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Abstract Key message:
This work reports the effects of the genetic makeup, the environment and the genotype by environment
interactions for node addition rate in an RIL population of common bean. This information was used to
build a predictive model for node addition rate.
Abstract:
To select a plant genotype that will thrive in targeted environments it is critical to understand the genotype
by environment interaction (GEI). In this study, multi-environment QTL analysis was used to characterize
node addition rate (NAR, node day− 1) on the main stem of the common bean (Phaseolus vulgaris L). This
analysis was carried out with field data of 171 recombinant inbred lines that were grown at five sites
(Florida, Puerto Rico, 2 sites in Colombia, and North Dakota). Four QTLs (Nar1, Nar2, Nar3 and Nar4)
were identified, one of which had significant QTL by environment interactions (QEI), that is, Nar2 with
temperature. Temperature was identified as the main environmental factor affecting NAR while day length
and solar radiation played a minor role. Integration of sites as covariates into a QTL mixed site-effect
model, and further replacing the site component with explanatory environmental covariates (i.e.,
temperature, day length and solar radiation) yielded a model that explained 73% of the phenotypic
variation for NAR with root mean square error of 16.25% of the mean. The QTL consistency and stability
was examined through a tenfold cross validation with different sets of genotypes and these four QTLs were
always detected with 50–90% probability. The final model was evaluated using leave-one-site-out method
to assess the influence of site on node addition rate. These analyses provided a quantitative measure of the
effects on NAR of common beans exerted by the genetic makeup, the environment and their interactions.

Footnote Information Communicated by Marcos Malosetti.
Electronic supplementary material The online version of this article (doi:10.1007/s00122-017-2871-y)
contains supplementary material, which is available to authorized users.
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common bean (Phaseolus vulgaris L). This analysis was 
carried out with field data of 171 recombinant inbred lines 
that were grown at five sites (Florida, Puerto Rico, 2 sites 
in Colombia, and North Dakota). Four QTLs (Nar1, Nar2, 
Nar3 and Nar4) were identified, one of which had signifi-
cant QTL by environment interactions (QEI), that is, Nar2 
with temperature. Temperature was identified as the main 
environmental factor affecting NAR while day length and 
solar radiation played a minor role. Integration of sites as 
covariates into a QTL mixed site-effect model, and further 
replacing the site component with explanatory environmen-
tal covariates (i.e., temperature, day length and solar radia-
tion) yielded a model that explained 73% of the phenotypic 
variation for NAR with root mean square error of 16.25% 
of the mean. The QTL consistency and stability was exam-
ined through a tenfold cross validation with different sets 

Abstract 
Key message This work reports the effects of the 
genetic makeup, the environment and the genotype by 
environment interactions for node addition rate in an 
RIL population of common bean. This information was 
used to build a predictive model for node addition rate.
Abstract To select a plant genotype that will thrive in 
targeted environments it is critical to understand the geno-
type by environment interaction (GEI). In this study, multi-
environment QTL analysis was used to characterize node 
addition rate (NAR, node  day− 1) on the main stem of the 
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of genotypes and these four QTLs were always detected 
with 50–90% probability. The final model was evaluated 
using leave-one-site-out method to assess the influence of 
site on node addition rate. These analyses provided a quan-
titative measure of the effects on NAR of common beans 
exerted by the genetic makeup, the environment and their 
interactions.

Introduction

Developing cultivars that are well adapted to particular 
environments requires accurate characterization of geno-
type-by-environment interactions (GEI). In order to make 
the best breeding decisions given the complexity of mecha-
nisms and biological processes underlying a phenotypic 
trait including its responses to multiple environments, it is 
helpful to use adequate strategies to understand GEI. GEI 
has been defined in different ways. Often, it is regarded as 
the differential phenotypic performance of a genotype from 
others to different environments (Griffiths et al. 2000). GEI 
can also be identified by observing the matrix of genetic 
variance–covariances of the phenotypic trait across all 
environments (Malosetti et al. 2013). Here, GEI is consid-
ered as the presence of heterogeneity of genetic variance 
across environments, or as non-perfect genetic correlations 
of the genotypic performances across environments. The 
estimation of this genetic matrix requires the fitting of com-
plex statistical models that simultaneously combine infor-
mation from all tested field experiments by using a linear 
mixed-model framework together with genetic information 
(i.e., marker data) for the population studied (Beeck et al. 
2010). A full understanding of the dynamics of GEI is a 
critical component of the best breeding strategies, which 
strive to identify genotypes best adapted to the targeted 
environments.

Traits that show continuous variation are usually com-
plex and controlled by several genes. The genetic complex-
ity of these traits can be dissected with the assistance of 
dense molecular-based linkage maps that allow scanning of 
the genome to identify loci exhibiting large effects for the 

trait, commonly referred to as quantitative trait loci (QTLs; 
Lander and Botstein 1989). Furthermore, conducting phe-
notyping experiments under multiple environments pro-
vides an opportunity to identify the sources of variations in 
a segregating population based on genetic (QTL), environ-
mental, and QTL-by-environment interactions (QEI). These 
sources can be adequately identified and quantitatively 
characterized by a mixed model that can utilize explicit 
genotypic information (Boer et al. 2007). Combining gen-
otypic and phenotypic data from multiple environments 
into this type of model represents a powerful approach to 
more accurately estimate the contribution to variation by 
the different sources affecting a trait. For example, multi-
environment QTL mixed models have been used to iden-
tify QTLs for different traits in several species. For maize, 
application of these models led to the detection of drought 
resistance QTLs and QEI in the CIMMYT (International 
Maize and Wheat Improvement Center) drought stress trial 
by introducing genotypic and environmental covariates 
to explain genetic and GEI (Malosetti et  al. 2004, 2013); 
van Eeuwijk et  al. 2010). Similar analyses have been car-
ried out in wheat (Mathews et al. 2008), sorghum (Sabadin 
et  al. 2012), and in pepper where a multi-trait and multi-
environment (MTME) model explained about 83% of the 
variation for total fruit dry weight from each plant (Alimi 
et  al. 2013). Recently, Heslot et  al. (2014) demonstrated 
the advantages of integrating environmental covariates 
and crop modeling into a genomic selection framework to 
predict GEI using a large winter wheat dataset. These new 
approaches provide insight into the architecture of GEI, and 
may improve the prediction of genotype performance based 
on climatic conditions.

The growth rate and duration of the vegetative phase 
of development of a plant may be important determinants 
of the success of the reproductive phase and thus affect 
crop yield. The developmental rate during the vegeta-
tive phase can be measured through the accumulation of 
plastochrons, a developmental unit that measures the time 
interval between the initiations of two successive leaves 
on the shoot apical meristem. The successive genera-
tion of leaves at the shoot apical meristem results in the 
production of successive phytomers; these are repeating 
units comprised of a node with an attached leaf, a sub-
tending internode and an axillary meristem at the base of 
the internode (Sussex 1989). Thus, the number of flow-
ers/inflorescences and branches may be directly propor-
tional to the number of nodes produced in a plant. The 
rate of node production has been reported to depend on 
temperature, the genotype, and  CO2 levels (Vallejos et al. 
1983; Reddy et  al. 1994). Furthermore, the node addi-
tion rate (NAR) has also been associated with levels of 
miR156, squamosal-like proteins and cytochrome P450 
genes in Arabidopsis (Schwarz et  al. 2008; Wang et  al. 
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2008). In summary, previous research indicates that NAR 
is under genetic control, and can be influenced by the 
environment. Therefore, simultaneous characterization of 
the environmental effect on NAR along with the identifi-
cation and characterization of the genes that control NAR 
can help lay the foundation for more complex growth 
traits, particularly those associated with leaf area index 
and the reproductive phase.

Common bean (Phaseolus vulgaris) is one of the 
world’s most important food legumes representing a 
major source of protein and fiber for human consumption. 
Given current trends in population growth, demand for 
this crop, particularly in Latin America and sub-Saharan 
Africa, can be expected to grow at unprecedented lev-
els (Echeverría 2014). To meet the growing demand for 
beans, plant breeders will have to develop high yielding 
new cultivars best adapted to sometimes harsh environ-
ments. Towards this goal, this study was conducted to 
identify the QTL exhibiting large effects on NAR, the 
environmental covariates that have a significant effect on 
NAR, and the GEI, which are all challenging factors to 
characterize in breeding programs. These objectives were 
achieved through the analysis of a recombinant inbred 
population grown in multi-environment trials (MET) 
using mixed-effect models. We present the construction 
of a QTL- and environment-based predictive model, in 
which the QTL consistency was evaluated through cross 

validation by genotypes and the final model was assessed 
through leave-one-site-out method.

Materials and methods

Field experiments

An extensive, multisite, phenotyping experiment was car-
ried out with a recombinant inbred (RI) family of com-
mon bean. This family was obtained from a cross between 
the determinate Andean cultivar Calima (SINCS 2003) 
and the indeterminate Mesoamerican cultivar Jamapa 
(Voysest 2000). The parental genotypes have contrasting 
growth habits, organ sizes, branching patterns, and pho-
toperiod sensitivity. This RI family comprises 188 lines, 
which were propagated by single seed descent to the 11th 
generation, and in bulk to the 14th generation  (F11:14), and 
it was planted at five different field sites, along with the 
parental lines, using a Latinized, row-column design with 
three blocks (3 plots for each genotype, and 6 to 9 plots 
for each parental line depending on the site). Details of the 
field sites are presented in Table 1. The field experiments 
were located in: Citra, FL (CT); Palmira, Colombia (PA); 
Popayan, Colombia (PO); Isabela, Puerto Rico (PR); and 
Prosper, North Dakota (ND). These were planted between 
March 2011 and May 2012. For each site, 50 seeds of each 
genotype were sown in each plot at a depth of 2.5–3  cm 

Table 1  Summary of site and management practices at five sites where 128–188 genotypes of common bean were grown

CT, PA, PR, PO, and ND represent corresponding sites of Citra, FL Palmira, Colombia Isabela, Puerto Rico Popayan, Colombia and Prosper, 
North Dakota, respectively
a Number of genotypes (RILs) for each site was limited by seed availability

CT PA PR PO ND

Site Citra, Florida, USA Palmira, Colombia Isabela, Puerto Rico Popayan, Colombia Prosper, North Dakota, 
USA

Latitude 29°39′N 03°29′N 18°28′N 02°25′N 47°00′N
Longitude 82°06′W 76°81′W 61°02′W 76°62′W 96°47′W
Growing season Mar 24th, 2011–Jun, 

2011
Nov 10th, 2011–Jan, 

2012
Feb 6th, 2012–May, 

2012
Mar 23rd, 2012–Jun, 

2012
May 19th, 2012–Aug, 

2012
Previous culture Fallow Beans Beans Fallow Wheat
Soil texture Sand Clay Clayey Kaolinite Medium Loam Silt Clay Loam
Fertilization (kg  ha− 1) 136 (N); 60 (P);112 

(K)
40 (Urea) 55 (N-P-K:10-10-10) 96 (P); 129 (N); 80.3 

(K)
No fertilizer

Irrigation Central pivot sprinkler 
system

Rain fed Drip Rain fed Rain fed

Plant density (plants 
 m− 2)

4.3 3.0 3.9 4.3 3.3

Row spacing (cm) 90 120 100 90 150
# Of blocks 3 3 3 3 3
Total # of  genotypesa 188 174 128 178 176
Measurement fre-

quency
Weekly Weekly Weekly Weekly Weekly
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with planting density ranging from 3.0 to 4.3 plants  m− 2. 
An average germination rate of about 80% was observed in 
the field, resulting in approximately 40 plants per plot that 
were available for data collection. All experiments were 
carried out under well-managed conditions with sufficient 
fertilizer and water, and pesticides and herbicides were 
applied as needed.

Phenotypic data

One plant per plot from each block, for each RIL and the 
two parental lines, was harvested on a weekly basis. Har-
vests were initiated after emergence of the first true leaf, 
and were carried out a total of 7–10 times at each site 
depending on plant availability. The number of nodes bear-
ing trifoliates larger than 2.5  cm on the main stem was 
recorded for each plant at each harvest time. Nodes on the 
main stem emerged in a predictable pattern such that when 
plotted vs. calendar days after planting, an approximate 
linear segmented relationship was obtained for each geno-
type at each site. Node addition proceeded approximately 
in a linear fashion until it transitioned into a stationary pla-
teau phase when the final node number had been reached. 
Hence, data of the first 3 harvests or 4 harvests were used 
to estimate the slope of the linear model for determinate 
and indeterminate RILs, respectively, in the R statistical 
software (V 3.1.2, 2014), and the final node numbers were 
obtained from the last few harvests. The slope corresponds 
to the average rate of node addition (NAR, node  day− 1). To 
obtain the slope for each genotype at each site, nodes on 
main stem from harvested plants over the 3 plots were com-
bined to calculate the average NAR (i.e., one NAR value 
per genotype per site), and they were used for multi-envi-
ronment QTL mapping. However, NAR for each plot of a 
given genotype at each site (i.e., 3 NAR values per geno-
type per site) was also obtained for heritability analysis 
(Eq. 1).

Environmental covariates

Temperature, solar radiation, and rainfall were recorded at 
weather stations located near each field. Day length was 
obtained from United States Naval Observatory (USNO) 
(http://aa.usno.navy.mil/data/docs/RS_OneYear.php) and 
solar radiation data that were not recorded or missing 
from local weather stations were obtained from the NASA 
POWER database (http://power.larc.nasa.gov/). The envi-
ronmental covariates considered were average day length 
(DL, hr), average daily temperature (TEMP,  °C), maxi-
mum temperature (TMAX,  °C), minimum temperature 
(TMIN,  °C) and solar radiation (SRAD, MJ  m− 2  day− 1) 
as presented in Fig. 1 for the growing season at each site. 
However, for analytical purposes, all covariates were 

averaged for the time period from the 1st trifoliate to end of 
vegetative phase (3rd or 4th harvests depending on the site) 
at each site (i.e., one value for each environmental covariate 
per genotype per site, Supplemental Table S1).

Genotypic data

The QTL analyses on the MET data was carried out with a 
high-density linkage map (Bhakta et al. 2015), which was 
constructed with the experimental RI population using the 
genotyping-by-sequencing method described by Elshire 
et  al. (2011). This linkage map contains 513 molecular 
markers distributed on 11 linkage groups with an average 
marker distance of 1.84 cM, which is considered as a good 
coverage for the population we are using.

Multiple-environment and QTL analyses

As a first step, broad-sense heritability (H2) of NAR trait 
was calculated by fitting the following specific linear mixed 
model using individual site data:

where μ is the population mean of NAR (node  day− 1) at 
each site; block, row(block) and column(block) are random 
effects of block, rows and columns within blocks, respec-
tively; g is the random genotype effect of a RIL; and e is 
the random residual effect. The heritability was estimated 
by utilizing the generalized equation proposed by Cul-
lis et al. (2006) as the experimental design was not a ran-
dom complete block design. The equation is expressed as 
H2 = 1AvgDIFF/(2*Vg^2), with AvgDIFF the average of 
the variance for differences between genotypes, and Vg the 
estimate of the genetic variance, as implemented in Genstat 
v.18 (VSN International Ltd Hemel Hempstead, UK).

The second step consisted in fitting a MET model that 
combined experimental data from all sites. Row-column 
design effect was first excluded because it had little impact 
on NAR (data not shown). In addition, the heritability at 
PR site was found to be zero (Table 2) so the PR site data 
were removed for subsequent analyses. Therefore, the MET 
model was initially fitted using only NAR data for each 
genotype from the remaining four sites (CT, ND, PA, and 
PO; i.e., one data point per genotype per site). The method-
ology was described in Malosetti et al. (2013). Briefly, this 
consisted of modifying the model from Eq.  1 to consider 
the four sites by including a fixed effect of site, s, and a 
random effect of genotype-by-site, g × s, as shown in Eq. 2.

A factor analytic order 1 matrix was selected according 
to the Akaike Information Criterion (AIC) (Akaike 1974) 

(1)
NAR = � + block + row(block) + column(block) + g + e

(2)NAR = � + s + g + g × s + e
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to model the variance–covariance component and was later 
used to specify the data structure in a genome-wide QTL 
scan using simple interval mapping, which evaluates each 
marker individually for significance (Lander and Botstein 
1989). Then, the QTLs identified from simple interval 
mapping were specified as cofactors in composite interval 
mapping (Zeng 1994), and composite interval mapping was 
run at least three times consecutively to confirm stability of 
the fitted statistics profile.

In this study, the minimum separation distance for 
selected QTL was set to 3 cM and the minimum cofactor 
proximity was set to 50 cM based on current linkage map 
information, and significance level was set at P < 0.001. 
The fitted model (QTL mixed site-effect model) from Eq. 2 
would contain all significant QTL and QEI model terms as 
exemplified in Eq. 3,

where µ is the population mean across sites, s represents the 
site effect;  QTL1,  QTL2 etc. are assumed QTLs identified 

(3)
NAR = � + s + QTL1 + QTL2 +⋯ + QTL1 × s + QTL2

× s +⋯ + e

as having main effect;  QTL1 × s,  QTL2 × s etc. are assumed 
QTL by site (Environment) interactions (i.e., QEI), and e 
represents the error term that was modelled by considering 
a factor analytic of order 1 variance–covariance error struc-
ture. A backward selection procedure was used to retain 
significant fixed terms (P < 0.05). The above procedure 
was done using the QTL mapping framework described by 
Malosetti et al. (2013) as implemented in GenStat v.18.

QTLs and QEI consistency

The consistency and stability of the identified QTLs 
together with their interaction with site was examined 
through a tenfold cross validation by using different sets of 
genotypes. Specifically, all 171 RILs were randomly dis-
tributed into 10 groups, then QTLs analysis was conducted 
by dropping one group of genotypes at a time, that is, the 
QTLs would be identified based on 9 groups of genotypes 
each time and this process would be repeated 10 times to 
assess the reliability of these identified QTLs and their pos-
sible interactions with site.

Fig. 1  The average, minimum, maximum temperatures ( °C), day length (hrs) and solar radiation (MJ  m− 2  day− 1) at Citra, FL (CT), Palmira, 
Colombia (PA), Isabela, Puerto Rico (PR), Popayan, Colombia (PO) and Prosper, North Dakota (ND)
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Integration of environmental information in modeling 
QTL effect

The specific covariates included in a linear form were DL, 
SRAD, TEMP, TMAX and TMIN. These were averaged over 
all three plots for each genotype at each site during the node 
addition period (Supplement Table S1). They were incorpo-
rated in the model by replacing the site term “s” and any of 
its specific QEI in Eq. 3. Briefly, the procedure initially con-
sisted of including each environmental covariate, one at a 
time, and then performing a pre-selection of relevant terms 
that have biological meaning for NAR such as temperature 
and day length. Later, a full model (see Eq. 5 in Results) was 
fitted that followed a backwards selection that retained terms 
that were statistically significant (P < 0.05) or that contributed 
to the understanding of the biological mechanisms. All covar-
iates were evaluated to determine whether they had a main 
effect or interaction with one or more QTLs, and the fac-
tor analytic order 1 variance–covariance matrix was always 
retained as the genetic structure for NAR during this fitting 
process. Hence, the final model corresponds to a QTL-envi-
ronment-based predictive model that depends uniquely on 
some QTLs, environmental covariates and, whenever it exists 
and is significant, their interactions. This model allows pre-
diction of the NAR phenotype of specific genotypes (those 
described by the QTLs selected) for similar site with known 

weather/climatic conditions that are within the range of our 
experimental conditions.

Model evaluation

To assess the influence of each site on the final QTL-envi-
ronment-based model, leave-one-site-out method was used 
to evaluate the quality of the crop model obtained based on 
environmental variables. Specifically, a QTL-environment-
based model would be built up using three of the four data-
sets (CT, ND, PA and PO) and the remaining dataset would 
be used to evaluate the performance of the model. The evalu-
ation of the prediction ability of the model was based on the 
correlation coefficient between the observed NAR and pre-
dicted NAR, the % bias and the RMSE.

Results

Phenotypic data analysis

The average NAR values and final node numbers on the 
main stem of the parental lines and all RILs at all five sites 
are presented in Table 2. As expected, the NARs of the two 
parental lines, Jamapa and Calima, were significantly dif-
ferent from each other (P < 0.05) at all five sites, and the 

Table 2  The average rate of 
node addition (NAR, node 
 day− 1) and final number of 
nodes on main stem at each 
location for the two parental 
lines (Jamapa and Calima) and 
recombinant inbred lines (RILs) 
separated by indeterminate and 
determinate genotypes (n=3 for 
RILs; n=6-9 for parental lines)

The genetic variance, residual variance and broad-sense heritability (H2) are reported at each location. 
NARs were estimated as the slope with final number of nodes as the plateau of the segmental linear rela-
tionship between nodes on the main stem and calendar days
CT, PA, PR, PO and ND represent corresponding sites of Citra, FL Palmira, Colombia Isabela, Puerto Rico 
Popayan, Colombia and Prosper, North Dakota, respectively
* Different letters in a row indicated the significance (one-way ANOVA, P < 0.05) of the average values of 
the rate of node addition (NAR, node  day− 1) across RILs
** The node addition rates (NAR, node  day− 1) and final node number on the main stem between indetermi-
nates and determinates were significantly different at all five sites (P < 0.05)

Variables/site CT* PA PR PO ND

NAR
 Jamapa 0.26 ± 0.04 0.35 ± 0.02 0.31 ± 0.03 0.20 ± 0.01 0.24 ± 0.03
 Calima 0.17 ± 0.04 0.23 ± 0.04 0.20 ± 0.05 0.14 ± 0.02 0.13 ± 0.06
 RILs* 0.26 ± 0.06ab 0.34 ± 0.07a 0.28 ± 0.08ab 0.18 ± 0.04b 0.24 ± 0.08ab

 Indeterminate** 0.29 ± 0.05 0.35 ± 0.04 0.29 ± 0.06 0.20 ± 0.03 0.28 ± 0.05
 Determinate 0.22 ± 0.06 0.32 ± 0.09 0.26 ± 0.10 0.16 ± 0.03 0.20 ± 0.08

Final number of nodes
 Jamapa 14.7 ± 2.1 16.1 ± 2.2 15.2 ± 3.2 11.7 ± 2.3 18.5 ± 0.71
 Calima 5.0 ± 1.0 7.8 ± 0.9 4.8 ± 1.3 6.3 ± 2.5 4.0 ± 0.0
 RILs 8.8 ± 3.5 11.1 ± 3.5 8.9 ± 4.7 8.7 ± 3.0 10.8 ± 5.3
 Indeterminate** 11.9 ± 1.9 13.8 ± 2.3 12.5 ± 3.7 10.9 ± 1.8 14.0 ± 2.7
 Determinate 6.1 ± 2.1 8.03±1.4 5.2 ± 2.0 6.2 ± 1.8 5.9 ± 2.5

Genetic variance (×10E-2) 0.36 0.30 0.00 0.08 0.33
Residual variance ×10E-2) 0.24 0.30 1.12 0.18 0.30
Heritability (H2) 0.64 0.73 0.00 0.58 0.72
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RILs showed clear continuous variation for this trait sug-
gesting polygenic control (Table 2; Fig. 2). Overall, these 
results indicated that NAR is strongly affected by both the 
genotype and the environment. For instance, plants grown 
in PA had the highest average NAR (0.34 ± 0.07 node 
 day− 1) with one node being added every 2.9  days, while 
those grown in PO had the lowest NAR (0.18 ± 0.04 node 
 day− 1) with one node being added every 5.6 days. The NAR 
of Jamapa was about 50% higher in CT, PA and PR, but 
only 40% higher in PO than that of Calima, while ND had 
a disproportionate effect where NAR of Jamapa was over 
80% higher than that of Calima. Although there was a clear 
difference between indeterminates and determinates at all 
five sites and the rates of indeterminates were higher than 
those of the determinate RILs in general, the differences in 
NAR between these two growth habits do not resemble the 
differences observed between the parents, suggesting that 
growth habit had an effect on NAR but could not explain 
all the variations in the RIL family. The lack of uniformity 

in the environmental NAR responses among the parents 
and RILs suggested the existence of GEI. The final number 
of nodes on the main stem also varied among sites, had a 
trend similar to that of NAR. NAR and final node number 
were highly correlated (correlation = 0.45, P < 0.05) across 
all 5 sites, with the specific correlations of 0.55, 0.59, 0.58. 
0.52 and 0.21 at CT, ND, PA, PO and PR, respectively.

The frequency distributions (i.e., density plots) of NAR 
are presented in Fig. 2 for the entire population (left panel) 
and for the population separated by growth habit (right 
panel) at each site. These histograms display three impor-
tant features: (1) continuous variation, (2) transgressive 
behavior in the RIL family, as many lines have NARs that 
are outside the parental range, with many significantly dif-
ferent from either parent (P < 0.05), and (3) the shape of 
the distributions appears to be influenced by the site. For 
example, at one extreme are CT and PA where the distribu-
tions approximated normality while at ND, PO and PR they 
appeared to be bimodal for the entire population with some 

Fig. 2  Density plots of main stem node addition rate (NAR, node 
 day− 1) for the entire recombinant inbred lines (RIL) population (left 
panel) and for the different growth habit (right panel) at each site. CT, 

PA, PR, PO and ND represent Citra, FL Palmira, Colombia Isabela, 
Puerto Rico Popayan, Colombia and Prosper, North Dakota, respec-
tively
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overlapping between determinate and indeterminate geno-
types (Fig.  2). Closer examination by separating the pop-
ulation according to growth habit revealed that the bimo-
dality was caused to a great extent by the different growth 
habits. These density plots (Fig. 2) also show the heteroge-
neous variances across sites.

The broad-sense heritability (H2) of the five sites aver-
aged 0.53 with values of 0.64, 0.73, 0.000, 0.58 and 
0.72 (Table  2) for CT, PA, PR, PO and ND, respectively 
(Table  2), while the row and column factors had little 
impact on NAR. Results from 4 out of 5 sites implied that 
NAR may be under genetic control indicating the appropri-
ateness of conducting further QTL analysis. Since the her-
itability at PR site was zero, the PR data was dropped and 
not used for further QTL analysis. Subsequently, the corre-
lations between sites were examined among the 4 sites (CT, 
PA, PO and ND) ranging from 0.53 to 0.72. Also, the biplot 
(Fig. 3) showed the high correlation among these sites, with 
the highest correlation between CT and PA (smallest angle, 
correlation of 0.72) and lowest correlation between CT and 
PO (largest angle, correlation of 0.53); similar length of the 
arrow for each site indicated similar phenotypic variances 
within each site; additionally, some RILs (light grey dots) 
had similar responses at each site (negative values on first 
dimension) while other RILs had different responses (posi-
tive values on first dimension), implying potential genotype 
by environment interactions.

QTL mixed site-effect model

Analysis of the multi-environment data (four sites data, CT, 
ND, PA and PO) revealed the presence of four NAR QTLs 
(P < 0.001). Three separate QTLs were detected on chro-
mosome 1 (Nar1, Nar2, Nar3), and one on chromosome 7 
(Nar4) (Fig. 4). This analysis also indicated that site had a 
significant impact on NAR. Furthermore, one QTL (Nar2) 
presented significant interactions with site. The QTL site-
effect model is described by the following equation:

Details of the site effects, marker positions where the high-
est −log(P) values associated with the QTL region were 
found, the QTL main effects, and QEI effects are listed in 
Table 3. The QTL effects shown in the table are those for 
the Jamapa alleles. The effect of Jamapa alleles was not 
uniform across sites for QTL Nar2, displaying significant 
QEI. Jamapa alleles at Nar2 increased NAR at all sites, but 
their effects varied between 17% of the parental difference 
in PO to 6% in ND. Nar1, Nar3 and Nar4 did not show QEI 
and contributed to NAR uniformly across sites by 0.010, 
0.009 and 0.008 node  day− 1, respectively. The contribu-
tion by these loci represented approximately 6 to 16% of 
the parental differences. Overall, this QTL mixed site-effect 
model (Eq. 4) explained 73% of the phenotypic variation of 
NAR, with RMSE of 16.16% and bias of 0.00% (Fig. 5a).

(4)
NAR = � + s + Nar1 + Nar2 + Nar3 + Nar4 + Nar2 × s + e

Fig. 3  Biplot between sites and 
genotypes showing the genetic 
correlation among the four sites 
(arrows) for NAR. Each grey 
dot represents one genotype, 
Dim1 and Dim2 are the first 
dimension and second dimen-
sion of the data, respectively, 
explaining the phenotypic 
variation. CT, PA, PO and ND 
represent Citra, FL Palmira, 
Colombia Popayan, Colombia 
and Prosper, North Dakota, 
respectively
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QTLs and QEI consistency

The QTL and QEI consistency and stability were checked 
through a tenfold cross validation by genotypes by ran-
domly creating 10 groups of genotypes (i.e., 17 genotypes 

for 9 groups and one group of 18 genotypes), then drop-
ping one group at a time and identifying QTLs for NAR 
based on the remaining 9 groups (Table 4). When dropping 
one group of genotypes from the analyses, the previously 
identified QTLs (Eq.  4 and Table  3) or the QTL regions 
near these identified QTLs were detected for most of the 
group analyses. For example, Nar2 and Nar3 were accu-
rately detected 8 out of 10 (80%) and 9 out of 10 (90%) 
group analyses, respectively. It should be noted that while 
it seems new QTLs were identified with cross validation, 
some of these markers are closely located to the region of 
QTLs identified using all genotypes. For instance, a QTL 
identified on marker positions at 40.3 cM on chromosome 
1 was very close to or in the range of the QTL position of 
Nar2 (marker position 42.1 cM). If considering the nearby 
region (i.e., ±1.5 of  thelog10(P) value of the highest peak, 
Fig. 3) as the same QTL regions, Nar2 was considered to 
be identified every single group analysis together with its 
interaction with site. Nar1, Nar4 were detected with 90% 
and 50% of the group analyses, respectively, when consid-
ering nearby QTL regions as the same (Fig. 3). However, 
one QTL on chromosome 11 and its interaction with site 
was also detected but in only 2 of the tenfold analyses 
(20%), and another QTL on chromosome 10 was detected 
just once. This is likely due to the fact that the weight of 
each group of genotypes was different allowing for the 
detection of a specific QTL. Overall, the four QTLs and the 
QEI effect identified across the four locations with all geno-
types (Table 3) were considered to be consistent and were 
supported by the tenfold cross validation (Table 4).

QTL-environment-based predictive model 
with the inclusion of environmental covariates

The prediction of the QTL mixed site-effect model (Eq. 4) 
is restricted to the sites and conditions recorded during 
the experiment. To extend the predictability of the model, 
we used the mixed effects approach to extract information 
about the effects of specific environmental covariates for 
which we had collected data during the growing periods at 
each site. The objective of this analysis was to replace the 
“s” term effect with those significant environmental covari-
ates. TEMP successfully explained part of the variation of 
Nar2 effects; partitioning the site effect (“s” term in Eq. 4) 
in the mixed site-effect model revealed that TEMP had the 
largest environment effect contributing 0.020 to NAR per 
°C (Eq. 5); in other words, an increase of 1 °C in the mean 
of daily average temperature would cause an increase of 
0.020 nodes per day in NAR (i.e., 8% increase of the over-
all mean of 0.243 node  day− 1). In contrast, SRAD and DL 
had minor, but significant effects. Details of the effects for 
significant environmental covariates, QTLs and QEI are 
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Fig. 4  QTL result from multi-environment QTL mapping for main 
stem node addition rate (NAR, node  day− 1) in the common bean RIL 
population. Four QTLs were detected with Nar1, Nar2, Nar3 on chro-
mosome 1 (Chr1) and Nar4 on chromosome 7 (Chr7). Error bars rep-
resent the corresponding marker positions within ±1.5 of the −log(P) 
value of the QTL peak (black box)

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500



UNCORRECTED PROOF

Journal : Large 122 Article No : 2871 Pages : 15 MS Code : TAAG-D-16-00400 Dispatch : 13-3-2017

 Theor Appl Genet

1 3

presented in Table  5. The final QTL-environment-based 
predictive model attained was as follows with fixed effects:

where all the terms were previously described and Nar1, 
Nar2, Nar3 and Nar4 are genotypic variables (QTLs) that 
take the value “1” for Calima alleles and “-1” for Jamapa 

(5)

N̂AR =0.243 + 0.020(TEMP − 20.95) − 0.005(SRAD − 16.26)

− 0.004(DL − 13.05) − 0.009Nar1 − 0.032Nar2

+ 0.009Nar3 − 0.008Nar4 − 0.004Nar2(TEMP − 21.51)

alleles. The values 20.95, 16.26 and 13.05 are the aver-
age values of the environmental covariates of TEMP 
( °C), SRAD (MJ  m− 2  day− 1) and DL (hr) across all four 
sites during the node addition period. This QTL-envi-
ronment-based predictive model represents the QTL by 
environment covariate interaction (i.e., QEI) as shown 
with Nar2 × TEMP model terms. As mentioned earlier, an 
increase of 0.020 nodes per day in NAR would be expected 
per °C increase in the daily average temperature. Addition-
ally, the NAR would increase by 0.008 units when the Cal-
ima alleles are replaced with the Jamapa alleles and vice 

Table 3  Marker genetic locations (in cM) with the highest −log(P) value associated with QTL region, site effects with standard error, and QTL 
by environment interactions (QEI) from the QTL mixed site-effect model (Eq. 4) for node addition rate (NAR, node  day− 1) at each site

The site mean of 0.024 (0.004) node  day− 1 at Citra, FL is used as the baseline µ in the Eq. 4
CT, PA, PO and ND represent corresponding sites of Citra, FL Palmira, Colombia Popayan, Colombia and Prosper, North Dakota, respectively
a EI represents whether there exists a significant QTL by environment interaction based on AIC criteria
b Site effects were using CT mean as baseline
c Nar1, Nar2, Nar3 and Nar4 are the identified QTLs for node addition rate in common bean. For the same QTL, positive sign indicates that the 
Jamapa alleles accelerated NAR while negative sign indicates the Calima alleles accelerated NAR

Chr Linkage posi-
tion (cM)

−log10 (P) CT PA PO ND QEIa

s (site effect)b 0.000 (0.004) 0.065 (0.004) −0.063 (0.004) −0.012 (0.004)
Nar1c 1 17.80 4.979 0.010 (0.002) 0.010 (0.002) 0.010 (0.002) 0.010 (0.002) No
Nar2 1 42.10 54.110 0.045 (0.004) 0.041 (0.004) 0.017 (0.003) 0.046 (0.004) Yes
Nar3 1 87.10 5.503 −0.009 (0.002) −0.009 (0.002) −0.009 (0.002) −0.009 (0.002) No
Nar4 7 50.00 4.113 0.007 (0.002) 0.007 (0.002) 0.007 (0.002) 0.007 (0.002) No

Fig. 5  a Predicted vs. observed main stem node addition rate (NAR, 
node  day− 1) from the QTL mixed site-effect model (Eq. 4) for each 
RIL at all four sites. b Predicted vs. observed NAR from the QTL- 

and environment-based predictive model (Eq. 5) for each RIL at all 
four sites. Points on the solid 1:1 diagonal line represent equal pre-
dicted and observed NAR values for a and b
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versa for the term Nar2 × (TEMP-20.95), that is twice the 
value of the coefficient (0.004) for the term. The model still 
explained 73% of the phenotypic variation of NAR with a 
RMSE of 16.25% and a bias of 0.00% (see Fig.  5b). The 
final model (Eq. 5) can be used to inform crop models on 
the effects of different environments on NAR.

Model evaluation

Leave-one-site-out analyses were conducted to assess the 
quality of the final QTL-environment-based models in the 
sense of crop modeling. For each of the QTL-environ-
ment-based models built upon three sites, temperature was 
always found playing a major role in affecting NAR not 
only as a main environmental covariate but also as inter-
acting with the QTL Nar2; the four QTLs were also iden-
tified for most of the analyses when dropping individual 
site to detected QTLs (data not shown); in addition, these 
models explained 65–77% phenotypic variation of NAR. 
Figure  6 shows the comparisons between simulated NAR 
from the QTL-environment-based models based on three 
sites vs. the observed NAR from the fourth location. For 
instance, leave-one-site-out evaluation at CT means that, 
the QTL-environment-based model was built upon PA, PO 
and ND data, and CT data was used to evaluate the model. 
The average RMSE and bias are at 35.4 and 25.9%, respec-
tively, with PO having the poorest performance.

Discussion

This study focused on the identification and characteriza-
tion of the genetic and environmental factors that affect 

Table 4  Marker locations (in 
cM) on a chromosome (Chr) 
that were identified through 
the tenfold cross validation by 
genotypes

The chromosome number (Chr) and linkage position in bold are the QTLs identified using all genotypes 
across four locations., while the chromosome number (Chr) and linkage position with underline are the 
QTL by environment interactions (QEI) identified
a He 171 genotypes were randomly distributed into 10 groups, 1st represents dropping the 1st group of gen-
otypes (10% of RILs) and performing the QTL analyses and continues through the 10th group
b “Y” indicates the QTL or QEI was identified when dropping the corresponding group of genotypes
c The percentage of group analyses (out of 10) that a QTL was identified

Chr Linkage 
position 
(cM)

1sta 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Percentagec

1 13.2 Yb 10
1 17.8 Y Y Y Y 40
1 20.7 Y Y 20
1 21.4 Y Y 20
1 28.1 Y 10
1 40.3 Y Y 20
1 42.1 Y Y Y Y Y Y Y Y 80
1 78.2 Y 10
1 87.1 Y Y Y Y Y Y Y Y Y 90
7 34.4 Y 10
7 47.7 Y 10
7 50.0 Y Y Y 30
7 52.7 Y 10
10 13.6 Y 10
11 6.5 Y Y 20

Table 5  Environmental covariates, QTLs and QTL by environment 
interactions (QEI) included in the QTL-environment-based predic-
tive model (Eq. 5) and their effects with standard errors (SE) for node 
addition rate (NAR, node  day− 1) in common bean

a TEMP, DL, SRAD represent average daily temperature (°C), day 
length (hr) and solar radiation (MJ  m− 2  d− 1), respectively
b Nar1, Nar2, Nar3 and Nar4 are the identified QTLs for node addition 
rate in common bean

Significant  terma F statistic P value Coefficients (SE)

TEMP ×  Nar2b 63.23 <0.001 −0.004 (0.001)
Nar4 16.01 <0.001 −0.008 (0.002)
Nar3 21.82 <0.001 0.009 (0.002)
Nar2 171.79 <0.001 −0.032 (0.002)
Nar1 18.88 <0.001 −0.010 (0.002)
DL 13.90 <0.001 −0.005 (0.001)
SRAD 95.40 <0.001 −0.005 (0.001)
TEMP 1349.62 <0.001 0.020 (0.001)

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545



UNCORRECTED PROOF

Journal : Large 122 Article No : 2871 Pages : 15 MS Code : TAAG-D-16-00400 Dispatch : 13-3-2017

 Theor Appl Genet

1 3

NAR in common bean. This is an important trait because it 
reflects the rate of development during the vegetative phase 
of the plant. The factors that control this rate can have an 
impact on the rate of dry matter accumulation and the onset 
of reproductive development. Density plots of NAR at each 
site (Fig. 2) and the genetic correlation among sites (Fig. 3) 
indicated potential polygenic control, strong environmental 
responses and transgressive segregation.

In the mixed site-effect QTL model (Eq.  2–4), Nar2 
displayed significant interactions with temperature. 
Nar2 co-segregated with the FIN gene, which controls 
growth habit (Norton 1915), and has been identified as 
a homolog of the Arabidopsis TFL1 gene (Repinski et al. 

2012). FIN has been associated with the domestication 
syndrome including determinacy, number of nodes on 
main stem, number of pods and number of days to flower-
ing in common bean (Koinange et al. 1996). Determining 
whether Nar2 and FIN are the same gene would provide 
new insight into the mechanism of node addition in com-
mon bean. In general, the bimodal distribution could be 
explained by the effect of a single gene. The bimodal-
ity observed within determinate plants in PO suggested 
there may exist another gene that interacts with the 
recessive allele of the potential FIN gene, however, no 
other QTLs were detected within the determinate plants, 
which may be caused by the small number of determinate 

Fig. 6  Simulated vs. observed main stem node addition rate through 
leave-one-site-out method. “Leave-one-site-out at CT” indicates that, 
the QTL-environment-based model was built up using data from PA, 
PO and ND but was evaluated using data from CT (a). Similar inter-

pretation applies for other locations based on what site was being 
evaluated, i.e. evaluated at ND (b), PA (c), or PO (d). CT, PA, PO and 
ND represent Citra, FL Palmira, Colombia Popayan, Colombia and 
Prosper, North Dakota, respectively
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RILs within the entire population, or the error propaga-
tion from data collection and NAR estimation which 
may contribute to a possible false peak detected within 
determinates.

Transitioning from the QTL-site effect model (Eq. 4) to 
the QTL-environment-based model (Eq.  5) did not lower 
the model efficiency (73%) indicating that almost all of 
the site effects were extracted as individual environmental 
covariates. The predictive ability of our model compares 
well with similarly constructed models of other species. 
For instance, in a recent study of the genetic architecture 
of maize height (Peiffer et al. 2014), the family-nested QTL 
models explained approximately 51–86% of the variation 
of maize height. As mentioned above, the unexplained vari-
ation of our model (Fig. 5) could be explained in part by 
genetic effects that were not detected by our analysis, or 
environmental variables such as soil moisture content that 
were not measured in these experiments.

The QTL-environment-based model showed that tem-
perature was the main factor driving NAR in common 
bean. This is consistent with other studies on node addition 
in indeterminate common bean plants under different tem-
perature and photoperiods (Wallace et al. 1991; Yourstone 
and Wallace 1990a, b), and is also supported by studies 
where temperature was used as the main or only factor 
affecting node/leaf addition for modeling purposes (Jones 
et al. 1999; Sinclair 1984; Soltani et al. 2006; Soltani and 
Sinclair 2012). For beans, an increase in temperature from 
17 to 23 and to 29 °C caused increased node addition rate 
under 12 h of day length (Yourstone and Wallace 1990b). 
Day length plays a critical part in flowering and NAR in the 
common bean, an increase in day length from 12 to 14 h 
caused an increase in NAR under constant 23 °C but further 
increase to 16  h did not enhance NAR for selected inde-
terminate beans (Yourstone and Wallace 1990b). However, 
their results were based on removal of branches which may 
have altered the source sink relationship of the plant and 
have a secondary effect on node addition rate. Here, day 
length only had a minor effect on NAR. Solar radiation also 
had a minor effect with a small reduction in NAR (0.005 
node  day− 1 per MJ  m− 2  day− 1). Nevertheless, as of now, it 
appears that for predictive models or crop models, tempera-
ture can be used as the main environmental factor affecting 
NAR in common bean.

The leave-one-site-out evaluation showed relatively low 
%RMSE and %bias for CT, ND and PA (Fig.  6) analy-
ses, particularly when considering the fact that only a few 
QTLs were taken into account. However, the model when 
evaluated at PO was largely over predicted, which is likely 
caused by the much cooler temperatures at PO. Therefore, 
when building the model based on CT, ND and PA data, 
the low temperature effects were not captured in the model. 
These analyses demonstrate the need to have data from a 

broad range of environments to build the NAR model. 
Another limitation on these models are the fact they are lin-
ear and do not take into account the nonlinear relationships 
that often occur with a trait and the environmental covari-
ates. Others have demonstrated that analyses that use non-
linear models for a trait can detect QTLs that are not found 
with a set of time-point analyses and that these non-linear 
models provide better understanding of the biological 
mechanisms of the trait (Malosetti et al. 2006; van Eeuwijk 
et  al. 2010). The use of a nonlinear model for NAR will 
likely improve the model’s predictability of this trait.

Predicting the phenotype from the genotype (G2P) 
is considered to be an essential outcome of the next gen-
eration of crop models. Models that can accurately predict 
plant growth and development based on the plant genotype 
and environmental data as inputs can solve the G2P prob-
lem. These types of models will not only help us under-
stand the underlying mechanism of a trait or of an environ-
mental response, but also help plant breeders design and 
identify suitable cultivars adapted to specific environments 
(White 2009; White and Hoogenboom 2003). GEI is a con-
stant challenge in plant breeding programs. Thus, defining 
the means to identify and quantify this phenomenon will 
certainly facilitate breeding programs. Recently, research 
on GEI has been expanded to genotype-by-environment-
by-management (GEM) (Asseng and Turner 2007; Montes-
ino-San Martin et al. 2014). Such an expansion will help us 
both understand complex traits and improve final yield by 
combining QTL with proper management (e.g. row spac-
ing, irrigation, etc.) under certain environments. Overall, 
the model we have developed could be incorporated into 
existing crop simulation models (Hoogenboom et al. 2012) 
in an effort to convert them into gene-based simulation 
models that can provide a more comprehensive account 
of plant processes from planting to harvest using genotype 
and environmental data.
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