in agricultural systems: current status and way forward. *Current opinion in Environmental Sustainability* 6: 110-115.

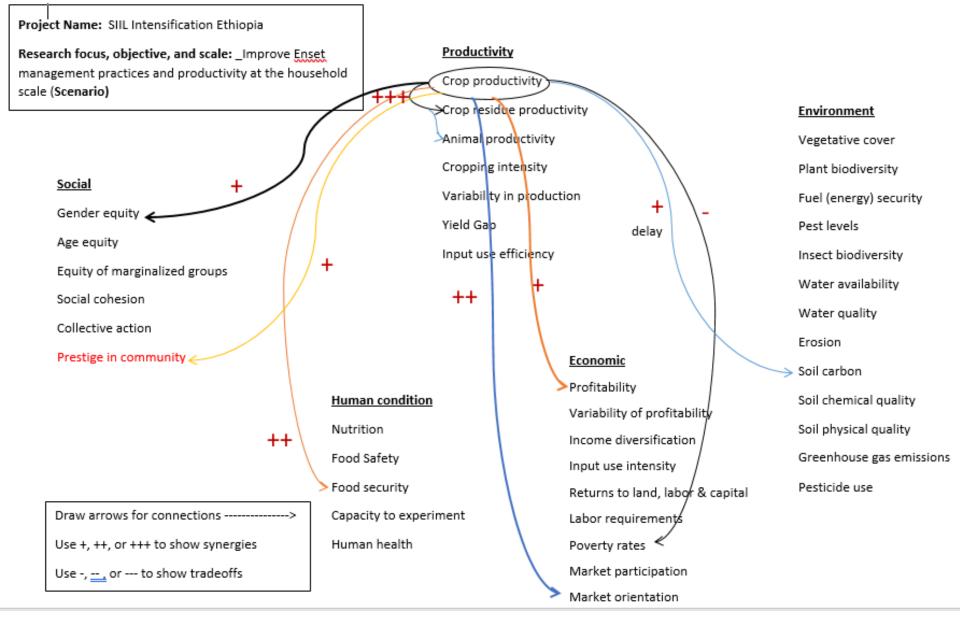
Kanter et al. 2016 Evaluating agricultural trade-offs in the age of sustainable development. *Agricultural Systems* (in press)

Data visualization strategies

- A. Tabular matrices
- B. Bar charts
- C. Scatterplots
- D. Matrix of scatterplots
- E. Spider diagrams
- F. Radial diagrams
- G. Petal diagrams
- H. Spatially explicit maps

Kanter et al. 2016. Agricultural Systems.




Trade-offs Exercise

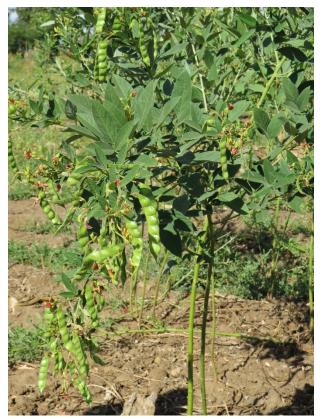
• Look at Enset (False Banana)

Questions?

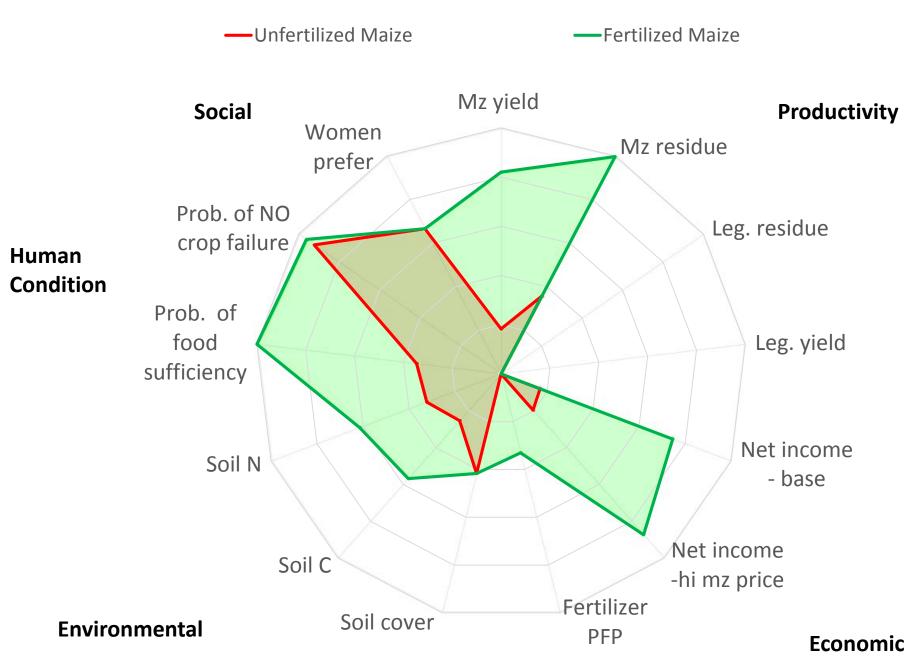
Contact details:

- Philip Grabowski grabow21@msu.edu
- Mark Musumba <u>mmusumba@ei.columbia.edu</u>

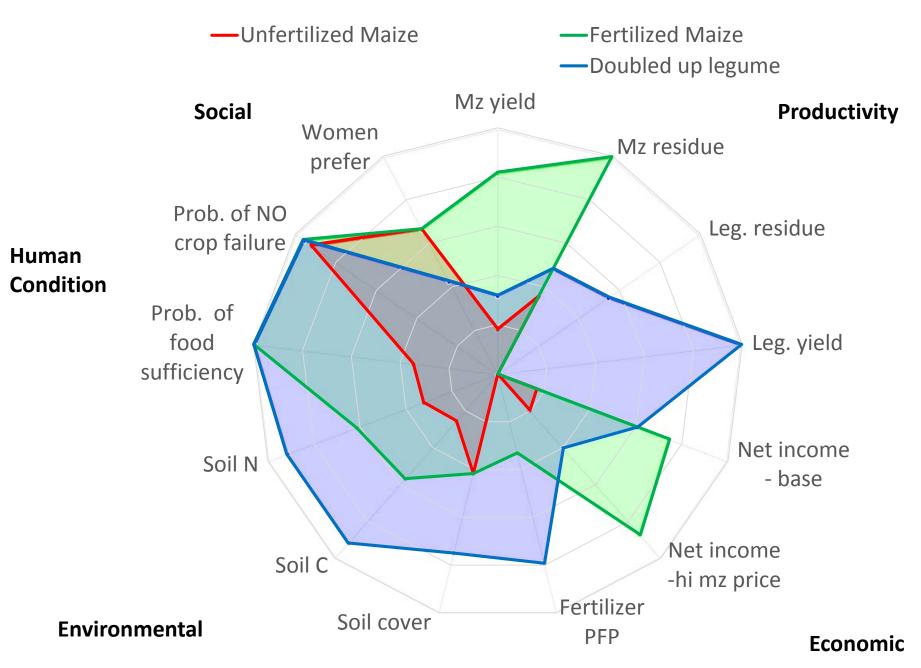
Pigeonpea intercropping in Malawi

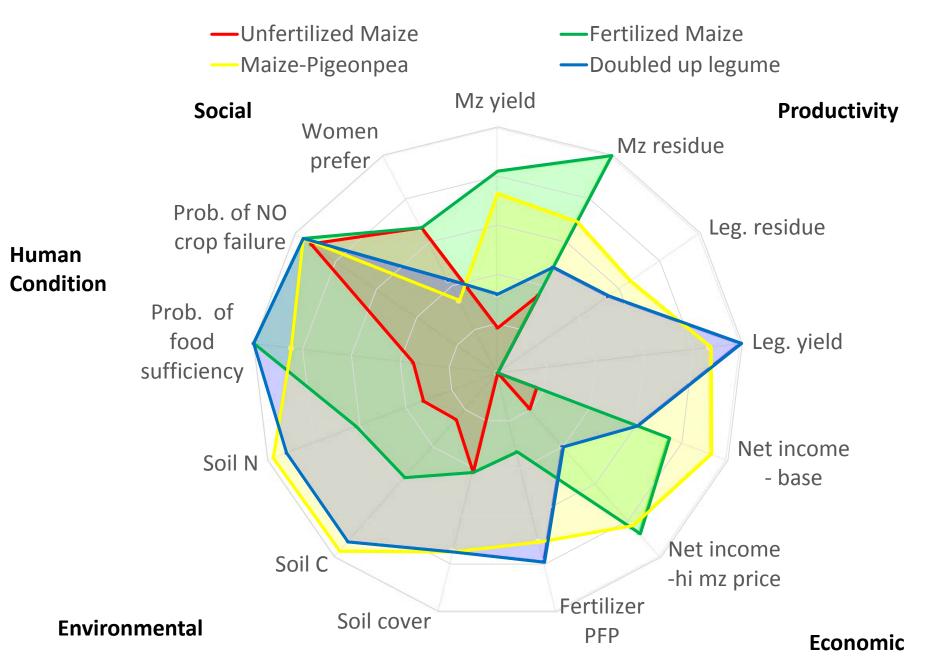

Systems compared:

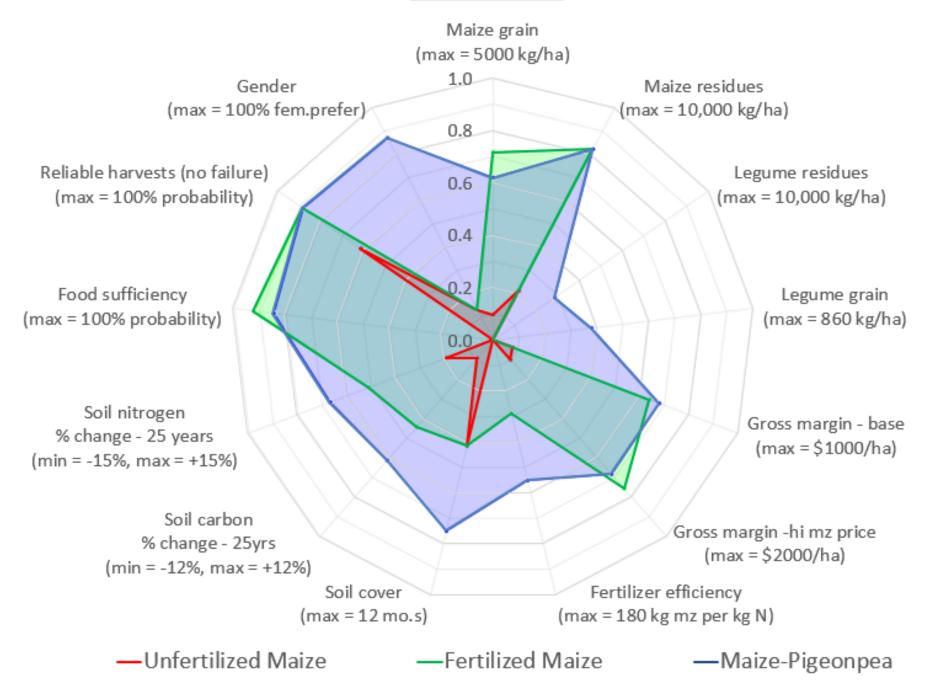
RISING

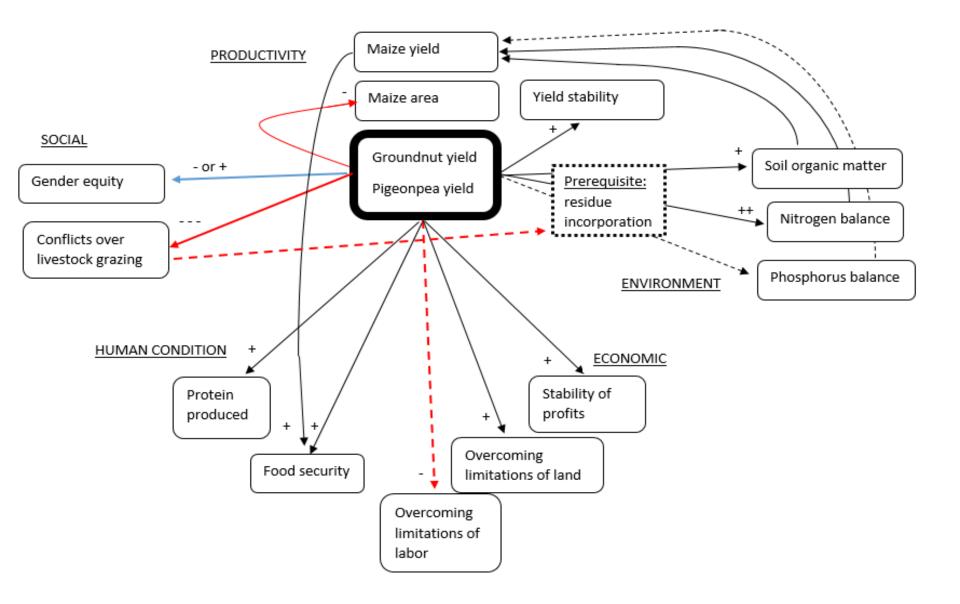

- Unfertilized maize Continuous sole maize
- Fertilized maize Continuous sole maize with 69 kg N/ha fertilizer
- Maize-Pigeonpea intercrop with 35 kg N/ha fertilizer
- Doubled up legume Groundnut-Pigeonpea intercrop rotated with maize (35 kg N/ha fertilizer in maize phase)

Data sources:


- 1) On-farm trials
- 2) APSIM modeling results
- 3) Survey data


Kandeu


Kandeu


Kandeu

Golomoti

Malawi – Africa RISING tradeoffs and synergies

Conclusions

- 1. Pigeonpea intercropping can reduce risk from climatic variability
- 2. The SI indicator framework facilitated holistic analysis of legume systems and the identification of important data gaps
- 3. A transdisciplinary approach (interdisciplinary research collaboratively engaging with farmers) is needed to develop and assess management practices for sustainable intensification

Food Security in Mbola and Mwandama

- Critical goal of the Millennium Villages project was to reduce food insecurity and poverty.
- In this case, we use the SI Assessment framework as a guide to assessing the performance of two Villages
 - Mbola in Tanzania
 - Mwandama in Malawi
- **Technology** provided to reduce food insecurity
 - Maize seeds and fertilizer

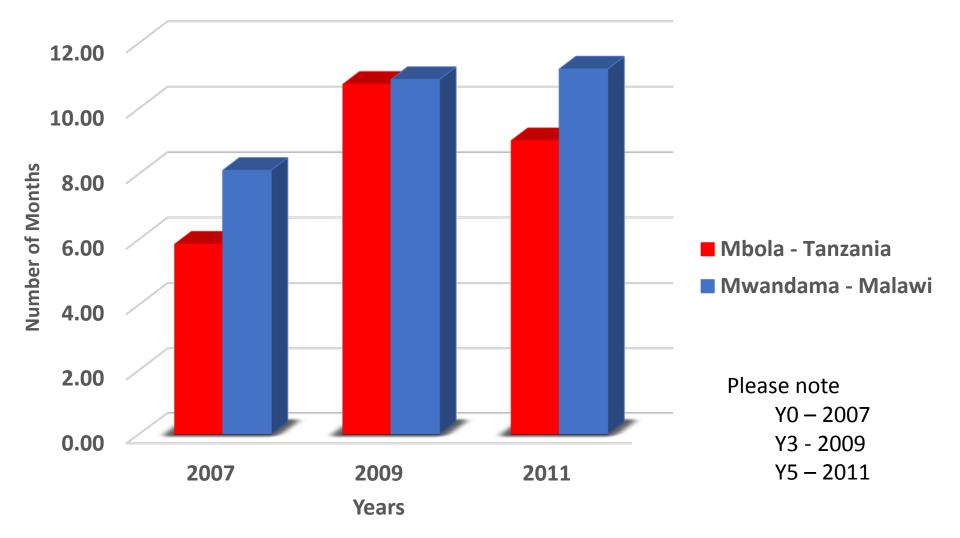
WEST & CENTRAL AFRICA

- 1. Potou (Senegal)
- 2. Tiby (Mali)
- 3. Bonsaaso (Ghana)
- 4. Pampaida (Nigeria)

EAST AFRICA

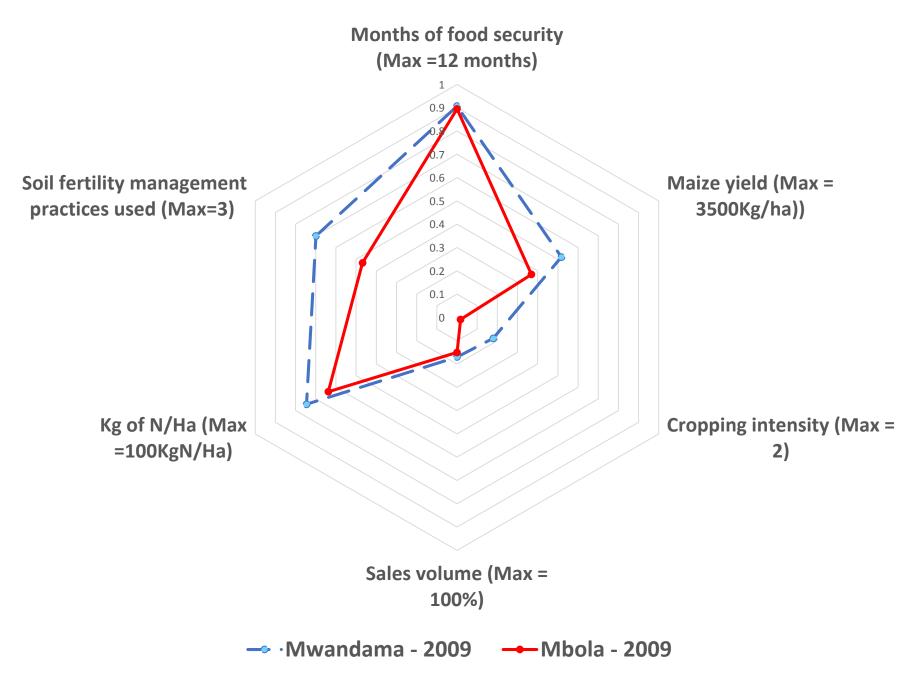
- 5. Koraro (Ethiopia)
- 6. Sauri (Kenya)
- 7. Ruhiira (Uganda)
- 8. Mayange (Rwanda)
- 9. Mbola (Tanzania)
- 10. Mwandama (Malawi)

Indicators selected per domain

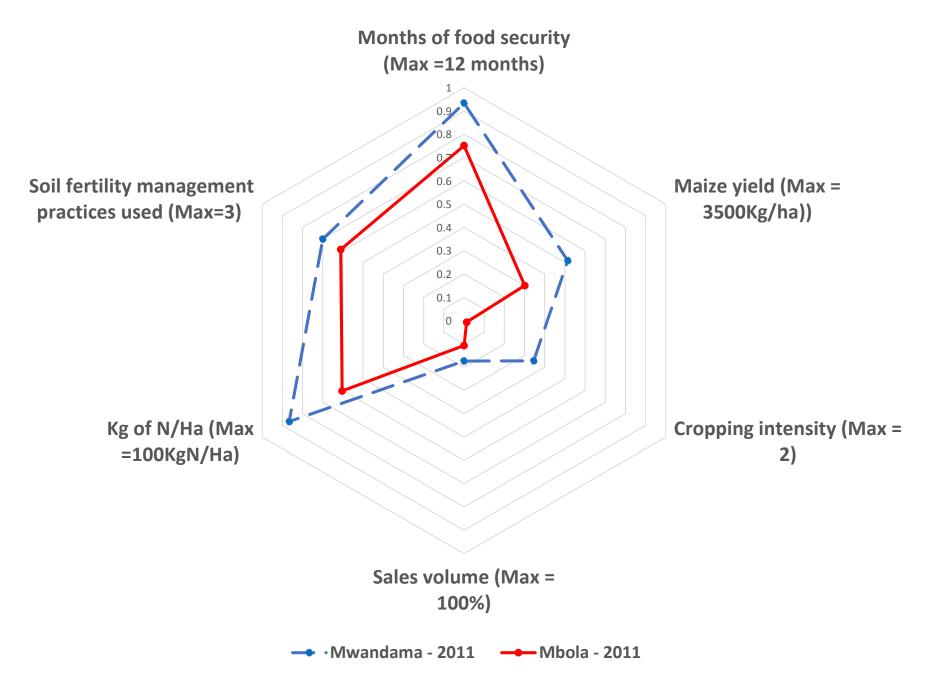

Table 1. Selected Indicators per domain from Mbola and Mwandama

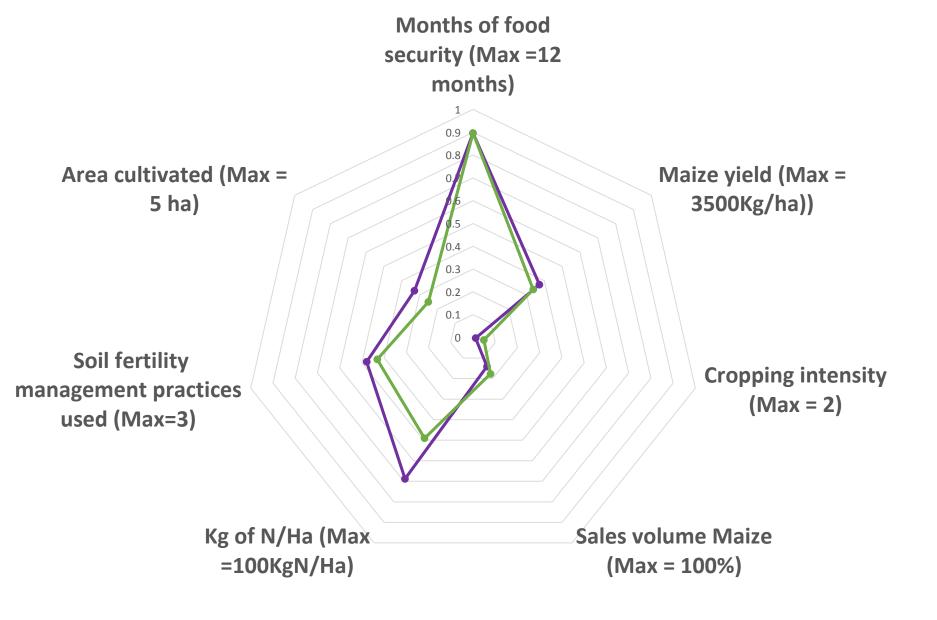
.

				Measurement
Domain	Indicator	Metric	Scale	Method
Productivity	Crop Productivity	Maize yield	Field	Survey
Productivity	Cropping Intensity	Cropping intensity	Field	Survey
	Market			
Economic	Participation	Sales volume	Household	Survey
	Soil Chemical			
Environmental	Quality	Kg of N/Ha	Field	Survey
	Soil Chemical	Soil fertility management		
Environmental	Quality	practices used	Field	Survey
Human				
Condition	Food Security	Months of food security	Household	Survey
		Access to resources		
Social	Equity	(disaggregation)	Household	Survey


Mbola and Mwandama household performance in 2009 - 2011

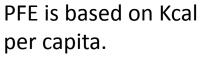
- Variables
 - Cropping intensity for maize (percentage of households growing two crops)
 - Yield
 - Months of food security
 - Fertilizer use
 - Market participation
 - Land allocation (percentage to maize)
 - Number of soil management practices (Chemical fertilizer use, manure use, and residue application)



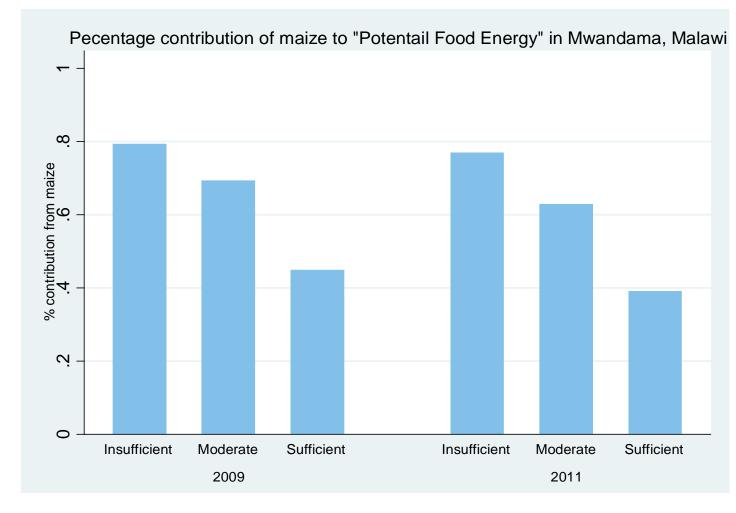

Figure 1. Number of months with enough food to eat

Performance of households in Mbola and Mwandama in 2009

Perfomance of Mwandama and Mbola Households in 2011

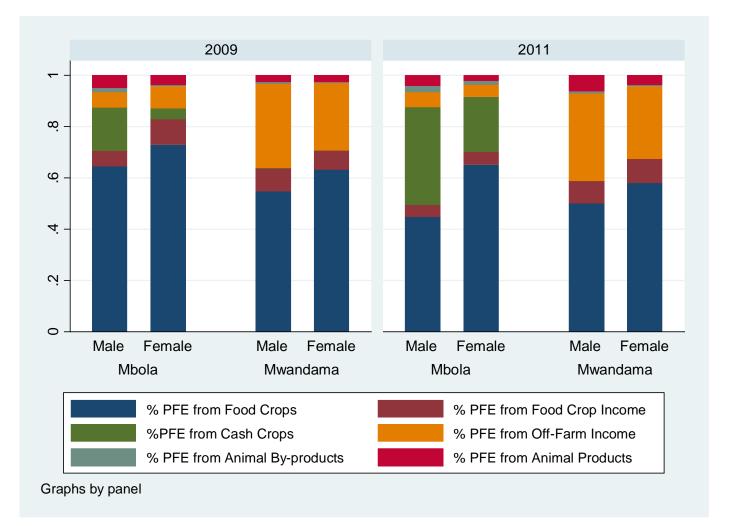


-Mbola - 2009 - Male -Mbola - 2009 - Female


SI Indicators as a pathway for detailed research analysis

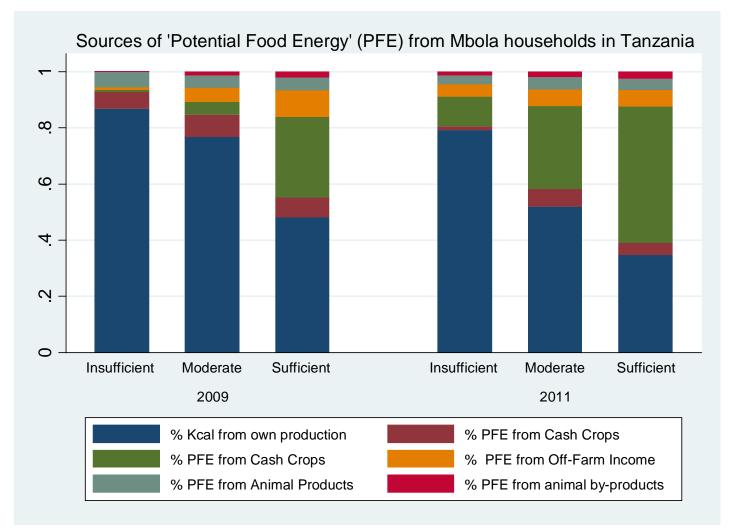
• The next section disaggregates the sources of PFE across the potentially food insecure (insufficient PFE) to the potentially food secure (PFE)

- insufficient is less than 1500
- Moderate between 1500 and 4000
- Sufficient is great than 4000 Kcal per capita


Based on Van Wijk et al. 2016

PFE is based on kilo calories (Kcal) per capita.

- Insufficient is less than 1500
- Moderate
 between 1500 and
 4000
- **Sufficient** is great than 4000 Kcal per capita


Please note Y3 – 2009 Y5 – 2011

PFE is based on kilo calories (Kcal) per capita.

- Insufficient is less than 1500
- Moderate between 1500 and 4000
- **Sufficient** is great than 4000 Kcal per capita

Based on Van Wijk et al. 2016

Part 2: Experience with Sustainable Intensification Indicators by Domain

3 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)

Photo: K. Chung

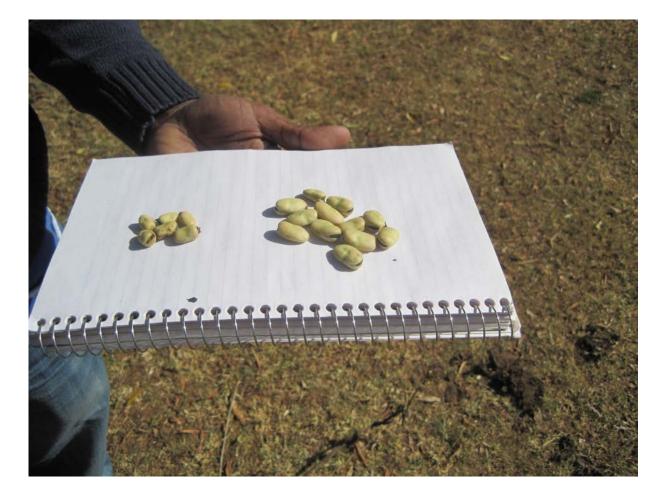
Productivity Domain

Productivity Domain

Indicator	Field/plot	Farm level	Household	Community/	Measurement	
	level metrics	metrics	level metrics	Landscape + metrics	method	
Crop productivity	Yield (kg/ha/season) ^{a,b,c} (including tree product/area under crown) Rating of yield d	Yield (kg/ha/season) ^{a,b,c}		Remotely sensed measures of crop productivity (kg biomass / ha / yr) ^e		
Crop residue productivity	Residue production (kg/ha/season) ^{a,b,c} Rating residue production ^d	Residue production (kg/ha/season) ^{a,b,c}		Remotely sensed measures of crop productivity (kg biomass / ha / yr) ^e		
Animal productivity	Animal products (amount / animal / year)	Animal productivity per unit land (product / ha /	Animal productivity per household (product / hh	Net commercial offtake (product / ha / yr) ^a	^a Recall survey ^b Production measurements ^c Farmer	

Crop productivity – yield cuts or farmer recall

Crop cut for wheat fertilizer response trial – Africa RISING Ethiopia

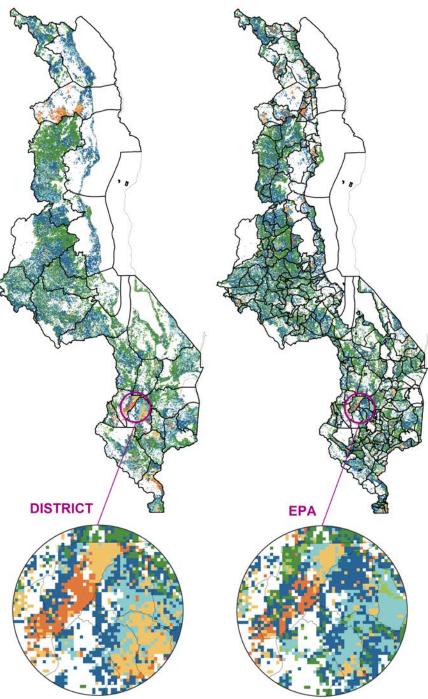


Enumerator and farmer – recall survey Zambia

Handheld GPS for measuring field area

Farmer rating of yield

Faba bean varieties – Africa RISING Ethiopia


Remote sensing yield

Crop Production and Sensitivity to Climatic and Biophysical Drive

Agricultural yield trends measured using Net Primary Productivity (NASA MODIS NPP). Data below shown for agricultural land use only.

What are the "typical" methods for measuring productivity in Cambodia?

What experiences have you had with alternatives?

ECONOMIC DOMAIN							
Indicator	Field/plot level	Farm level	Household level	Landscape	Measurement		
	metrics	metrics	metrics	+	Method		
Profit- ability	Net income ^a (\$/crop/ha/ season) Gross Margin ^a	Net income ^{a,c} (sum of net income across crop and livestock activities) Gross Margin ^a	Net income ^{a,c} (sum of net income across crop and livestock activities)	Contribut- ion to regional or national GDP ^b	 ^a Survey ^b Regional and national statistics ^c Participatory evaluation 		
Variability of profit- ability	Coefficient of variability of net income ^a Probability of low profitability ^{a,b}	Coefficient of variability of net income ^a Probability of low profitability ^{a,b}	Coefficient of variability of net income ^a Probability of low profitability ^{a,b}		^a Survey ^b Farmer evaluation		
Income diversificat -ion	N/A	Diversification index ^a	Diversification index ^a Number of income sources ^a		^a Survey		
Returns to land, labor and inputs	Net returns ^a (monetary value of output/input used)	Net returns ^a (monetary value of output/input used)	Net returns ^a (monetary value of output/input)		^a Survey and productivity measurements		
Input use intensity	Input per ha ª	Input per ha ^a	Input per ha ^a		^a Survey		
Labor require- ment	Labor requirement (bours/ba) ^{a,b}	Labor requirement (bours/ba) ^{a,b}	Labor requirement (hours/ha) ^{a,b}		^a Recall survey ^b Direct observation		

What experiences do you have measuring economic indicators?

- Profits and their variability
- Income diversification
- Returns to land, labor and inputs
- Labor requirements
- Poverty
- Market participation and orientation

ENVIRONMENT DOMAIN (Part 1: Biodiversity and water)						
		Farm level	Household level	Community/Lands	Measurement	
Indicator	Field/plot level metrics	metrics	metrics	cape + metrics	method	
Vegetativ	% Vegetative cover by	% Vegetative		% Vegetative cover	^a Quadrats,	
e Cover	type (tree, shrub, grass,			by type ^c	transects or visual	
	invasive) ^{a,b}	a,b	N/A	% Burned land ^c	estimate of cover	
	% Burned land ^{a,b}	% Burned land	N/A	% Bare land ^c	^b Participatory	
	% Bare land ^{a,b}	a,b			exercise	
					^c Satellite images	
	Alpha Diversity Index ^{a,b}	-		Gamma Diversity	^a Vegetation	
	# Species or varieties ^{a,b}	Index ^{a,b}	NI / A	Index ^{a,b}	sample	
ity		# Species or	N/A	% Natural habitat ^c	^b Transects	
		varieties ^{a,b}			^c Satellite images	
Pest	Weed abundance and				^a Seasonal	
levels	severity ^{a,b}				transects	
	Parasitic weed levels a,b				^b Traps	
	# Pest insects by type ^{a,b}					
	Presence of invasive					
	species ^{a,b}					
	Presence and severity					
	of crop diseases ^{a,b}					
	# Pollinators ^{a,b,c}			# pollinators ^{a,b,c}	^a Traps	
Biodivers	Diversity index ^{a,b,c}			Diversity index ^{a,b,c}	^b Direct	
ity	# Beneficial insects ^{a,b,c}			# beneficial insects	observation	

ENVIRONMENT DOMAIN (Part 2: Soil and pollution)						
Indicator	Field/plot level metrics	Farm level metrics	Househ old	Community/Landscap e + metrics	Measurement method	
			metrics			
Erosion	Soil loss (tons/ha/yr) ^{a,b,c} Rating of erosion ^{a,d}		N/A	Sediment load (mg/L) ^e Erosion (tons/ha/yr) ^b	^a Direct measurement ^b Models	
Soil carbon	Total carbon (%, or Mg/ha) ^a Labile or 'active' carbon (POXC) ^a and/or CO ₂ mineralization ^c Partial carbon budget ^{b,c}		N/A	N/A	^a Soil test ^b Survey ^c Measurements	
Soil chemical quality	Soil pH (acidity) ^a % Aluminum saturation ^a Electrical conductivity ^a Soil nutrient levels ^a Nutrient partial balance ^b Biological nitrogen	Nutrient partial balance ^b Biological nitrogen fixation ^a	N/A N/A N/A	N/A N/A Nutrient partial balance ^{a,b}	^a Soil tests ^b Survey and lookup tables	

What experiences do you have measuring environmental effects in Cambodia?

Soil and water analyses? Other environmental indicators?

Human Condition Domain

Indicator	Field/plot	Household	Landscape or	Measurement
			Administrative Unit	method
Nutrition	Protein production (g / ha) ^{a,b} Micronutrient production (g / ha)	Access to nutritious foods ^a Dietary diversity ^a Nutritional status (underweight, stunting, wasting) ^c Uptake of essential nutrients ^d	Market or landscape supply of diverse food ^{e,f} Dietary Diversity ^a Rate of underweight, stunting and wasting ^c Average birthweight ^c	 ^a Survey ^b Look up tables ^c Anthropometric measurements ^d Blood tests ^f Participatory mapping
Food security	Food production (Calories/ ha) ^{a,b}	Food availability ^a Food accessibility ^a Food utilization ^a Months of food insecurity ^a Rating of food security ^c	Total food production ^a	^a Survey ^b Look up tables ^c Participatory assessment
Food Safety		Mycotoxins (toxicity units per gram) ^a Pesticide contamination ^{a,b} Post-harvest losses ^c		^a Chemical testing ^b Health center data ^c Survey
Human health			Incidence of zoonotic diseases a Incidence of vector borne diseases a	^a Health center data

Two interventions

Farmer's practice

- Orange flesh sweet potatoes (farmer practice (local) and intervention)
- Main objective of intervention is to:
 - Improve food security and
 - Nutrition

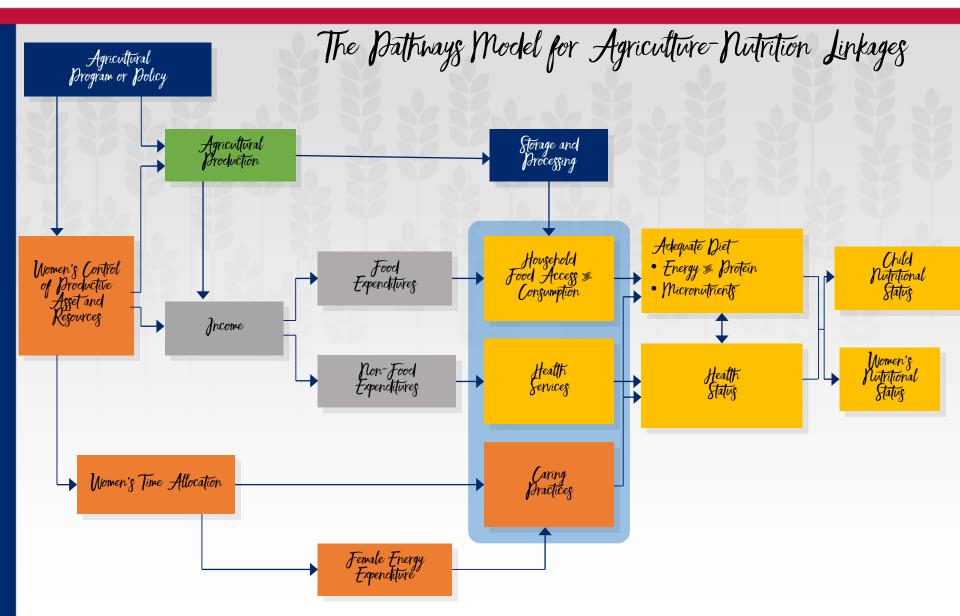
Selection of indicators

Indicator	Field/plot	Household	Landscape or Administrative Unit	Measurement method
Nutrition	Protein production (g / ha) ^{a,b} Micronutrient production (g / ha)	Access to nutritious foods ^a Dietary diversity ^a Nutritional status (underweight, stunting, wasting) ^c Uptake of essential nutrients ^d	Market or landscape supply of diverse food ^{e,f} Dietary Diversity ^a Rate of underweight, stunting and wasting ^c Average birthweight ^c	 ^a Survey ^b Look up tables ^c Anthropometric measurements ^d Blood tests ^f Participatory mapping
Food security	Food production (Calories/ ha) ^{a,b}	Food availability ^a Food accessibility ^a Food utilization ^a Months of food insecurity ^a Rating of food	Total food production ^a	^a Survey ^b Look up tables ^c Participatory assessment

Development approach

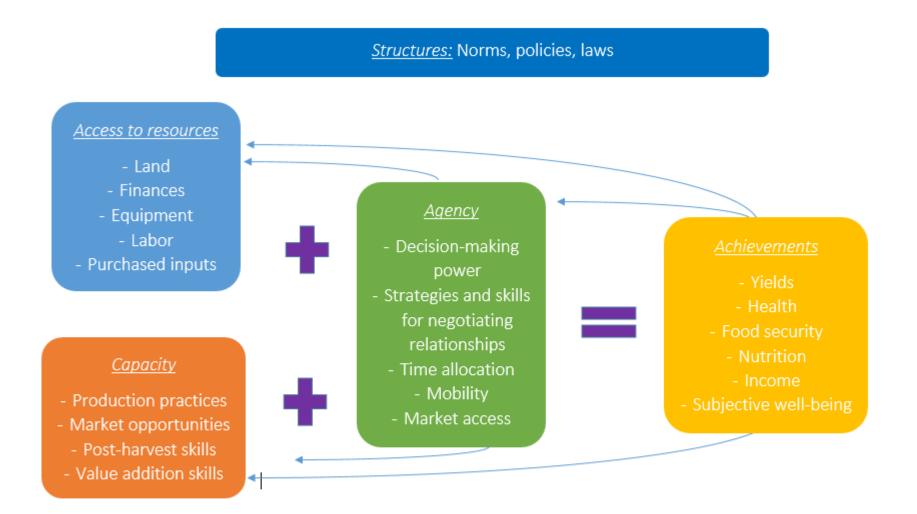
- Roll out the orange potato technology to household in a region and collected data at the household level to generate these indicators.
- Challenge
 - Cost prohibitive
 - This approach may be suitable for development projects and not research for development

Research Approach to assessing indicators


- Food security and nutrition indicators are mainly assessed at the household level.
- When working at small field scale we are unlikely to measure the effect of the intervention at the household level.
- We may use proxies for food security and nutrition with the assumption that the household will either consume the produce or sell the produce and buy nutritious food.
- How do we work at the field scale to assess how the intervention might have an effect at the household level?

Alternative approach

- A participatory one to assess farmers willingness to adopt/adapt the technology.
 - Whether they would consume it or sell it?
 - What other aspects of the technology are influential in its adoption?


Chung, K. et al. 2015. An Introduction to Nutrition-Sensitive Agricultural Programming. Online course. Washington, DC: USAID's FANTA Project at FHI 360. https://agrilinks.org/sites/default/files/nutrition-training/module1part1/index.htm

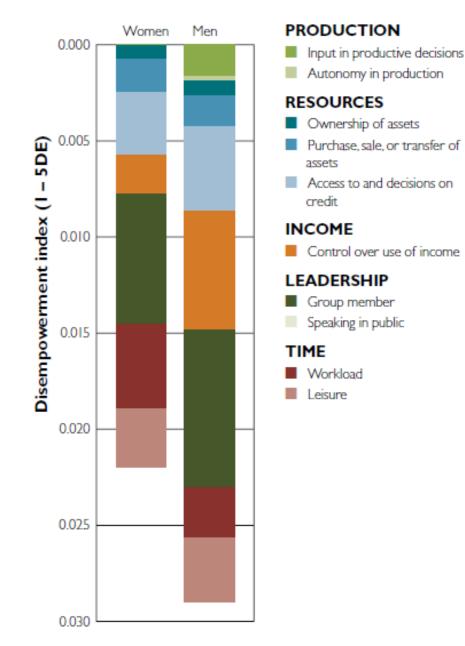
What experiences do you have measuring these human condition indicators?

- Nutrition
- Food security
- Health
- Farmer Capacity

Gender issues cut across all domains

Relationships: Household, community, kin, political

	SOCIAL DOMAIN						
Indicator	Field	Farm	Household level metrics	Community/Landscape +	Measurement		
				metrics	method		
Gender			Resources: Land access by gender a-d	Women Empowerment in	^a Individual survey		
equity			Livestock ownership by gender a-d	Agriculture Index ^{a,d}	^b Participatory		
			Capacity: Access to information a-d		evaluation		
			Agency: Time allocation by gender a-d		^c Focus group		
	NI / A	N/A	Management control by gender a-d		discussions		
	N/A	N/A	Market participation by gender ^{a-d}		^d Household		
			Achievements: Income by gender a-d		survey		
			Nutrition/Food security by gender				
			Health status by gender a-d				
			Cross cutting: Rating of technologies				
Equity			Access to resources (land and	Variability and	^a Key informant		
(generally			livestock ownership) ^{a-d}	distributions resources,	interview		
)	Ν/Λ	N/A	Agency (leadership roles) ^{a-d}	agency, and achievements a-d	^b Participatory		
			Achievements (income, nutrition,	a-u	evaluation		
			food security, health, well-being) ^{a-d}		^c Focus group		
			Rating of technologies by group a-d		discussions		
Social			Participation in community activities	Social groups ^c	^a Household		
cohesion			Level and reliability of social support	Participation in social	survey		
	NI / A		Family cohesion ^{a,b,c}	groups ^{a,b,c}	^b Focus group		
	IN/A	IN/A		Incidence of social	discussions		
				support a,b,c	^C Key informant		


Gender analysis - conceptual

Reflect on the following questions:

- Will the use of the technology affect women's access to resources (land, money, household labor)?
- How will the technology affect women's time differently from men?
- How does the technology address women's priorities vs. men's priorities?
- What are possible negative side effects of the technology for women?

What experiences do you have measuring these social indicators?

- Equity
- Gender equity
- Social cohesion
- Collective action

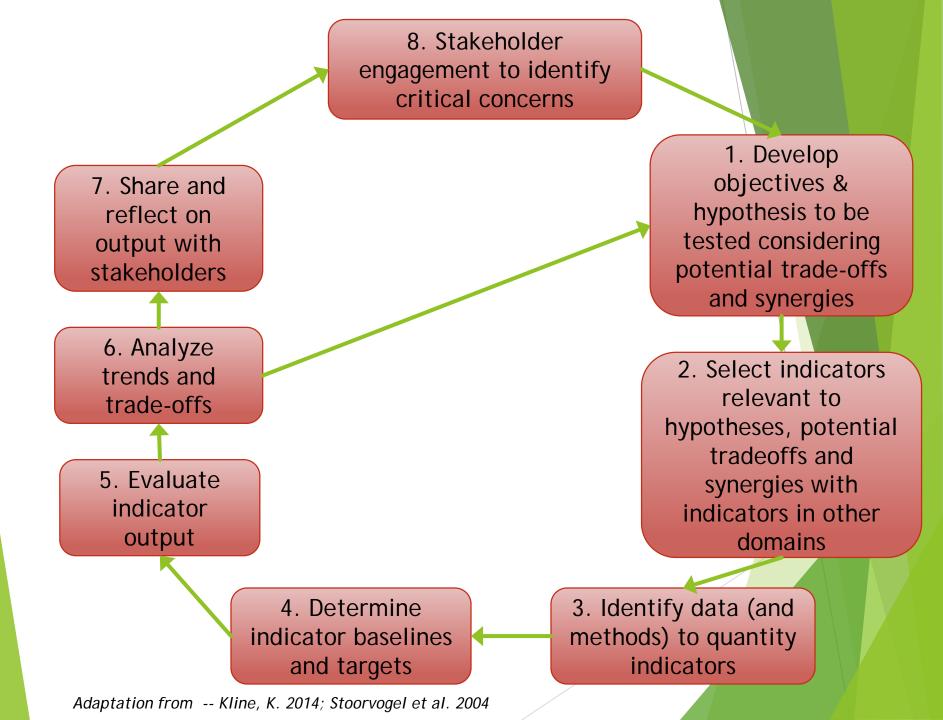
Source: Cambodia Development Resource Institute (2012).

Part 3: Indicator Selection for Sustainable Intensification Assessment

3 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Photo: K. Chung

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)



Stage:	Situation analysis	Technology testing (pre- adoption)	Dissemination and adaptation
Primary Objective:	Characterization of farming system	Assess possible interventions	Monitor performance at scale
Additional objectives:	Identifying challenges and opportunities	Assess adoption potential	ID facilitators and barriers to adoption Assess drivers of performance
Data:	Baseline survey	Initial experiments	Survey farmer practice
Role of models:	Evaluate baseline performance	Explore system changes	ID areas for adoption, scenarios

Indicator selection

- Primary objective
- Sub-objectives by domain
- Indicators, metrics and methods for each

Activity to Identify and select relevant indicators and data collection methods

Domain	Sub-objectives	Indicators for assessing sub- objectives	Measurement Method	Scale of assessment
Productivity				
(Pg. 13 *)				
Economic				
(Pg. 17 *)				
Environmental				
(Pg. 21 *)				
Human Condition				
(Pg. 28 *)				
Social (Pg. 32 *)				

If you have too long of a list...

Rank by importanceConsider feasibility

Rank again

Day 2 Part 1: Tradeoffs and Synergies in Sustainable Intensification

4 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Photo credit: Chabierski et al. 2011

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)

Tradeoffs and Synergies

- How do the objectives and subobjectives of your project relate to each other?
- What other indirect effects are likely?

Project Name:

Research focus, objective, and scale:

<u>Social</u>

Gender equity

Age equity

Equity of marginalized groups

Social cohesion

Collective action

Human condition

Nutrition

Food safety

Food security

Capacity to experiment

Human health

<u>Productivity</u>

Crop Productivity

Crop residue productivity Animal Productivity Variability in production

Input use efficiency

Cropping Intensity

Yield Gap

Economic

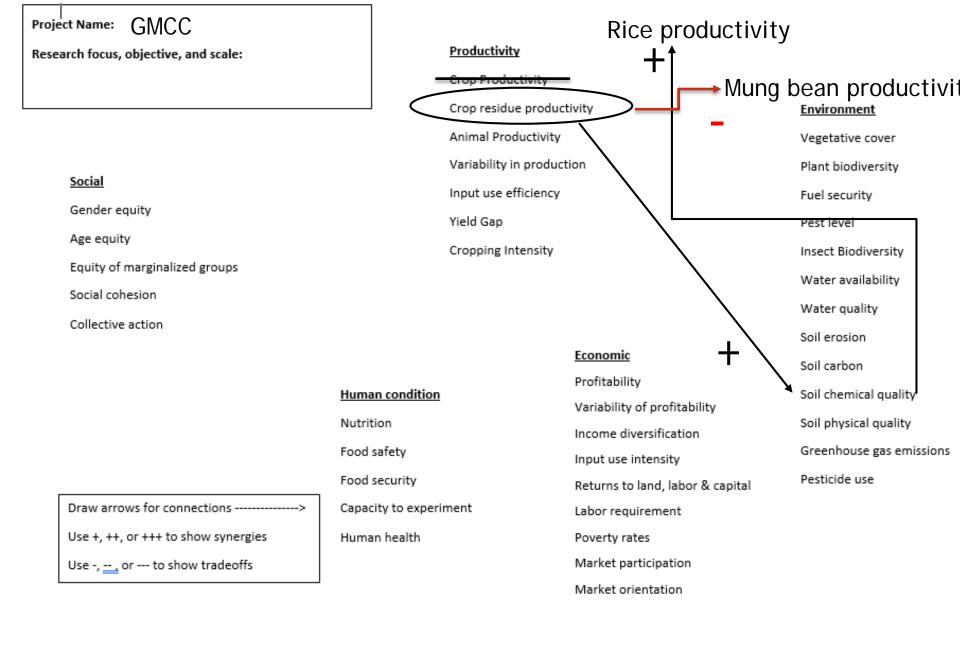
Profitability Variability of profitability Income diversification Input use intensity Returns to land, labor & capital Labor requirement Poverty rates

Market participation

Market orientation

Vegetative cover Plant biodiversity Fuel security Pest level Insect Biodiversity Water availability Water quality Soil erosion Soil carbon Soil chemical quality Soil physical quality Greenhouse gas emissions Pesticide use

Environment


Draw arrows for connections ----->

Use +, ++, or +++ to show synergies

Use -, --- or --- to show tradeoffs

Steps

- Circle one or two indicators directly influenced by the technology
- Draw arrows for the most important indirect effects

What indicators need to be added based on the tradeoffs and synergies?

Day 2 Part 2: Data Analysis and Visualizations

4 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Photo credit: Chabierski et al. 2011

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)

Handling variability - time, space, typology, etc.

Categorical variability

- 1. Radar chart with separate lines for each group (e.g. year 1, year 2)
- 2. Separate radar charts for each group (e.g. location 1, location 2)

Continuous variability

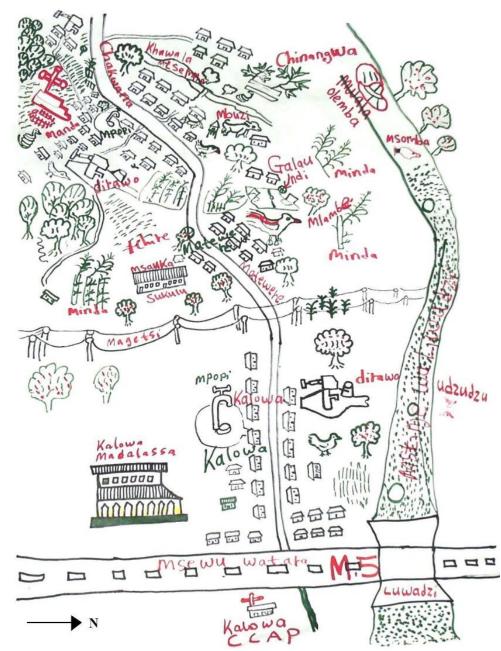
- Create an axis representing the variability (e.g. yield stability, economic risk, etc.)
- 2. Present the distribution of the mean alongside the radar chart

Day 3 Part 1: Participatory Exercises – Methods and Data Analysis

5 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Photo credit: Kimberly Chung

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)


Warm up

- What do you think of when you hear "Participatory Methods"?
- What are the strengths of these methods?
- What are the weaknesses of these methods?

Participatory Rural Appraisal

- Robert
 Chambers
- Group visual activities

- Going beyond the method
- Attitude and behavior change of facilitator (Chambers, 2008)
 - Humility
 - Listening
 - Ensuring the weakest have a voice

PRA is about knowledge

- In PRA the community is telling the outsiders about their place, their history, their community. And they know all about themselves and they will tell much by using PRA methods. But remember, they still know whatever they didn't tell us. And we don't. We're always the outsider of community knowledge. Keep your questions open and see where they can go.
- Always remember that PRA is about knowledge. Knowledge that the community has, not us.

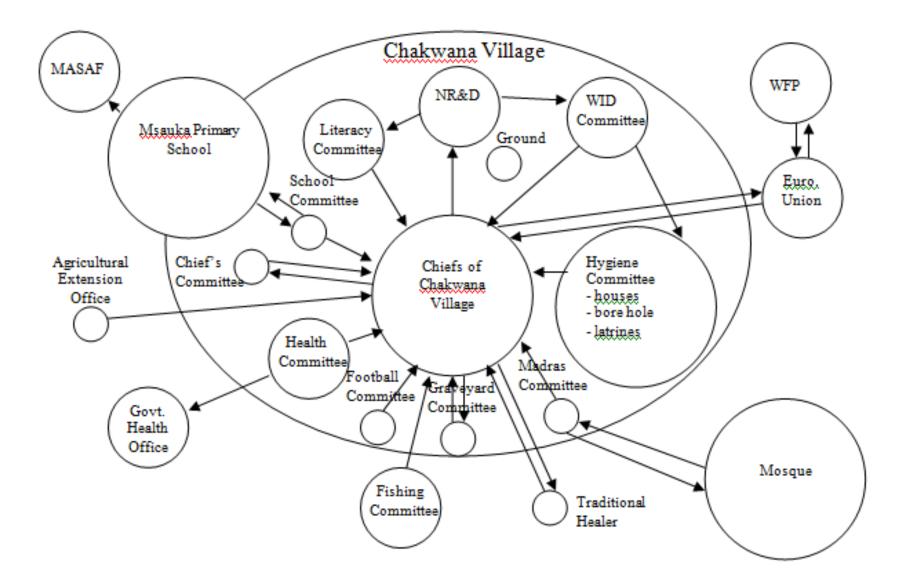
Linear Technology Transfer

PRA requires skill in implementation

- Everything with PRA should be done with the intention of the community putting into the process so that they get something out.
- On the one hand we have a process we want to guide. And on the other we have a community who needs to own this process, call it theirs.
- So, too much push and they shut down and do what we want. Too little guidance and things won't go.

Steve Michmerhuizen – personal communication

Continuum of participation in research


And the second s			
<u>Contractual</u> farmers hired to run experiments	Consultative farmers consulted about design & interpretation	Collaborative regular interaction throughout process	<u>Collegial</u> researchers strengthen farmers' informal inquiry

Participatory Research / Action Research

- 1. Outside researchers and community members join together in a process of collaborative inquiry
- 2. Aim is to address real-world issues and practical problems
- A variety of research methods are used to co-generate knowledge about the problem and possible solutions through iterative cycles of action and reflection

(Greenwood and Levin, 2007; Reason and Bradbury, 2008)

Starting with what you have

An approach, not a method

- Methods can help facilitate effective participation
- Methods themselves are easily coopted by those in control to justify and maintain their position
- Effective participation is best judged by how well it is able to guide effective action.
- Note that focusing too much on achieving the desired action(e.g. adoption of a new practice) can lead to a shortterm inability to work towards it.
- Instead consider the values that guide the process, especially democratic communicative space that addresses power imbalances (Reason 2006)

Voting on priorities

Participatory Exercises in SI indicator manual

- Farmer rating of yield/residues/animal production
- Wealth ranking
- Participatory budgeting
- Daily and seasonal labor calendars

Day 3 Part 2: Presentations and discussion

5 April 2017 SI Assessment Training, Phnom Penh, Cambodia

Photo credit: Kimberly Chung

Philip Grabowski (MSU), Mark Musumba (UF), Cheryl Palm (UF), Sieg Snapp (MSU)

Next steps for implementing SI assessments

- What?
- When?
- Who?
- How much?

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

