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Abstract 65 

Common bean is an important staple crop in Eastern Africa and Latin America. Low soil 66 

fertility is a major limitation to agronomic productivity. Symbiotic nitrogen fixation (SNF) is 67 

an important property of legumes, leading to high protein levels and high nutritional value. 68 

SNF and yield traits were evaluated in the common bean population DOR 364 × BAT 477 in 69 

field experiments under moderate and low phosphorus (P) soil conditions resembling 70 

environments found on farmer’s fields. Low P availability in soil severely limits grain yield, and 71 

trait correlations with yield reveal that high biomass as well as early maturity and efficient seed 72 

filling are important for good performance in low P stress, resembling drought resistance. 73 

Investigation of SNF related traits under low P stress showed reduced seed nitrogen levels, but no 74 

significant reduction of %N derived from atmosphere (%Ndfa), however %Ndfa was correlated 75 

with yield in low P conditions, indicating that under stress SNF becomes an important asset. 76 

Significant genetic variation as well as transgressive segregation was observed for yield, yield 77 

components and SNF ability suggesting that traits can be improved by breeding. 78 

QTLs for %Ndfa and seed N concentration were discovered on chromosomes Pv07 and Pv02, 79 

independent yield QTLs were identified on the same chromosomes. Two QTL hotspots that affect 80 

several traits including yield components were found on Pv02 and Pv06, the latter represents a 81 

constitutive QTL hotspot independent from the environment. QTLs may be used for marker 82 

design and molecular breeding. 83 

 84 

Introduction 85 

 86 
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Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human 87 

consumption and a major source of protein and micronutrients in the tropics (Broughton et al. 88 

2003). Total world production is estimated at around 12 million tons per year (Beebe et al. 89 

2013), a large proportion by resource-limited smallholder farmers. 90 

Phosphorus (P) is an essential macronutrient, adequate supply of P is required for optimal plant 91 

growth and development. Approximately 67% of globally cultivated lands have P deficits 92 

(Batjes 1997), 50% of the common bean production area worldwide is estimated to be affected 93 

by low P stress (Beebe 2012) while in Latin America 60% of beans are estimated to be grown 94 

on P-deficit soils (Rao 2014). P in the soil is only partly soluble and not very mobile, therefore 95 

plants can only utilize a small fraction of total P in soil (Batjes 2011). Soil P availability is 96 

particularly low in strongly acidic or alkaline soils, mainly due to formation of phosphate 97 

complexes with  Al and Fe in acid soils and Ca complexes in alkaline soils (Marschner 1995). 98 

Numerous studies have been carried out to identify beans adapted to low P and acid soils 99 

(Lynch and Beebe 1995; Beebe et al. 2008; Cichy et al. 2009a; Cichy et al. 2009b; Ramaekers 100 

et al. 2010; Rao 2014). In response to low P availability, common bean  modifies its root 101 

architecture, associates with mycorrhizal fungi in its root system, and presents a higher 102 

efficiency of utilizing absorbed P to produce biomass and grain yield (Beebe et al. 2006; Cichy 103 

et al. 2009b; Ramaekers et al. 2010; Rao et al. 2016). 104 

 105 

Another essential nutrient for plant growth is nitrogen (N), present in high abundance in the 106 

atmosphere and in low levels in most soils. Similar to P, it is a factor limiting growth and yield 107 

of crops. Legumes such as common bean are able to fix atmospheric N by symbiotic nitrogen 108 
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fixation (SNF). Rhizobia which reside in nodules in the roots reduce atmospheric N2 to 109 

ammonium, which is distributed throughout the plant (Araújo et al. 2015). 110 

Various isotope analysis methods have been used to study plant metabolic processes such as 111 

carbon isotope discrimination (CID, Δ13C) (Hall et al. 1994; Polania et al. 2016b) and 15N 112 

natural abundance (δ15N), (Andrews and Lea 2013). 13C and 12C are present in the biosphere 113 

naturally at 1.1 % and 98.9 %, respectively. Plants may discriminate against the heavier isotope 114 

δ13C at the Calvin cycle depending on stomatal activity, which leads to a depletion of the plant 115 

dry matter in 13C. Different studies have demonstrated that CID is correlated with water use 116 

efficiency (WUE) allowing to identify indirectly genotypes that tolerate water limited 117 

conditions (Dhanapal et al. 2015; Polania et al. 2016a). This trait showed stability across 118 

environments and high broad sense heritability (Dhanapal et al. 2015) . The δ15N isotope 119 

method is used to quantify the percentage of N derived from the atmosphere (%Ndfa) as 15N 120 

is present at a higher proportion in the biosphere compared to the atmosphere (Polania et al. 121 

2016b). N fixation indicators that have been reported in common bean are lateral root nodules, 122 

number of nodules, plant biomass, total plant N and grain yield (Bliss 1993). 123 

Studies have been performed to investigate the molecular basis of tolerance to stresses 124 

including drought and low soil P (Ramírez et al. 2013) and SNF. The recombinant inbred line 125 

(RIL) population of DOR 364 × BAT 477 has been studied by different authors (Galeano et al. 126 

2011; Asfaw and Blair 2012; Blair et al. 2012a; Asfaw et al. 2012)  investigating drought, 127 

identifying QTLs for yield components, rooting pattern traits and photosynthate remobilization 128 

traits. Common bean genotype BAT 477 has been demonstrated to present superior SNF under 129 

both optimal and suboptimal conditions, including P stress and drought stress, while genotype 130 

DOR 364 has a contrasting responses to low P stress (Ramírez et al. 2013). First QTL mapping 131 
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in this population was described by Blair et al. (2010) and Galeano et al. (2011) further 132 

improved the genetic map. 133 

 134 

In the present study the common bean RIL population of DOR 364 × BAT 477 was evaluated 135 

for its response to two levels of soil P supply (moderate and low) at Quilichao, Colombia. A 136 

number of traits related to N fixation, yield components, photosynthesis and phenology were 137 

evaluated to investigate trait correlations and low P stress effects. Furthermore this study aimed 138 

at identifying QTL for major breeding traits to aid the bean breeding program to develop 139 

markers for Marker Assisted Selection (MAS). 140 

Materials and methods 141 

 142 

Plant materials  143 

A set of 98 Recombinant Inbred Lines (RIL) of the DOR 364 × BAT 477 (D×B) population of 144 

common bean (Galeano et al. 2011) was evaluated in this study together with two parents. 145 

RILs were obtained from F5 lines advanced by single seed descent. DOR 364 is a commercial 146 

type characterized by small red seeds that shows tolerance to bean golden yellow mosaic virus 147 

and has good yield potential in environments with high soil P, but is susceptible to drought. 148 

On the other hand, BAT 477 is a small cream-seeded type, tolerant to low P and drought and 149 

has high SNF capacity (Sponchiado et al. 1989; Remans et al. 2007; Polanía et al. 2009; 150 

Ramírez et al. 2013; Beebe et al. 2013). Both parental lines are from the Mesoamerican 151 

genepool. 152 
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Experimental design and field conditions 153 

D×B population was planted at CIAT Experimental Station located in Quilichao in Colombia 154 

(November 2012 to January 2013) with three replications in a “10x10” lattice experimental 155 

design. Seedlings were inoculated using drench method with Rhizobium tropici strain CIAT 156 

899 (CIAT 1988) at 10 days after sowing. This strain is characterized by a high symbiotic 157 

stability and efficient N fixation. Two rows of headers were planted with DOR 364NN (non-158 

nodulating) and BAT 477NN (non-nodulating) and inoculated with the same strain of 159 

Rhizobium. Plots consisted of two 3.72 m long rows at a 0.6 m row to row distance, planted 160 

with 12-15 seeds per m of row length. Nutrients were applied over sown row: 100 kg ha-1 161 

MgSO4 and 50 kg ha-1 of macro and micronutrients mix as Agrimins (Colinagro, Puerto 162 

Tejada, Colombia) in %: 13.0 Ca, 8.0 N, 3.6 Mg, 2.5 Zn, 2.2 P, 1.6 S, 1 B, 0.14 Cu, and 0.005 163 

Mo. Low P and moderate P levels in soil were established by applying 10 kg P ha-1 and 30 kg 164 

P ha-1 as Granufos 40, (Productos Químicos Panamericanos, Medellin, Colombia), in %: 17.5 165 

P, 19.0 Ca and 3.0 S, respectively. Available soil P (µg g-1, Bray II) was measured at 0-5, 5-166 

10, 10-20, 20-40 cm soil depth for low P supply and resulted on the row in 11.2, 9.8, 5.8, and 167 

2.8; and at 30 cm distance from the row in 11.5, 11.3, 6.9 and 2.2. These values were lower 168 

than those for moderate P supply treatment (25.7, 20.2, 7.7, 6.6 and 10.7, 10.9, 7.5, 3.4, 169 

respectively). 170 

Plant traits evaluated in this work are separated in four groups: nitrogen fixation, yield 171 

components, phenological traits, and photosynthetic traits. Nitrogen fixation was studied by 172 

isotope analysis.  Dried grain samples were finely ground using a ball-mill, 2.5 mg of each 173 

sample were weighed out using a microbalance and packed in tin capsules. These samples were 174 

sent to UC Davis Stable Isotope Facility (Davis, USA) for 12C, 13C and 14N, 15N isotope 175 
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analyses. The percentage of N derived from the atmosphere (%Ndfa) was determined using 176 

the 15N natural abundance method (Shearer and Kohl, 1986; Polania et al. 2016b). DOR 364 177 

NN was used as a non-fixing reference plant. 178 

 179 

%Ndfa =
δ15N non fixing reference plant − δ15N of N2 fixing legume

δ15N non fixing reference plant −  β
x100 180 

 181 

Where β is the δ15N value from the nitrogen fixing bean plant grown in N free medium. The β 182 

value used was –2.44 ‰ for grain at harvest (N. Barbosa, unpublished data). The β value was 183 

determined from a pot experiment in the greenhouse at CIAT following the procedure of 184 

Unkovich et al. (1994). Total seed N content per unit area (SDN_ha) was calculated using the 185 

values of N concentration in seed and dry weight of seed per area, seed C to N ration (SDCN) 186 

was calculated from the C and N concentrations. Total N derived from atmosphere or soil per 187 

unit area (Ndfa_ha and Ndfs_ha, respectively) were determined based on %Ndfa / %Ndfs and 188 

SDN_ha (Polania et al. 2016b). The following calculations were used, SDN_ha = (YDHA × 189 

SDN/100); Ndfa_ha= (SDN_ha × %Ndfa/100); Ndfs_ha= SDN_ha - Ndfa_ha. 190 

Yield and yield components were measured as dry weight of grain yield (YDHA, humidity 191 

adjusted to 14 %) in kg ha-1, pod number (PNA) and seed number per area (SDNA) as number 192 

per m-2, 100 seed weight (100SDW) in g 100 seeds-1; shoot biomass (SHBH) and stem biomass 193 

(SBH), and pod biomass at harvest (PBH) in kg ha-1, seed carbon content (SDC) in % , and 194 

pod harvest index (PHI) was determined according to Beebe et al. (2013). 195 
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Phenological traits days to flowering (DF) and days to maturity (DPM) were evaluated. 196 

Investigated photosynthetic traits were SPAD chlorophyll meter reading in younger fully 197 

expanded leaf (SCMR) in SPAD units, stomatal conductance on younger fully expanded leaf 198 

(SCOND) in mmol m-2 s-1, photosynthetic efficiency on younger fully expanded leaf (FVFM) 199 

as fv`/ fm`, and carbon isotope discrimination (CID) in ‰ (Beebe et al. 2013; Dhanapal et al. 200 

2015; Polania et al. 2016a). Additional information about the traits can be found in the "Trait 201 

Dictionaries for Fieldbook Development" at http://mbp.generationcp.org and 202 

http://www.cropontology-curationtool.org/. 203 

 204 

Phenotypic data analysis 205 

Phenotypic data were analyzed using analysis of variance, Pearson’s correlations between 206 

traits, and principal component analysis (PCA),  using the software SAS, v 9.3 (SAS-Institute 207 

2011). Data shown in this work are adjusted means, correlation analyses were carried out using 208 

all three replications.  209 

 210 

QTL detection 211 

The genetic Map of the D×B population used in this study was previously described, the 212 

utilized genetic map of D×B has 291 markers (22 AFLP, 98 RAPD, 160 SSR and 11 gene-213 

based markers) (Galeano et al. 2011). For QTL analysis, two RILs were eliminated due to low 214 

marker quality. Identification of significant QTLs was carried out using composite interval 215 

mapping analysis of the program QTL Cartographer v. 1.21 (Wang et al. 2012) and thresholds 216 

for the QTLs for each trait were determined by the generation of 1000 permutations. 217 

http://www.cropontology-curationtool.org/
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Designated genomic regions that proved to be significant in the analysis were displayed using 218 

the program MapChart (Voorrips 2002). 219 

Results 220 

 221 

Phenotypic evaluation of the DxG RIL population in contrasting P conditions  222 

 223 

SNF and yield traits were investigated under moderate and low P supply conditions in the DOR 224 

364 × BAT 477 (D×B) population in a replicated field trial. Low (LP) and moderate soil P 225 

(MP) levels were generated by applying 10 and 30 kg P ha-1, respectively, which reflects levels 226 

of P fertility found in farmer’s fields, rather than extreme experimental conditions.  227 

An overview of phenotypic data shows that yield component traits were strongly superior under 228 

MP conditions compared to LP environment (Table 2, Supplementary Fig. S1), all showing 229 

significant differences between P levels. An increase in P supply from LP to MP increased grain 230 

yield (from 599 to 1250 kg ha-1), pod number per area (from 125 to 179 pods m-2), seed number 231 

per area (from 587 to 949 seeds m-2), and pod harvest index (from 72.6 to 74.3%). While yield 232 

was reduced by more than half in LP, seed carbon concentration (SDC) was the only trait slightly 233 

elevated in LP. BAT 477 was superior to DOR 364 under both conditions for nearly all traits.  234 

Whereas seed N content per area was reduced from 44 to 21 kg ha-1 in LP, notably, there was 235 

no significant difference in %Ndfa between environments. Significant variation for %N derived 236 

from the atmosphere (%Ndfa) was observed, ranging from 8% to 42% and 11% to 43% in LP and 237 

MP conditions, respectively. In both environments parental line BAT 477 and DOR 364 238 

maintained near mean values. Additionally, all photosynthetic traits measurements were 239 
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significantly different between two P environments, with the exception of CID. Intriguingly P 240 

stress delayed flowering time (DF) by about one day, but had no significant effect on days to 241 

physiological maturity (DPM). 242 

In the majority of traits evaluated, performance in MP was correlated with performance in LP 243 

(Table 2). Strongest correlations were observed for DF, DPM, SCMR_F (SPAD chlorophyll 244 

meter reading at flowering) and 100SDW (100 seed weight). In some traits there was no 245 

correlation among RILs between MP and LP treatments even though several present significant 246 

variation among RILs in both treatments (e.g., %Ndfa, Ndfs_ha, SDN_ha) indicating 247 

environment-dependent traits with GxE interactions. Trait value distributions of the D×B RILs 248 

were continuous and normal for most traits in both P conditions (Supplementary Fig. S1), 249 

suggesting a quantitative inheritance. Transgressive segregation beyond the parental lines was 250 

observed for most traits, indicating promising combinations of parental alleles. Most pronounced 251 

positive transgressive segregation was observed for CID where most RILs displayed higher values 252 

of CID than the parental lines suggesting higher stomatal conductance and metabolic activity in 253 

these lines for effective use of water (Polania et al. 2016a). 254 

 255 

Phenotypic correlations in contrasting P conditions  256 

 257 

Under MP conditions, %Ndfa showed negative correlations with most shoot traits, pod number 258 

per area (PNA), seed number per area (SDNA), shoot biomass at harvest (SHBH) and pod 259 

biomass at harvest (PBH), and correlations with DF and DPM were also negative suggesting 260 

that large, high biomass, high yielding plants derived a smaller proportion of N from the 261 
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atmosphere (Table 3). N present in seeds of those plants is principally soil derived N (%Ndfs 262 

= 100 - %Ndfa), effective soil N uptake may have a larger variability dominating the 263 

correlation. Small, early maturing plants fixed proportionately more N from the atmosphere. 264 

In low P conditions the situation is different, %Ndfa is slightly but positively related to yield 265 

per hectare (YDHA), 100SDW and PHI, indicating that under LP stress atmospheric N fixation 266 

becomes a valuable asset. The values of Ndfa_ha and Ndfs_ha were calculated based on yield 267 

and seed N content, accordingly correlations observed were not independent. In LP the 268 

correlation between N concentration in seed SDN and %Ndfa was significant and negative. It 269 

is somewhat surprising to find that high N fixation is correlated with low N concentration 270 

suggesting that high N concentration may be more dependent on Ndfs. Correlations between 271 

seed N and seed C concentrations (SDN and SDC) were significant, and positive in both 272 

conditions, 0.37 and 0.34 for MP and LP, respectively 273 

 274 

YDHA has high and significant correlations with yield component and biomass traits (PBH, 275 

SBH, SHBH, PNA and SDNA) in both P conditions. The pod and seed number per area and 276 

biomass traits, as expected, were highly correlated among each other, representing most of the 277 

highest observed trait correlations in Table 3. Under LP stress conditions YDHA correlated 278 

positively with PHI and 100SDW, supporting the importance of seed filling under stress, and 279 

negatively with DF and DPM.  280 

Under LP treatment, CID was correlated positively with nearly all yield component traits, and 281 

negatively with %Ndfa, while under MP treatment CID was correlated negatively with 282 

100SDW and SBH. Higher value of CID is an indicator of increased stomatal opening, gas 283 
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exchange and metabolic activity (reflected in a moderate correlation with stomatal conductance 284 

(SCOND) in both conditions). This is in line with the positive correlation on biomass and yield 285 

traits. CID data between MP and LP treatments were not significantly different (Table 2), 286 

however, significant differences between the RILs were observed in LP, indicating genetic 287 

variability among them.  288 

Seed N derived from soil (Ndfs_ha) was more closely related to grain yield than the N derived 289 

from atmosphere (Ndfa_ha) under LP (r=0.82*** and 0.62***) and also at MP supply 290 

(r=0.91*** and 0.64***), respectively. Under LP conditions a group of ten RILs (RIE 89, 44, 291 

87, 88, 65, 34, 37, 30, 82, 32) was identified with greater grain yield, and within them RIE 34, 292 

30, 82 and 32 also combined higher values of %Ndfa in grain (Fig. 1). Among these ten RILs 293 

only RIE 32 had higher grain yield and also higher %Ndfa values under both low P and 294 

moderate P supply. A group of three RILs (RIE 32, 40, and 52) showed greater than mean 295 

values of grain yield and %Ndfa under both LP and MP conditions. Parental lines yielded 296 

generally poor with moderate values of %Ndfa under LP, with BAT 477 performing 297 

moderately better with MP conditions.  298 

 299 

Principal component analysis  300 

 301 

Principal component analysis was carried out to further investigate trait associations. With LP, 302 

component 1, which has mainly contributions of yield components, explained 25% of the total 303 

variability (Supplementary Table S1). A second component based mainly on N related traits 304 

(SDN, SDCN, %Ndfa and Ndfa_ha) explained 15% of the total variability. Although %Ndfa 305 
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correlated with yield in LP, this relationship did not emerge in the PCA. Under MP, component 306 

1 was attributed mainly to yield components that explained 29% of total variance. A second 307 

component, explaining 13% of total variation, was related with 100SDW, and photosynthetic 308 

traits such as SCMR and CID. In MP the N fixation traits formed a third component with little 309 

association with other traits. Principal component derived trait clustering is in line with 310 

correlation results above (Supplementary Fig. S2). Looking at first two PCs, yield and biomass 311 

traits appear as one cluster under both P treatments. This trait cluster also showed highest 312 

correlations (Table 3). DF and DPM were closely linked in LP, but not in MP, whereas 313 

correlation was high in both environments. 314 

 315 

Marker trait association analysis 316 

 317 

The linkage map of DOR 364 × BAT 477 used here contains 290 markers, mapped to 11 318 

linkage groups covering a total distance of 1714 cM (Fig. 2, Galeano et al. 2011). Average 319 

distance between markers was 6.3 cM, which is suitable for QTL identification. Composite 320 

interval mapping analysis identified 55 QTL for 16 traits on nine linkage groups (Table 4). 321 

QTL %Ndfa7.1DB was identified on the lower arm of chromosome Pv07 explaining 21 % of 322 

the phenotypic variance, DOR 364 contributing the positive allele. This QTL also explains 18 323 

% of the Ndfa_ha variability, followed Ndfa_ha8.1DB that explains 14 %. Both N concentration 324 

and content have QTL on Pv02 and the upper arm of Pv07, in both cases BAT477 contributes 325 

the positive allele. Taken together N related traits have QTL in 4 regions from both parental 326 

genotypes, with those on Pv07 observed only in LP and Pv02 in MP, combinations of which 327 

may explain the transgressive segregation. 328 
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For yield and yield component traits 26 QTLs were found; the majority in LP stress conditions 329 

(14 vs 12). YDHA QTL were discovered on Pv02 and Pv07 explaining 17 % and 19 % of the 330 

phenotypic variance with BAT 477 contributing the positive allele. Further yield component 331 

QTLs were found in six of the eleven chromosomes of the common bean genome. A QTL 332 

hotspot for yield components is observed on Pv02 composed of QTL SDNA2.1, PNA2.1 and 333 

100SDW2.1, the latter has an opposing additive effect, hence the DOR 364 allele confers 334 

higher seed and pod number as well as lower seed weight. SBH2.1DB and SCMR-m2.1DB also 335 

localize in this QTL hotspot. 336 

Eight QTL for 100SDW were found on three chromosomes, 100SDW6.1DB and 100SDW6.2DB 337 

appeared in both P conditions. In the same region SCMR-m6.2DB is also observed in both 338 

environments, co-localizing with further QTL PNA6.1DB, SDNA6.1DB, SDNA6.2DB, 339 

SDC6.2DB, CID6.2DB and SCMR-f6.3DB. SDNA6.1 and PNA6.1, are powered by the opposing 340 

BAT 477 allele, accordingly SCMR and 100SDW are consistently positively correlated traits, 341 

whereas SDNA and PNA are negatively correlated with 100SDW in MP. CID is positively 342 

correlated with both PNA and SDNA in LP, where QTL CID6.1 was detected, and 343 

correspondingly also based on the BAT 477 allele. Taken together this constitutive QTL 344 

hotspot on Pv06 is likely caused by one gene that affects several traits. In addition to the Pv06 345 

locus, which is the most stable QTL hotspot in this population, also100SDW9.2DB, DF11.1 DB, 346 

SCMR-f4.1DB and SCMR-m6.2DB represent constitutive condition-independent QTL that are 347 

detected in both environments. Constitutive QTL found in LP and MP conditions are likely to 348 

be stable in other environments and can be exploited for marker assisted breeding. 349 

 350 
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Discussion 351 

 352 

Symbiotic N fixation in low soil fertility 353 

 354 

This study investigated the effect of low and moderate soil P stress on N fixation and yield 355 

traits in the population DOR 364 × BAT 477. Difference in soil P availability is not as drastic 356 

as in previous studies conducted under greenhouse (Miguel et al. 2013), hydroponics (Silva 357 

et al. 2014a), or growth media (Jiang et al. 2007) conditions, but rather reflects realistic 358 

levels found in farmer’s fields, where P deficiency is commonly limiting yield (Lynch and 359 

Beebe 1995). Very low P levels would not represent bean production areas as bean crop 360 

would not be grown on such soils. Average yields in MP (1250 kg ha-1) and LP (599 kg ha-1) 361 

bracket average national yields of most developing countries (Beebe 2012) and can be 362 

considered representative of bean yields in the tropics. Hence data on well performing lines 363 

and QTL for yield and N related traits should be transferable to breeding programs. 364 

 365 

%Ndfa values correlated positively with yield traits under LP stress indicating that this process 366 

aids plant performance under stress. Significant genetic variation in the D×B population for 367 

%Ndfa was observed, which has previously been reported specifically for roots and 368 

development of nodules (Bourion et al. 2007), furthermore Vadez et al. (1999) reported 369 

genotypic differences for SNF under LP due to differences in P use efficiency. Transgressive 370 

segregation was observed for most SNF and yield related traits. RIE 57 and 43 had excellent 371 

%Ndfa values in both trials, RIE 32, 40 and 52 combined good %Ndfa values with above 372 

average yield in both conditions (Fig. 1) and may be used in breeding for this trait.  373 
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An intriguing observation is that, while the MP treatment resulted in greater values of Ndfa_ha, 374 

P levels did not have a significant effect on %Ndfa. However, seed N concentration was higher 375 

in MP, indicating that N uptake from either source works more efficiently with sufficient P. Under 376 

LP treatment plants were smaller, likely having a smaller root system to take up N from soil or 377 

atmosphere. Previous studies showed that abiotic stress conditions such as high temperatures, 378 

water stress and low soil fertility reduce nodulation and SNF  (Hungria and Vargas, 2000; Polania 379 

et al. 2016b). There is a substantial need for P in the N2 fixation process (Tsvetkova and Georgiev 380 

2007), because P is used during nodule formation and N fixation (Olivera et al. 2004; Singh 2015). 381 

P levels in nodules were reported to be directly correlated to nodule activity and N fixation levels 382 

(Rotaru and Sinclair 2009) and increase in P supply promoted N fixation (Leidi and Rodriguez-383 

Navarro 2000). The lack of significant difference in %Ndfa between MP and LP environments 384 

may mean that the reported effect is too small to be observed in the low P conditions used here 385 

or that in this experiment N was not limiting. 386 

%Ndfa and SDN showed a surprising negative correlation of -0.44*** in LP. Hence, the converse 387 

soil derived N (Ndfs) is positively correlated with seed N content, and has more variability and a 388 

larger effect than Ndfa. Alternatively SNF may only be activated in severe N shortage, an N 389 

uptake problem which is insufficiently alleviated by atmospheric N fixation. A positive 390 

correlation of %Ndfa with yield suggests no problems in plants with high %Ndfa, favoring the 391 

first option. SDN is negatively correlated with yield component traits in both conditions which 392 

is likely a dilution effect from carbohydrate production, whereby seed N concentration would 393 

be reduced by greater accumulation of carbohydrates in seed.  394 

SDN and SDC are significantly positively correlated, which may seem counterintuitive given that 395 

protein and carbohydrates constitute the seed’s major components. However, protein actually has 396 
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a higher C content (>50 %) than carbohydrates (~44 %). Hence, RILs with superior N 397 

remobilization and increased protein content display higher SDC, whereas variation in 398 

carbohydrate levels hardly affects SDC, which averages ~43 %.  399 

 400 

Indicators of N fixation 401 

 402 

Several N fixation indicators have been reported in common bean and these include lateral root 403 

nodules, number of nodules, plant biomass, total plant N and grain yield (Bliss 1993). 404 

Evaluating plant biomass at harvest and yield in this experiment, these trends were confirmed 405 

for yield under LP stress. However, biomass traits are actually negatively correlated with 406 

%Ndfa in MP, hence SNF indicators based on per cent N fixed cannot be generally applied to 407 

predict SNF in all conditions. Isotope analysis to determine %Ndfa and Ndfa_ha may be 408 

necessary for meaningful information on SNF. 409 

 410 

QTL evaluation for SNF related traits 411 

 412 

In this work a genetic characterization of SNF and yield traits under P stress conditions was 413 

carried out, to add to several yield, phenological and root trait QTL that have been identified 414 

previously in the D×B population (Asfaw and Blair 2012; Blair et al. 2012a; Asfaw et al. 415 

2012b). In this study a QTL for %Ndfa was found on chromosome 7, explaining 21% of the 416 

phenotypic variation under LP conditions. The QTL for seed N concentration SDN7.1 DB was 417 
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found on the opposing chromosome arm and two more at the end of Pv02 SDN2.1/2 DB. In these 418 

QTLs BAT 477 alleles support SDN and reduce %Ndfa. Kamfwa et al. (2015) evaluated a subset 419 

of the Andean Diversity Panel of 259 Andean bean genotypes in greenhouse and field 420 

experiments, reporting 26 significantly associated SNPs for SNF-related traits in 11 loci. The 421 

large number of associated loci, is largely due to a higher number of traits and higher variability 422 

in the studied panel of landraces, cultivars and breeding lines. QTLs for seed %Ndfa were 423 

reported on Pv02, 03 and 09. A marker associated with % N in seed on Pv02 is located ~3 MB 424 

from SDN2.1DB, these may be the same locus. Ramaekers et al. (2013) performed evaluations 425 

in the RIL population G2333 × G19839 and identified QTL for %Ndfa in chromosomes Pv01, 426 

Pv04 and Pv10, indicating that other loci control phenotypic variation in that population. 427 

Consensus between genetic studies are few, suggesting that a larger number of loci is responsible 428 

for the observed genetic variability. 429 

 430 

Analysis of yield components 431 

 432 

Yield components of seed and pod number per area have high correlations among themselves and 433 

cluster closely in PCA analysis, showing that biomass at harvest and solid vegetative development 434 

is an important basis for yield. Only in MP conditions 100SDW and PHI do not form part of this 435 

correlated group. LP severely limits yield, reducing the means by more than half. Mourice and 436 

Tryphone (2012) showed that low P reduces biomass traits and that BAT 477 excels in pod and 437 

seed yield in seven tested genotypes. In the data presented here BAT 477 yields in LP are inferior 438 

to the mean of RILs but superior to DOR 364. Silva et al. (2014) evaluated 20 genotypes, finding 439 

that both DOR 364 and BAT 477 had poor leaf area under severely limited P conditions. Only 440 
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BAT 477 was above average in less severe stress, which is in agreement with current results.  441 

Figure 1 indicates significant transgressive segregation for yield, hence improvement under these 442 

conditions can be expected through breeding, using RIE87 which was among the best yielding 443 

lines in both conditions, or RIE32 that combines good yields with above average value of %Ndfa. 444 

 445 

QTL analysis for yield component traits 446 

 447 

Three QTL were detected for grain yield, YDHA2.1DB under LP, YDHA7.1DB and nearby 448 

YDHA7.2DB in LP and MP conditions, respectively. The BAT 477 allele at these QTL led to 449 

a yield advantage ranging from 37 to 97 kg/ha, representing ~6-7% of the RIL means in 450 

respective environments. A QTLs hotspot around 100SDW6.1DB and 100SDW6.2DB was 451 

detected in both P conditions, explaining the highest percentages of observed variation. QTLs 452 

for seed weight associated to the same marker as 100SDW6.2AG, DB have been reported in 453 

drought and under irrigation, in the DOR 477 × BAT 477 and A 55 × G122 populations 454 

(Chavarro and Blair 2010; Blair et al. 2012a). In this study, two more environments (low and 455 

moderate soil P conditions) demonstrate that 100SDW6.2AG, DB is a constitutive QTL whose 456 

expression does not depend on the environment. Five traits showed two QTL each on 457 

Chromosome 6, around 70 and 80 cM (100SDW, CID, SCMR-f, SCMR-m, SDNA6.1), we 458 

hypothesize that this may be only one locus, split during the analysis by e.g. an imperfect genetic 459 

map. SW2.1BR, a QTL for 100SDW that was reported in the population of Buster/Roza (BR) 460 

(Trapp et al. 2015), localized close to 100SDW2.1DB. These may represent the same QTL 461 

expressed in different environments and populations. 462 
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Yield markers detected in QTL studies have been notoriously inconsistent, rarely reproducible 463 

over years (Blair et al. 2012a) or hard to find at all (Ramaekers et al. 2013). Hence, the yield QTLs 464 

in this study may or may not prove to be useful for marker assisted selection (MAS). The two 465 

most promising loci for MAS appears to be at Pv07 since QTL for YDHA were found in both LP 466 

and MP environments, and the constitutive QTL cluster on Pv06 including yield components. 467 

 468 

Nomenclature issues 469 

 470 

In the course of the QTL analysis nomenclature conflicts arose. Blair et al. (2012) assigned 4 471 

names to QTLs Sw6.6, Sw6.10, Sw6.12 and Sw6.15 in the same region in different conditions 472 

and years. We suggest this is the same QTL identified in this study as 100SDW6.6DB in both P 473 

conditions, and we propose to assign only one name to a QTL if it is detected on the same 474 

locus in different conditions. We attempt to adhere to the trait definitions kept at 475 

cropontology.org, developed by Common Bean Community members in cooperation with IBP 476 

(Integrated Breeding Platform), in which the trait 100 seed weight is abbreviated as 100SDW. 477 

However, this trait was earlier published as Sw, hence we suggest to retain published QTL 478 

names, while using the ontology derived names for new QTL. Furthermore, SCMR-m6.2DB is 479 

likely identical to Scr_PALDS, Scr_PALNS and Scr_KASNS (Asfaw et al. 2012b), 480 

representing a constitutive QTL for SPAD chlorophyll meter reading. As many ontology 481 

defined traits have longer abbreviations, which are in conflict with the BIC system that 482 

suggests 2-3 letter abbreviation (Miklas and Porch 2010), nomenclature rules need to be 483 

reviewed. 484 
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 485 

Low P stress shows similarities to drought stress 486 

 487 

PHI was reported to be highly correlated with grain filling and yield, being of particular 488 

importance in stress conditions (Beebe et al. 2013; Rao 2014). A significant correlation of PHI 489 

with yield and 100SDW was found in LP stress, which may represent an effect on grain filling. 490 

This is in line with the importance of grain filling traits under stress reported in drought 491 

conditions (Assefa et al. 2013). In LP conditions yield, seed and pod number per area and 492 

biomass traits were significantly negatively correlated with DF and DPM, indicating that stress 493 

avoidance by early maturity combined with greater physiological efficiency (i.e., more yield 494 

per day; Polania et al. 2016a) is an important tolerance mechanism. This is again similar to 495 

observations in drought stress conditions underlining the similar mechanism for tolerance to 496 

these different stress conditions (Beebe et al. 2013). Fast maturing lines that dedicate resources 497 

to seed are most productive, however, drought stress alike, high biomass production at harvest 498 

is correlated with yield, which indicates that greater stem reserves may also be important to 499 

achieve higher seed yield under LP conditions. Successful genotypes combine good early 500 

biomass production with early maturity, while photoassimilates are directed efficiently to fill 501 

grain under stress.  502 

A total of three QTL for PHI were identified, all in MP conditions.  The supporting alleles 503 

originate from the higher yielding parental genotype BAT 477 in all cases. Asfaw et al. (2012) 504 

presented a QTL at same marker tagging QTL PHI5.2 DB for pod partitioning index and harvest 505 

index in drought in the same population, hence PHI5.2 DB appears to be another stable QTL. 506 
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Eight QTL for DF were identified, mostly under MP, the largest number of all traits. Likewise, 507 

Blair et al. (2012) reported almost the same number of QTL, nevertheless, only one QTL, 508 

DF11.1DB, was consistent between both studies. Taken together, several QTL detected in this 509 

study were previously reported in other environments and populations, verifying the findings 510 

and indicating that these alleles will be useful for genetic improvement of yield traits in other 511 

backgrounds and environments. 512 

Conclusions 513 

Field experiments in moderate P and low P conditions demonstrated that low P severely limits 514 

yield.  Transgressive segregation for yield was observed in the DOR 364 × BAT 477 population 515 

in low P stress and moderate P stress conditions. Investigation of symbiotic N fixation showed no 516 

significant difference in % N derived from atmosphere between environments, but D×B RILs 517 

revealed significant genetic variation in this trait. %Ndfa presented a modest positive correlation 518 

with productivity in LP conditions, but independent of general tendencies, some RILs that derived 519 

more N from fixation also yielded well in either LP or MP. Thus, good yield and superior N 520 

fixation can be combined. QTLs for %Ndfa and SDN were discovered on chromosomes 2 and 7. 521 

Low P stress resembles drought stress to some extent, as PHI, seed fill and early maturity are 522 

associated with tolerance to low P stress. QTL for yield and yield components were found that 523 

may be used in molecular breeding. 524 
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Figures 680 

Fig. 1 Relationship between grain yield and N derived from atmosphere (%) in the DOR 364 681 

× BAT 477 population evaluated under low and moderate P supply. Genotypes with best grain 682 

yield in green color; worst in dark blue and parental lines in red 683 

Fig. 2 QTLs identified in the DOR 364 × BAT 477 population associated with phenotypic traits 684 

in moderate P and low P stress conditions. Bars represent QTL and color corresponds to the 685 

parent contributing the positive allele; DOR 364 blue and BAT 477 red 686 
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Table 1 Statistics of the DOR 364 × BAT 477 population and parental data under low and moderate soil phosphorus environments 

(LP and MP) 

Type Trait Env. DOR364 BAT477 Min. Max. Mean 
Significance LP 
vs MP 

Correlation 
LP vs MP 

Between 
RILs 

Nitrogen 
fixation 

%Ndfa LP 21.31 22.5 8.44 41.57 23.92 ns ns ** 

  MP 27.92 28.42 10.51 42.75 26.53     ** 

  Ndfa_ha LP 3.63 3.79 1.93 10.14 5.32 *** ns * 

    MP 11.02 12.19 5.15 20.84 11.81     * 

  Ndfs LP 12.46 10.58 7.16 26.6 15.65 *** ns ** 

    MP 28.23 31.41 14.85 50.74 32.94     *** 

  SDN LP 3.45 3.28 3.06 3.85 3.48 *** 0.28*** *** 

    MP 3.31 3.35 3.26 3.93 3.6     *** 

  SDN_ha LP 16.51 14.17 12.62 40.34 21 *** ns *** 

    MP 39.71 43.55 19.01 66.34 44.34     *** 

  SDCN LP 12.29 13.03 11.11 14.11 12.35 *** 0.29*** *** 

    MP 12.86 12.72 10.92 13.1 11.88     *** 

Yield  YDHA LP 475.45 431.69 385.68 981.35 599 *** 0.14** *** 

components    MP 1204.81 1304.83 716.49 1845.01 1250     *** 

  PNA LP 97.31 104.68 75.01 187.62 124.98 *** ns *** 

    MP 182.02 171.58 124.74 260.13 179.02     ns 

  SDNA LP 454.4 544.33 326.23 914.68 586.61 *** 0.12** ** 

    MP 990.84 915.02 592.6 1494.22 949.4     ns 

  100SDW LP 18.4 21.92 15.2 23.07 18.74 *** 0.60*** *** 

    MP 20.27 23.74 17.39 25.54 21.22     *** 

  PHI LP 73.08 73.44 64.75 76.81 72.62 *** 0.20*** *** 

    MP 73.54 76.69 70.42 79.44 74.28     *** 

  SHBH LP 1146.52 1395.44 872.13 2351.79 1544.55 *** ns * 

    MP 2762.15 3130.55 1602.05 3858.91 2733.36     ns 
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  SBH LP 200.08 296.61 121.72 452.43 250.77 *** 0.20*** *** 

    MP 401.49 551.39 201.47 666.79 398.97     *** 

  PBH LP 944.92 1099.85 751.97 1999.1 1293.84 *** ns *** 

    MP 2359 2579.04 1379.91 3203.63 2334.31     Ns 

  SDC LP 42.31 42.46 41.94 43.41 42.81 *** ns Ns 

    MP 42.59 42.58 40.94 43.15 42.59     Ns 

Phenological 
traits 

DF LP 39.52 41.72 35.15 41.64 39.39 *** 0.46*** *** 

  MP 39.07 40.11 36.17 40.59 38.47     *** 

  DPM LP 63.79 68.03 58.78 70.79 65.2 ns 0.58*** *** 

    MP 64.81 68.62 60.17 71.01 65     *** 

Photosynthetic SCMR-f LP 34.38 37.36 29.86 42.28 35.29 *** 0.60*** *** 

traits   MP 36.79 37.2 31 41.3 36.65     *** 

  SCMR-m LP 39.16 44.04 27.22 44.49 37.11 ***  0.34*** *** 

    MP 39.7 47.32 26.24 47 40.08     *** 

  SCOND LP 143.62 187.8 87.66 299.36 184.25 *** 0.16** *** 

    MP 286.06 219.13 150.01 401.84 245.49     Ns 

  FVFM LP 0.59 0.6 0.48 0.64 0.57 *** ns Ns 

    MP 0.66 0.61 0.53 0.68 0.6     ns 

  CID LP 19.63 19.3 18.76 21.11 19.95 ns ns *** 

    MP 19.73 19.35 9.43 20.86 19.86     ns 

Min, Minimum value; Max, Maximum value; Significance between LP and MP evaluated by t-test for all traits, Pearson correlation of genotypes in 

MP and LP were calculated and significance of differences between RILs. ns, *, **, *** indicates no significance and significance at the 0.05, 0.01 

and 0.001 probability levels. For full trait names see list of abbreviations 



Table 2 Phenotypic correlations of RILs of the DOR 364 × BAT 477 population under low and moderate P environments. Correlations in 

moderate P are displayed in the upper right corner above diagonal and low P in lower left part 

 

For full trait names see list of abbreviations 

Variables %Ndfa Ndfa_ha Ndfs_ha SDN SDN_ha SDCN YDHA PNA SDNA 100SDW PHI SHBH SBH PBH CSD DF DPM SCMR-f SCMR-m SCOND FVFM CID

%Ndfa 0.70*** -0.41*** ns ns ns ns -0.24*** -0.23*** ns ns -0.24*** -0.28*** -0.23*** -0.18** -0.14* -0.13* 0.26*** ns 0.20*** ns ns

Ndfa_ha 0.85*** 0.29*** -0.26*** 0.55*** 0.25*** 0.64*** 0.22*** 0.25*** ns ns 0.28*** 0.22*** 0.28*** ns -0.24*** ns 0.25*** 0.14* ns ns ns

Ndfs_ha -0.34*** ns 0.29*** 0.88*** -0.28*** 0.91*** 0.63*** 0.67*** ns ns 0.71*** 0.68*** 0.70*** ns ns ns ns 0.30*** -0.16** 0.13* ns

SDN -0.44*** ns ns ns -0.96*** ns -0.16** -0.14* ns -0.19** -0.15* ns -0.16** 0.34*** 0.15* ns ns ns ns ns -0.20***

SDN_ha 0.12* 0.64*** 0.92*** ns ns 0.99*** 0.59*** 0.64*** ns ns 0.68*** 0.63*** 0.68*** ns -0.18** ns ns 0.30*** ns ns -0.13*

SDCN 0.42*** ns ns -0.98*** ns ns 0.18** 0.15* ns 0.16** 0.16** ns 0.18** ns -0.14* ns ns ns ns 0.17** 0.19**

YDHA 0.20*** 0.62*** 0.82*** ns 0.98*** ns 0.62*** 0.67*** ns ns 0.7*** 0.64*** 0.70*** ns -0.20*** ns ns 0.31*** ns ns ns

PNA ns 0.23*** 0.52*** ns 0.54*** ns 0.54*** 0.93*** -0.22*** ns 0.88*** 0.79*** 0.88*** ns ns ns ns 0.16** ns 0.12* ns

SDNA ns 0.25*** 0.53*** -0.16** 0.55*** 0.14* 0.57*** 0.90*** -0.22*** ns 0.91*** 0.80*** 0.92*** ns -0.14* ns ns 0.17** -0.13* ns ns

100SDW 0.17** 0.24*** ns -0.18** 0.21*** 0.18** 0.23*** ns ns ns ns ns ns ns -0.12* 0.25*** 0.28*** 0.30*** ns ns -0.21***

PHI 0.21*** 0.22*** ns -0.18** 0.13* 0.15* 0.16** ns ns 0.15* ns ns ns -0.13* -0.20*** ns ns ns ns ns ns

SHBH ns 0.34*** 0.57*** -0.18** 0.63*** 0.17** 0.65*** 0.87*** 0.90*** 0.19** ns 0.93*** 1*** ns -0.17** ns 0.12* 0.31*** -0.12* 0.12* ns

SBH ns 0.18** 0.57*** ns 0.56*** ns 0.55*** 0.77*** 0.79*** 0.21*** -0.17** 0.91*** 0.89*** ns ns 0.19** ns 0.32*** ns 0.14* -0.16**

PBH ns 0.36*** 0.56*** -0.20*** 0.63*** 0.19** 0.65*** 0.87*** 0.91*** 0.18** ns 1*** 0.87*** ns -0.19** ns 0.14* 0.30*** ns 0.12* ns

CSD -0.25*** -0.12* 0.20*** 0.37*** ns -0.23*** ns ns ns ns -0.13* ns ns ns ns ns ns ns ns 0.24*** ns

DF -0.25*** -0.35*** -0.27*** 0.25*** -0.40*** -0.25*** -0.44*** -0.31*** -0.33*** ns ns -0.33*** -0.20*** -0.36*** ns 0.51*** -0.19** ns ns ns ns

DPM -0.23*** -0.23*** ns 0.19** -0.20*** -0.18** -0.25*** -0.2*** -0.22*** 0.31*** ns -0.13* ns -0.15* ns 0.63*** ns 0.42*** ns ns ns

SCMR-f -0.15* ns 0.13* ns ns ns ns ns ns 0.13* ns ns ns ns 0.17** -0.39*** ns 0.29*** ns ns ns

SCMR-m ns ns ns ns 0.14* ns ns ns ns 0.40*** ns ns ns ns ns ns 0.36*** 0.34*** -0.12* ns ns

SCOND ns ns 0.20*** ns 0.17** ns 0.17** 0.12* ns ns ns ns ns ns ns ns ns ns ns -0.20** 0.14*

FVFM ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns -0.16** ns 0.21*** ns ns

CID -0.22*** ns 0.20** ns ns ns 0.12* 0.20*** 0.26*** ns ns 0.20*** 0.17** 0.20*** ns ns ns ns ns 0.17** ns
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Table 3 Significant QTL for Nitrogen related traits, yield components, phenological and 

photosynthetic traits under low P (LP) and moderate P (MP) environments in the DOR 364 × BAT 

477 population 

Trait QTL name Prev. name Env. Chr. Marker Position LOD R2 Additive Source 

Nitrogen fixation                   

%Ndfa %Ndfa7.1DB LP 7 g1947 154.61 3.8 0.21 3.86 D 

Ndfa_ha %Ndfa_ha7.1DB LP 7 V1702 147.3 3.34 0.18 0.78 D 

  %Ndfa_ha8.1DB MP 8 O2002 1 3.48 0.14 -1.34 B 

Ndfs Ndfs8.1DB LP 8 BMc121 27.4 3.13 0.11 1.3 D 

SDN SDN2.1DB MP 2 AI1501 208.3 4.38 0.2 -0.06 B 

  SDN2.2DB MP 2 Z1901 219.2 4.45 0.16 -0.06 B 

  SDN7.1DB LP 7 BMb1536 60 4.17 0.28 -0.09 B 

SDN_ha SDN_ha 2.1DB MP 2 Z1901 219.2 4 0.16 -3.32 B 

  SDN_ha 7.1DB LP 7 Z1903 35.1 3.43 0.11 -1.39 B 

SDCN SDCN2.1DB MP 2 Z1901 219.2 4.57 0.17 0.18 D 

  SDCN7.1DB   LP 7 BMb1536 59 4.56 0.26 0.31 D 

Yield components                   

YDHA YDHA2.1DB LP 2 BMa16 151.2 4.88 0.17 -46.88 B 

  YDHA7.1DB LP 7 Z1903 35.1 3.17 0.1 -36.91 B 

  YDHA7.2DB MP 7 AGTA07 47.8 4.21 0.19 -97.3 B 

PNA PNA2.1DB LP 2 PVBR18 25.4 5.09 0.17 10.27 D 

  PNA4.1DB LP 4 O701 73 5.62 0.19 -12.98 B 

  PNA4.2DB MP 4 IAC67 267.6 3.85 0.24 14.23 D 

  PNA6.1DB LP 6 M501 51.4 3.73 0.12 -8.56 B 

SDNA SDNA2.1DB   LP 2 PVBR18 25.41 3.22 0.14 55.52 D 

  SDNA6.1DB   LP 6 AB1001 71.11 3.54 0.15 -53.37 B 

  SDNA6.2DB   LP 6 PVBR163 80.21 3.99 0.15 -52.66 B 

100SDW 100SDW2.1DB              SW2.1BR(1) LP 2 BMb365 12.61 3.43 0.08 -0.52 B 

  100SDW6.1DB 
Sw6.6 DB (2), 

Sw6.10 DB (2), 

Sw6.12 DB (2), 

Sw6.15 DB (2) 

MP 6 AB1001 72.11 4.86 0.24 1.06 D 

    LP 6 AB1001 72.11 3.79 0.15 0.69 D 

  100SDW6.2DB 
Sw6.1 AG (3), 

Sw6.2 AG (3), 

Sw6.3 AG (3) 

MP 6 PVBR163 80.21 12.87 0.42 1.39 D 

    LP 6 PVBR163 80.21 6.71 0.2 0.78 D 

  100SDW9.1DB MP 9 N201 41.8 4.01 0.1 -0.61 B 

  100SDW9.2DB LP 9 PVBR60 51.6 4.99 0.15 -0.61 B 

      MP 9 PVBR60 51.6 4.12 0.11 -0.62 B 

PHI PHI4.1DB   MP 4 PVBR128 111 3.8 0.13 -0.52 B 

  PHI5.1DB   MP 5 X302 94.6 4.26 0.13 -0.55 B 

  PHI5.2DB   MP 5 P101 103.2 3.42 0.14 -0.57 B 
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SBH SBH2.1DB MP 2 BMb365 12.6 4.3 0.15 -40.71 B 

  SBH5.1DB MP 5 PVBR93 51.7 4.83 0.19 48.18 D 

  SBH11.2DB MP 11 AB502 91.5 4.48 0.19 -46.03 B 

SDC SDC4.1DB LP 4 BMb717 11 3.39 0.2 0.11 D 

  SDC6.1DB LP 6 M1601 38.3 4.47 0.16 0.1 D 

Phenological                   

DF DF4.1DB   MP 4 BMb133 167.11 4.21 0.35 0.68 D 

  DF5.1DB   MP 5 PVM18 45.21 4.07 0.16 0.45 D 

  DF5.2DB   MP 5 PVBR93 56.71 4.4 0.18 0.49 D 

  DF5.3DB   MP 5 P102 82.21 4.41 0.16 0.46 D 

  DF5.4DB   MP 5 P101 105.21 3.62 0.14 0.43 D 

  DF11.1DB   MP 11 AB502 96.51 4.38 0.28 -0.6 B 

  DF11.2DB Df11.1 DB (2) MP 11 P302 108.71 3.6 0.18 -0.49 B 

      LP 11 BMd43 111.71 4.64 0.14 -0.51 B 

Photosynthetic                   

SCMR-f SCMR-f3.1DB LP 3 BMb1008 103.31 6.27 0.16 -1.42 B 

  SCMR-f3.2DB LP 3 BMb37 112.51 5.39 0.19 -1.34 B 

  SCMR-f4.1DB MP 4 X701 208.51 3.92 0.12 -0.78 B 

      LP 4 X701 208.51 3.31 0.08 -0.64 B 

  SCMR-f6.1DB MP 6 AB1001 73.11 7.4 0.28 1.2 D 

  SCMR-f6.2DB MP 6 ACAG02 63.41 5.39 0.2 1.02 D 

  SCMR-f6.3DB LP 6 Y501 79.91 5.63 0.15 0.9 D 

SCMR-m SCMR-m2.1DB LP 2 IAC6 12.01 3.17 0.09 -1.37 B 

  SCMR-m6.1DB MP 6 AB1001 72.11 2.99 0.14 1.42 D 

  
SCMR-

m6.2DB 

Scr-PALDS DB (4), 

Scr-PALNS DB (4), 
Scr-KASNS  DB 

(4) 

MP 6 BMc238 81.41 7.85 0.26 1.92 D 

    LP 6 BMc238 81.41 7.85 0.25 2.22 D 

FVFM FVFM11.3DB MP 11 BMb10 45.8 3.8 0.14 -0.01 B 

CID CID6.1DB LP 6 PVBR163 81.2 5.45 0.22 -0.24 B 

  CID6.2DB LP 6 BM170 101.5 3.22 0.14 0.22 D 

Previous name is stated if a QTL in a similar location was published in (1) Trapp et al. 2015, (2) Blair et al. 

(2012), (3) Chavarro and Blair (2010), (4) Asfaw et al. (2012). Env: Environment, Chr: Chromosome, source 

states the origin of the positive allele from D DOR 364 parent or B BAT 477 parent. For full trait names see list 

of abbreviations 
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