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Abstract 16 

We studied an improved slope form system using a fuzzy logic method to assess and map soil 17 

fertility of a mountain region in northern Vietnam that has strong relief conditions. The lack of 18 

good soil mapping techniques in Vietnam has brought about insufficient soil information, which 19 

often leads to false recommendations for land use and crop planning. The reviewed literature 20 

describes soil-mapping techniques using fuzzy logic method, but all of them are applied for 21 

mapping areas that have gentle relief conditions that are unlikely to be applicable to the 22 

mountainous soils in our study area. In this paper, we introduce a detailed slope form system that 23 
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significantly describes the complexity of terrain characteristics of the area to be mapped, and 24 

provides more detail about the variability of the soil fertility of the area. Nine basic slopeforms 25 

were used to characterize for each of upper-, middle-, and foot slope positions, making the list 27 26 

slopeforms. Together with crest and valley, the total unit number is 29. We investigated soils of 27 

the area and classified them into the major soil groups and calculated soil property indices for all 28 

of them. We identified four major environmental parameters affecting soil formation and soil 29 

quality: geology, elevation, slope inclination and land use. The findings indicated that soil fertility 30 

differs at slope positions. Soils located at upper slope positions, where agricultural activity only 31 

started recently, are more fertile than those found at middle slope positions. Soils located at foot 32 

slope positions, where eroded sediments accumulate, also have high levels of fertility compared to 33 

those on the middle slope. The improved slope form system then became an important additional 34 

environmental parameter for this soil mapping work. At a same comparable category, i.e. slope 35 

position, geology, soil group, elevation, slope gradient, straight slopeforms are an indicator for 36 

better soil fertility compared to convex and concave forms. Although the findings could not specify 37 

soil fertility variability for all 29 slopeforms, they did emphasize the major differences in soil 38 

fertility and soil formation based on three major forms of convex, straight and concave, with other 39 

factors taken into account, such as slope inclination, geology and elevation. We expect our results 40 

to be used by scientists and local authorities in deriving more effective land use and crop options 41 

for land use management strategies for the northern Vietnam’s mountain regions. 42 

Keywords: fuzzy logic, relief conditions, slopeform, slope position, soil mapping, soil fertility 43 

assessment 44 

1. Introduction  45 



The need for achieving spatial soil information and soil fertility details for research and 46 

development purposes has led to the generation of advanced soil mapping techniques (Zhu et al., 47 

1996; Schuler, 2008; Qin et al., 2012). These techniques have been widely used in soil science for 48 

studying the spatial distribution of soils (Zhu, A.X., 1997a; Schuler et al., 2010), soil properties 49 

(Zhu et al., 1997b; Batjes, 2008; Qin et al., 2013), land evaluation and land-use planning 50 

(Herrmann et al., 2001), and soil and land health (Vågen and Winowiecki, 2012; Winowiecki et 51 

al., 2015). Fuzzy logic-based mapping techniques have long been applied for mapping spatial soil 52 

distribution and soil fertility studies (Burrough, 1989; McBratney et al., 2003; Zhu et al., 2010). 53 

The application of these techniques can be implemented in two approaches: data driven and 54 

knowledge-based (Zhu et al., 2010). The former is applied when there are sufficient data. The latter 55 

is normally used when there are not enough data for mapping soils of a larger area, for example at 56 

regional scale. In the latter case, when a large amount of field soil samples cannot be obtained to 57 

sufficiently map soils of a landscape-scale area, local soil experts are needed to describe 58 

knowledge on soil-environment relationship. To acquire this relationship, fuzzy membership 59 

functions defined by soil-environment relationships must be constructed to map spatial continuity 60 

of soils. Unique combinations of environmental variables characterize the formation of each soil 61 

group are obtained via various purposive soil sampling strategies (Bui et al., 1999; Qi and Zhu, 62 

2003).  63 

One of the much studied environmental variables influencing soil occurrences is transitions among 64 

slope positions over landscape: the gradation of positions from crest, upper slope, middle slope, 65 

foot slope, to valley along a catena. This knowledge is very important in studying spatial 66 

distribution of soils with geomorphology-prone formation and especially soil fertility variability 67 



across various slope positions. However, slope gradation has not been studied and quantified 68 

thoroughly for all geomorphological types, for example:  69 

 Studies using crisp classification of slope positions (Young, 1972; Conacher and Dalrymple, 70 

1977; Speight, 1990) do not successfully depict the continuity of slope positions because they 71 

only assign binary values to map objects.  72 

 Schuler et al. (2010) used a Maximum Likelihood approach to map a Thai region with strong 73 

relief conditions, but did not sufficiently capture effects of slopeforms on hillslopes (only 74 

identified convex, concave and linear forms) to formation of soils and their fertility variability.  75 

 Qin et al. (2009) used fuzzy logic to derive nine gradual slope positions in studying spatial soil 76 

distribution and soil variability. However, this proved successfully only for an area of 60km2 77 

with gentle relief conditions (the lowest point of 233.6m asl and the highest point of 352.6m asl 78 

and average slope gradient of 20).  79 

Qin’s slope gradation quantification technique was the inspiration to this study. However, the target 80 

area of Yen Chau district in the northern mountain region of Vietnam has stronger relief conditions 81 

than those of Qin’s work. Yen Chau is characterized by steeper, longer and rougher slopes 82 

(elevation difference between the lowest and highest points is over 1400m and 60% total land falls 83 

into 9-350 slope gradient range). Therefore, to fully describe soil-slope gradation relationship in this 84 

specific study area required another way of quantifying slope positions.  85 

This study aimed to develop a slopeform system that is detailed enough to study soil-environment 86 

relationship in an area, with the focus on the interrelation between soils and terrain morphology. 87 

Firstly, five major slope positions for a single hillslope were generated: crest, upper, middle, foot 88 

slope, and valley. Peucker and Douglas’ (1975) algorithm was applied to generate the highest 89 

(crest) and lowest (valley). The three mid-slope positions were generated using Skidmore’s (1990) 90 



Relative Position Index (PPI) algorithm. Secondly, the three major forms of convex, straight, and 91 

concave were used to characterize the three mid-slope positions, in both horizontal and vertical 92 

directions. Since these slope positions occupy most of the slope length, it was hypothesized that 93 

different detailed forms could lead to formation of certain soil groups and variability of soil fertility 94 

in the area to be mapped. The development of this detailed slopeform system applied fuzzy logic 95 

incorporated in SoLIMSolutions 2010 software upgraded by Zhu (2010).  96 

2. Material and methods 97 

2.1. Study area and environmental setting 98 

A total area of 519 km2 in the Yen Chau district of Son La province (Fig.1a) was mapped. Soils 99 

and soil fertility variations were mapped for the 193 km2 of arable sloped land. Paddy rice fields 100 

were found in valleys along major rivers and streams, occupying 17km2 and forests covered 262 101 

km2. The remaining 47 km2 area was not of interest in this research.  102 

The area has strong relief variations represented by a big difference between the highest (1567m 103 

asl) and the lowest (153m asl) elevation points (Fig.1b), with most of the long steep slopes found 104 

within the range of 90-350. The monsoonal climate is characterized by two distinctive seasons, a 105 

rainy season from May to October and a dry season from November to April of the next year. The 106 

statistics of Yen Chau weather station showed an annual average temperature of 240C and 107 

precipitation of 1257mm (data of 2000-2007).  108 

The geology (Fig.1c) is part of the larger Vạn Yên geology and minerals system (Bao, 2004), which 109 

consists of five major geological units: (1) Volcanic Magmatites (VO) including aphyric basalt, 110 

magnesium-high basalt, andesitobasalt, andesitodacite, trachyte, agglomerate, and tuffaceous 111 

sandstone; (2) Clastic Sediments (SC) including clay shale, marl, sericite schist, agglomerate, 112 

polymictic gritstone, sandstone, siltstone, and coal; (3) Yen Chau Formation–Lower Subformation 113 



(K2yC1) including four members of conglomerate, gritstone, sandstone, and interbedding of 114 

chocolate claystone; (4) Yen Chau Formation–Upper Subformation (K2yC2) including two 115 

members of sandstone and interbedding of conglomerate; and (5) Limestone (SO). Information 116 

about alluvial and colluvial deposit units was initially not available. Their characteristics were only 117 

noticed during the soil surveys. Alluvial and colluvial deposits prevail at valleys and lower slopes, 118 

where alluvial deposits are found along stream banks at slopes that are 8% or less and within a 119 

radius of 100m from the banks. Colluvial deposits follow up to 16% slopes. The spatial delineation 120 

of these two new units on the geology map was derived in ArcGIS 9.3. 121 

The major crops on the upland slopes are maize (Zea mays L.) and cassava (Manihot esculenta C.) 122 

(Clemens, et al., 2010; Häring et al., 2010), with the observed effective rooting depths being 0-123 

30cm for cassava and 0-50cm for maize. There is only a small percentage (1.18%) of the natural 124 

land used for fruit trees, being located in home gardens and mainly at lower slope positions with 125 

moderate slope inclinations (Clemens et al., 2010).  126 

2.2. Sampling and soil characterization 127 

Farmers' knowledge about local soils, their distribution and fertility was studied (Clemens et al., 128 

2010) to plan a field survey. The catena concept was applied to locate soil observations for soil 129 

investigation and sampling. Five soil profiles were minimally studied for one single slope covering 130 

five major slope positions: crest, upper, middle, foot slope, and valley. The mapping of five major 131 

slope positions (see details in 2.3.2) was based on Relative Position Index (RPI), DEM-derived 132 

profile and planform curvature parameters. Since soils at forested mountain tops were not studied, 133 

the crest position was eliminated and the upper slope position was determined right after the forest-134 

field boundary. 110 soil profiles were investigated and sampled for the five major geological units 135 



and the derived alluvial and colluvial deposits. The soil sampling was implemented by PhD, MSc, 136 

BSc, and internship students working in the Uplands Program during 2006–2012.  137 

The soil profiles were dug down to the depth of 1.2–1.8m, then field described and classified 138 

according to FAO (2006) and the IUSS Working Group WRB (2006). The description and 139 

sampling were made for every soil horizon. The soil physical and chemical properties used in this 140 

study were the same like Clemens et al. (2010).  141 

For soil fertility control, further calculations of soil properties were carried out for the calibration 142 

of the soil fertility mapping model. These calculations were made for the effective rooting space 143 

(ERS, dm), which is defined as the maximum depth of water, that can be reached by the roots 144 

during years of low rainfall (FAO, 2006). In this study, the ERS was taken down to 70cm and was 145 

separated into topsoil (0–30cm) and subsoil (30–70cm) to highlight the higher root densities and 146 

soil nutrient stocks in the topsoil to the subsoil (Clemens et al., 2010). These further soil properties 147 

computed based on Jahn et al. (2003) for every soil horizon are as follows: 148 

(i) Physical properties: Soil volume (l/m2) was the function of soil thickness (dm) and stone 149 

content (%). Soil mass (kg/m2) is the total weight of soil material in a volumetric unit and was 150 

calculated on the function of soil volume and bulk density (BD) multiplied factor 1 for the 151 

topsoil and factor 0.5 for the subsoil. It is more compacted in the subsoil, which makes the soil 152 

mass of the subsoil a lot higher than that of the topsoil for a same soil depth. The factor 0.5 is 153 

used to equalize soil mass of the subsoil with that of the topsoil. Air capacity (AC) and 154 

available water capacity (AWC) (l/m2) were the functions of estimated AC (%) and AWC (%) 155 

with soil volume.  156 

(ii) Chemical properties: S-value (mol/m-2) was the function of effective cation exchange capacity 157 

(CECeff) and base saturation (BS). The CECeff was estimated based on Jahn et al. (2006). S-158 



value was multiplied with factor 1 for the topsoil and 0.5 for the subsoil. The use of factor 0.5 159 

is the same as explained in (i). The range-standardized sum parameter (N-P-S) proposed by 160 

Mausbach and Seybold (1998) was used to quantify soil fertility. This parameter is the sum of 161 

the stocks of total nitrogen (Nt), available phosphorus (PBray1), and S-value and was applied in 162 

this research in continuation of the work of Clemens et al (2010). These three stock values 163 

were standardized by setting the maximum value to 1 and the minimum value to 0 of each of 164 

the three parameters for the whole set of soil profiles and the values in between were calculated. 165 

The sum parameter N-P-S was achieved by summing up the 3 standardized values of N, P, and 166 

S-value. The parameter N-P-S, therefore, has the value range from 0 to 3. 167 

2.3. Construction of the system of 29 slopeforms 168 

2.3.1. Generation of a digital elevation model (DEM) for the study area 169 

The DEM of the study area was constructed from vector files of contour lines, rivers and streams, 170 

the border of the study area, and elevation points using Topo to rater tool in ArcGIS 9.3. The map 171 

scale was 1:25,000 and the map resolution was set to be 10m by 10m. The output was a raster file 172 

as can be seen in Fig.1b. This DEM file was an important data type that was later used to extract 173 

other types of data for deriving slopeforms such as curvatures, relative position index (RPI), slope 174 

positions, and those as input parameters for the predictive soil mapping models such as slope 175 

inclination and slope aspect.  176 

2.3.2. Generation of five major slope positions 177 

The method for generating five major slope positions was well explained in Skidmore (1990). 178 

Firstly, the DEM was used to extract a crest and a valley to identify the highest and lowest points 179 

of a single slope applying Peucker and Douglas (1975) algorithm in SimDTA software (Qin et al., 180 

2009). Secondly, the middle slope positions were interpolated applying the Relative Position Index 181 



(RPI) as defined in Skidmore (1990). The value range of RPI is [0,1] with 0 being a valley and 1 182 

being a ridge. This value range is subdivided to describe the five major slope positions for the area: 183 

ridge [0.99, 1], upper slope [0.7, 0.99], middle slope [0.3, 0.7], foot slope [0.01, 0.3], and valley [0, 184 

0.01]. 185 

2.3.3. Generation of the detailed system of 29 slopeforms 186 

Nine basic slopeforms defined in FAO (2006) were derived for each of upper, middle, and foot 187 

slope positions, making up to 27 slopeforms for this long slope range and totally 29 forms from 188 

crest to valley. Profile and planform curvature parameters were derived from the DEM using 189 

ArcGIS 9.3 to determine vertical and horizontal shapes of the 27 slopeforms. Profile curvature is 190 

parallel to the slope and indicates the direction of maximum slope and is the rate of change of 191 

gradient. It affects the acceleration and deceleration of flow across the surface and hence influences 192 

soil aggradation or degradation. Planform curvature is defined as the rate of change of aspect being 193 

perpendicular to the direction of the maximum slope and affects the convergence and divergence 194 

of flow across the surface (Odeh et al., 1991).   195 

Three major forms for each of these parameters were: convex, straight, and concave. The 196 

parameter values set for these three major forms both vertically and horizontally were: convex > 197 

0.005, straight [-0.005, 0.005], and concave < -0.005. The selection of these values was validated 198 

with field check to best describe gradual changes of slopeforms along a slope. The 29 slopeforms 199 

were assigned with values of RPI, profile and planform curvatures as indicated in Table 1. 200 

Mapping of this slopeform system was achieved by applying SoLIMSolutions 2010 software (Zhu 201 

et al., 2010). 202 

2.4. Structural organization of the soil database  203 



The soil database structure was developed based on the characterization of terrain characteristics of 204 

the study area. First, terrain units of the area were studied. According to Van Engelen and Wen 205 

(1995), terrain units are the general description of physiography and parent material. Three major 206 

landforms, level (L, inclination<8%), sloped land (S, 8≤inclination<30%), and steep land (T, 207 

inclination>30%), defined by Cong (2011) for a subcatchment scale of Yen Chau were used to 208 

classify subdivided landforms in this study. There were three subunits for L: L1 (0-2%), L2 (2-4%), 209 

L3 (4-8%); two for S: S1 (8-16%) and S2 (16-30%); and six for T: T1 (30-50%), T2 (50-60%), T3 (60-210 

70%), T4 (70-84%), T5 (84-100%), and T6 (>100%), totaling 11 subdivided landforms. The slope 211 

parameter was converted from degree to percentage on which the database of this study was built.  212 

These 11 subdivided landforms were merged with the 5 geological units to derive a map of 55 terrain 213 

units. Alluvial and colluvial deposits remain as two independent terrain units, totally making up 57 214 

terrain units for the study area. Given the minor impact of slopeforms as well as the latter 2 terrain 215 

units to soil formation and fertility at crest and valley, the occurrences of soils and soil fertility 216 

variability were studied on the 55 terrain units and 27 slopeforms, i.e. 1485 components. The fact 217 

that only 88 soil components from 110 soil profiles were identified would largely influence the 218 

quality of this work. To support calibration of the model, we used a reasoning method (section 3.1) 219 

built on knowledge from 11 junior and senior soil scientists working in the project to fill in the gaps 220 

of missing information. The team commonly agreed that only major slopeforms (straight, concave 221 

and convex) in combination with slope gradient had significant influences to soil occurrences and 222 

fertility dynamics (section 5.3). 223 

Environmental parameters were collected for each of the soil profiles in which the slopeform and 224 

slope position of a profile were taken from the achieved slopeform map. Table 2 is a structural 225 

example of the soil database constructed for subdivided landforms T1 and T2. The soil database for 226 



the other subdivided landforms was organized the same way. Other parameters, such as slope aspect, 227 

elevation, were entered in a detailed Excel soil data table. 228 

2.5. Predictive soil mapping under fuzzy logic 229 

The application of fuzzy logic theory in predictive soil mapping techniques have been very well 230 

explained in numerous publications and studies (Burrough, 1996; Yang et al., 2007; Zhu et al., 231 

2010). This part only summarizes the fuzzy logic method for predictive mapping of soils and soil 232 

fertility indices with the emphasis on a slopeform system relevantly derived for the study area. 233 

2.5.1. Constructions of fuzzy similarity functions 234 

The inference engine in SoLIM is operated using a raster data approach in which fuzzy similarity 235 

values (to values of prescribed soils) are calculated for every grid cell. The similarity value ranges 236 

from 0 (meaning the soil at a pixel is very different from a prescribed soil) to 1.0 (meaning the soil 237 

at a pixel carries exactly the same properties of the prescribed soil). The fuzzy minimum operator 238 

is used to calculate fuzzy membership values, or similarity values, (Zhu et al., 1996) for all map 239 

pixels of prescribed soils, and is expressed in equation 1.  The intersection of sets A  X and O  X 240 

which corresponds to the connective “and”, and its membership functions is given by: 241 

N(x) = min{A(x), O(x)}, x  X (1) 

where x is an object which belongs to the set of object X, A(x) is called the degree of membership 242 

of x in A which maps X to the membership space M (when M contains only the two points 0 and 1, 243 

and A(x) is identical to the characteristic function of a non-fuzzy set). 244 

Environmental variables in one unique combination (soil instance) to a specific soil group are 245 

calculated with optimality values using three optimality curves: bell, S, and Z shapes (Zhu, 1999) 246 

as can be seen in Fig.2. Equation (1) is applied on these optimality values to derive the similarity 247 

value for a given map pixel. The set of environmental variables is used again for other soil instances 248 



of this soil type for calculating optimality and similarity values. For example, Luvisols in Yen Chau 249 

can either be found on limestone with elevation from 300 m to 900 m a.s.l and with slope inclination 250 

below 30% at all slopeforms (instance 1) or limestone with elevation from 900 m to 1000 m a.s.l and 251 

slope inclination between 30% and 50% at slopeforms of 6, 15 and 24 (instance 2). After instances 252 

of this soil type are studied, the fuzzy maximum operator (equation 2) is applied to finalize the 253 

membership value of a map pixel for this soil type from the calculated membership values of the soil 254 

instances. For example, the similarity value of instance 1 is greater than that of instance 2, therefore, 255 

it better represents the similarity of Luvisols at this specific map pixel. 256 

N(x) = max{A(x), O(x)}, x  X (2) 

This process goes on to other cells until it completes computing for all of the pixels of the study 257 

area. At this point, a thematic similarity map is produced for a single soil group. The engine then 258 

moves on to calculate for the rest of the prescribed soil types and more similarity maps are created. 259 

Finally, SoLIM can technically merge these similarity maps into one map, which assigns each cell 260 

with a value of one prescribed soil group based on the highest similarity value to this group using 261 

Hardened Map function in SoLIM. The final map is the soil/soil fertility map that delineates the 262 

spatial distribution of all soil/soil fertility groups for the mapping area. 263 

2.5.2. Soil and soil fertility mapping 264 

Reference soil groups (RSGs) need to be described and classified according to FAO (2006) for all 265 

geological units and elevation ranges in the area through a collection of visited soil profiles. For all 266 

soil profiles studied, information of rock type, elevation, slope gradient, slope position, slopeform, 267 

slope aspect, land use type, cultivation period need to be collected to learn the relationship between 268 

their formation and fertility variability with the above environmental parameters. 269 



Each of the major RSGs is then further classified into one or more soil subunits using prefix and 270 

suffix qualifiers in WRB (2006) to highlight soil property differences within a RSG. Major 271 

properties are identified for major RSGs, such as Alisols, Luvisols, Cambisols, etc., for most 272 

representative environmental parameters, such as Cutanic for a high clay content, Leptic for high 273 

a stone content of soils at slopes greater than 60%, Humic for soils found at upper slope positions 274 

where landuse after deforestation is younger and OM contents thus higher, Profondic for soils with 275 

an argic horizon having a clay content not decrease by 25 percent or more 150cm from the surface, 276 

etc. Information occurring these soil subunits is collected in Table 4 and calibrated in SoLIM to 277 

derive a soil subunit map for all major RSGs. This can be easily done based on the described soil 278 

profiles in the soil data set made for all RSGs that were contributed by all soil scientists working 279 

in the project, which will help provide a more diverse picture of soil distribution in the area.  280 

To prepare for the soil fertility mapping model, soil fertility classes are defined based on calculated 281 

N-P-S values (Table 5). These fertility classes are then prescribed based on distinctive 282 

combinations of environmental parameters (same with the ones that were used in the RSG mapping 283 

model) as soil forming factors (see example in Table 6). The soil fertility classification is made for 284 

Alisols, Luvisols, Cambisols, Regosols, Leptosols, Fluvisols, Stagnosols, and Vertisols. 285 

3. Results 286 

3.1. Mapping of the reference soil groups 287 

The soil investigation over the period 2006-2012 resulted in 11 RSGs, in which Alisols and 288 

Luvisols were the two most abundant RSGs and found on all rock types with 46 and 36 profiles, 289 

respectively. There were 7 Anthrosols, 7 Regosols, 4 Stagnosols, 3 Vertisols, 2 Cambisols, 2 290 

Phaeozems, 1 Leptosol, 1 Gleysol, and 1 Fluvisol. The fact that the total 110 soil profiles did not 291 

cover all combinations of relief parameters led to the use a reasoning strategy using expert 292 



knowledge of the soil scientists working in the project. Field observations and personal 293 

impressions of soil formation in Yen Chau of junior and senior soil scientists working in the SFB 294 

564 project were gathered to estimate soil occurrences in empty relief combinations. This local 295 

soil expert then helped fill in the soil formation reasoning table (Table 3).  296 

SoLIM, which is an automated soil inference system that studies the relationship between soils 297 

and environmental conditions, was used to generate fuzzy similarity maps (Zhu et al., 2010). 298 

Eleven fuzzy similarity maps were derived for the study area with each map representing one RSG. 299 

A hardened RSG map for the study area was derived from the fuzzy similarity maps (Fig.3). The 300 

statistic results show that Alisols and Luvisols are the most abundant soil groups within the focal 301 

mapping area, occupying 47.2% and 38.5% of the total area, respectively. Cambisols are the third 302 

abundant soil group with 10.6% of the total area, which prevail at non-forested crest positions, 303 

middle slope positions having convex slopeforms, and colluvial deposits at foot slope positions. 304 

Leptosols, Regosols, Fluvisols, Stagnosols, and Vertisols have remarkably small areas with 1.8, 305 

1.4, 0.4, 0.1, and 0.02% of the focal mapping area, respectively. The predicted occurrence of 306 

Phaeozems spreads over a large area of 54 km2 and paddy soils (Anthrosols and Gleysols) occupy 307 

an area of 17 km2. However, these three RSGs were not evaluated with accurate assessment of 308 

their occurrences and fertility because they are located outside of the area of interest as mentioned 309 

before, i.e. arable sloped land or the focal mapping area. 310 

Since the RSGs within the focal mapping area are only major soil groups and each group can have 311 

a wide range of soil property values, evaluation of the results needed more detailed information. 312 

Indirect assessment (Zhu et al., 2010) of this predictive soil mapping approach was, therefore, 313 

necessary. To support this, a soil subunit map and a soil fertility map were derived for more diverse 314 

evaluations. 315 



3.2. Soil subunit map 316 

Fig.3 shows the spatial distribution of 18 soil subunits of major RSGs. Alisols, Luvisols, and 317 

Cambisols had the most subunits (12/18) and together accounted for 95.8% of the predicted soil 318 

map. Cutanic is the most prominent property for Alisols and Luvisols in Yen Chau (Fig.4). Soils 319 

found at crest and high upper slope positions had higher amounts of organic matter than those at 320 

the lower positions, which resulted in a Humic property for Alisols, Luvisols and Cambisols at 321 

these locations.  Within the middle slope length, Profondic is the major property at lower upper 322 

and higher middle slope positions, Leptic at the middle position having convex forms, equivalent 323 

to a high rock content, and Siltic at lower middle slope for both Alisols and Luvisols. Many 324 

Luvisols found had a Nitic property at lower middle and higher foot slope positions. Investigated 325 

Cambisols had a Dystric property at middle slope positions that have the concave-convex (CV) 326 

form, where topsoils were eroded and unconsolidated materials remained right before the bed rock. 327 

Cambisols found at foot slope positions mainly had a Luvic property for having deposition of 328 

eroded materials from upper slopes right on top of an in-situ argic horizon.  329 

Each of the other RSGs (Regosols, Leptosols, Fluvisols, Stagnosols, and Vertisols) had one most 330 

representative subunit.  331 

3.3. Soil fertility map 332 

A detailed classification of 17 soil fertility classes was generated to see whether there would be 333 

some influence degree of the environmental parameters to soil fertility at this detail level (Fig.7 334 

a&b). Insignificance degrees resulted in the merging of them into four groups: good, moderate, 335 

low, and very low based on comparisons with soil properties calculated for all soil profiles and on 336 

information collected at all observation points. The good group included classes 1-4, covering an 337 

area of 35.5km2 or 18.4% of the arable sloped land. The moderate group included classes 5-8, 338 



occupying an area of 86.3km2 or 44.7% of the arable sloped land. The classes 9-12 constituted the 339 

low fertility group, which occupied 66.4km2 or 34.4% of the arable sloped land. The very low 340 

group was the smallest one spreading over an area of 4.8km2 or 2.5% of the arable sloped land and 341 

merged from classes 13-17 (Fig.5b). 342 

4. Validation of the soil, soil subunit and soil fertility maps  343 

Fifty extra soil profiles were described and classified using the WRB 2006 to evaluate the match 344 

of the observed soil data with the three predicted maps (Fig.7). The sampling strategy was 345 

purposive following the catenary sequences for the predictive soil map of Yen Chau focusing on 346 

crest, upper, middle-, and foot slope positions. Out of 50 validation points, 10 points were collected 347 

for VO, 9 for SO, 10 for SC, 12 for K2yC1, and 9 for K2yC2. 348 

4.1.Validation of the soil map 349 

Matching the validation points with the predicted RSG map showed an accuracy of 90% (a match 350 

of 9/10 points) for VO, 78% (7/9 points) for SO, 60% for SC (6/10 points), 67% (8/12 points) for 351 

K2yC1, and 88.9% (8/9 points) for K2yC2. Overall, 37 out of 50 observation points matched with 352 

the inferred RSG map, resulting in an accuracy of 76%. Compared to the results of different 353 

predictive soil mapping studies applying different methods, (Zhu et al., 1996; Zhu et al.,  2010; 354 

Schuler et al., 2010) this accuracy is acceptable. It shows the consideration of slope positions and 355 

slopeforms in the soil-landscape relationships is useful in capturing a large portion of RSGs for 356 

this area of strong relief conditions in the NW Vietnam.  357 

4.2.Validation of the soil subunit map 358 

The 50 validation soil profiles were classified with soil subunits according to WRB (2006) to 359 

validate the results of the predicted soil subunit map. Matching the validation points with the soil 360 

subunit map showed an accuracy of 80% (a match of 8/10 points) for VO, 78% (7/9 points) for 361 



SO, 60% for SC (6/10 points), 67% (8/12 points) for K2yC1, and 78% (7/9 points) for K2yC2. The 362 

overall accuracy of the soil subunit map was 72%, i.e. 36 out of 50 observation points matched 363 

with the inferred soil subunit map. This accuracy degree is still acceptable, which shows the ability 364 

of the model to capture most of the soil subunits identified for the area.  365 

4.3.Validation of the soil fertility map 366 

To validate the predicted soil fertility map (with 17 fertility classes), the same 50 validation data 367 

points and two indices applied in Zhu et al. (2010) were used: root mean square error (RMSE) and 368 

agreement coefficient (AC). The AC index was defined by Willmott (1984) as follows: 369 

 370 

 371 

The sum parameter N-P-S was calculated for all of the 50 validation data points, resulting in 50 372 

observed N-P-S values. The locations of these observed values on the soil fertility map were used 373 

to extract the 50 corresponding predicted values. The RMSE the 50 data points from the predicted 374 

map is 0.58. For the N-P-S data value range from 0 to 3, this RMSE value is rather a big value, 375 

which shows quite distant differences between the predicted and observed values. The calculation 376 

of the AC index, which is 0.60, also confirmed a medium agreement (or an average match) between 377 

the predicted and the observed values at these 50 locations. This medium accuracy value means 378 

that the environmental parameters taken were not sufficient to achieve a better match between the 379 

predicted soil fertility map and the real fertility variations of soils in the mapping area. This result 380 

suggests that more parameters be used in order to improve the certainty of the inference result of 381 

the soil fertility map. For example, land-use history must have had lots of impact on soil fertility 382 

decline over time and, therefore, the fertility of soils at various locations that have different land-383 

𝐴𝐶 = 1 −
𝑛 ∗ 𝑅𝑀𝑆𝐸2

𝑃𝐸
 

(3) 



use ages after deforestation. However, this parameter was not incorporated in the model due to the 384 

large size of the area to be mapped and the program’s limited budget.  385 

5. Discussion  386 

Soil = (Cl, Pm, Og, Tp) t (Jenny, 1941) is a function to conceptualize the soil-environmental 387 

relationship, which states that the formation of soils (s) is influenced by different factors, 388 

remarkably climate (Cl), parent material (Pm), organisms (Og), and topography (Tp). These 389 

factors evolve with factor time (t). In this study, soil formation and soil fertility variability 390 

represented by SOM stocks follow the same rule and soil-forming factors are discussed in the order 391 

of importance. 392 

5.1. Parent material 393 

The study agrees with  that of Schuler (2008), Parton et al. (1987) and Six et al. (2002) on different 394 

parent rocks resulting in the formation of different major soils determined by soil compositional 395 

properties, such as soil pH, clay content, CEC and BS; and by soil organic matter (SOM) whose 396 

stability and dynamics are very much controlled by clay content. In Fig.6, light clay composition 397 

in SC, i.e. sandy clay to clay loam in the topsoil and sandy clay loam to light clay in the subsoil, 398 

is the reason for having BS smaller than 50% in all soil profiles, which explains the absence of 399 

Luvisols and lower stocks of bases. Luvisols were found in all of the other four rock types. VO 400 

has highest BS, CEC and S-value values among all rock types due to having high clay contents: 401 

clay loam in the topsoil and clay in the subsoil, which is the reason for having Luvisols as the 402 

major soil, not Alisols. Both Luvisols and Alisols were found on SO, SC and K2yC2, in which 403 

average BS, CEC and S-value were highest in SO and lowest in SC. 404 

SOM contents were found to be higher in SC, VO and SO and lowest in K2yC1. The finding agrees 405 

with that of Clemens et al. (2010) which found the lowest average clay content of soils in K2yC1. 406 



However, the SOM content rather depends largely on land-use history. Clemens et al. (2010) and 407 

Häring et al. (2010) found that soils developed in valleys of K2yC1 and K2yC2 had lower average 408 

SOM contents. Participatory investigations for land-use history in Yen Chau revealed that K2yC1 409 

and K2yC2 soils have had longer cultivation periods for better access and denser population.  410 

5.2. Climate in association with elevation 411 

The study coincides with that of Schuler (2008) that Luvisols prevail at elevations below 900m 412 

asl. Alisols are the major soil group above this line. The transition of Alisols to Luvisols in rising 413 

elevation is explained by elevation-triggered differences in temperature and rainfall. The higher 414 

temperature and more seasonal precipitation below 900m asl are more favourable for clay 415 

illuviation, which brings higher BS (>50%). Whereas, the lower temperature and higher 416 

precipitation at elevations above 900m asl hamper the percolation of water through cracks in the 417 

soil, pathway of downward transportation of clay minerals. The lower temperature and more moist 418 

soils due to the high rainfall limit the formation of cracks via shrinking process in clay-rich soils.  419 

Similar to many studies (Sevgi and Tecomen, 2009; Chuai et al., 2012; and Vogel and Märker, 420 

2011), positive correlations between SOM and elevation were found below 900m asl in most rock 421 

types. These values became negative above this elevation line due to a lower clay content found 422 

in soils at this elevation range.  423 

5.3. Relief  424 

Slope inclination, position and form play remarkable roles in the variability of soil properties and 425 

occurrences of certain soil types Clemens et al., 2010; Cong, 2011; Qin et al. 2009, 2012). In the 426 

monocropping culture of maize in Yen Chau, soils on steep slopes at a same slope position with a 427 

similar cultivation period have a remarkably lower topsoil thickness and SOM content than those 428 



at gentler slopes. This problem was caused by soil erosion triggered by intensive cultivation 429 

activities.  430 

In accordance with the findings of Clemens et al. (2010), soils at crest and upper slope positions 431 

tend to have higher SOM stocks commonly represented by Humic property. This is because forest 432 

invasion for agricultural land occurred last at these areas, hence younger cultivation periods and 433 

more soil carbon retained in the topsoil. Luvisols and Alisols mainly have Vertic, Nitic, Leptic and 434 

Profondic properties at the middle slope and Siltic property at the foot slope. The Leptic property 435 

of Luvisols and Alisols and Dystric property of Cambisols occur at a location that has a high slope 436 

gradient and convex form. This is where the topsoil is shallow because of severe soil erosion and 437 

a high stone content is found in the both topsoil and subsoil. When a soil has a shallower soil depth 438 

and a remarkably higher stone content, the soil then becomes Regosols or Leptosols. This is where 439 

Regosols and Leptosols were mainly found in Yen Chau. Similar to the findings of Schuler (2008), 440 

Clemens et al. (2010) and Häring et al. (2010), Siltic for Luvisols and Alisols and Luvic for 441 

Cambisols are the major properties in the foot slope position for the deposition of soil particles 442 

eroded from upper slope positions.  443 

In the agreement with Schuler (2008) and Clemens et al. (2010), the study found that the straight 444 

forms resulted in better soil structure, soil stability, less susceptibility to erosion and better 445 

retaining of soil carbon. Thus, soils at locations with straight forms had higher stocks of SOM in 446 

the topsoil than those at locations with the other forms. Locations with convex slopeforms at high 447 

slope gradients are more prone to erosion and were found to have shallowest topsoil and lowest 448 

SOM stocks. Concave forms were found to be either the result of natural formation or small 449 

landslides. In the first case, the topsoil can be deep and contain high SOM stocks because of the 450 

convergence shape that collects soil particles eroded from higher points, but can, at the same time, 451 



result in small landslides due to weaker soil structure. In the latter case, the topsoil was removed 452 

and the subsoil is exposed, which resulted in low SOM stocks and poor crop growth. Overall, 453 

however, slopeform does not stand out for a very important variable of soil fertility which should 454 

rather depend more heavily on other factors such as parent material, elevation and cultivation 455 

period or the history of land use.  456 

5.4. Biological activity, human impact and time 457 

Similar to findings of Clemens et al. (2010) and Häring et al. (2010, 2013a and 2013b), macro-458 

organisms were seen most active in the topsoil within the depth of 10-30cm. Major burrowing 459 

animals were termites, ants, earthworms, crickets, and beetles whose activities help create space 460 

for microorganisms and root penetration, water infiltration, and turn over organic matter in the 461 

soil. These activities contributed to the intermediate horizon of AhBt or BtAh in between A and 462 

Bt horizons. An E-horizon was rarely found. Microorganisms play an important role in increasing 463 

organic matter content in the soil through physical and biochemical processes. As indicated by 464 

Häring et al. (2010, 2013a and 2013b), soils in undisturbed forest land of Yen Chau had deeper 465 

and darker topsoil than soils that were converted from forest to agriculture. These soils were 466 

Phaeozems developed on limestone.  467 

The human impact, especially land-use change from forest to maize, effects the distribution of 468 

soils and their properties (Schuler, 2008). A remarkable difference between average SOM stocks 469 

in the topsoil of Phaeozems (20-27 kg/m2) and the other soils (2-14 kg/m2) well proved this fact. 470 

Häring et al. (2010) found a decline in soil organic matter by 66%, Nt by 67%, exchangeable Ca2+ 471 

by 91%, Mg2+ by 94%, K+ by 73%, available P by 75%, pH values by 2.2 units, and cation 472 

exchange capacity by 56%. Häring et al. (2013a) found a higher total SOC loss (6–32%), a lower 473 

decomposition (13–40%), and a lower SOC input (14–31%). In terms of the mass of soil loss in 474 



Yen Chau, Tuan et al. (2014) estimated that the loss due to the current maize cropping practice by 475 

local farmers reached 174 t ha-1 a-1. Soil erosion over years at steep upper and middle slope 476 

positions turned Luvisols and/or Alisols into Regosols (Häring et al., 2010), and led to the 477 

formation of Cambisols at low to moderate foot slope positions (Clemens et al., 2010).  478 

In regards to the factor time, the initial agricultural activity was mainly slash-and-burn and shifting 479 

cultivation in mountainous regions of Vietnam, which was stated to be sustainable (Dao, 2000; 480 

Vien et al., 2004) and did not change much the nature of the soils. The population growth over the 481 

last decades led to increasing demands on food and forests were tremendously taken for 482 

agriculture. Since this time, soils of Yen Chau have been changed forever (Häring et al., 2013a; 483 

Häring et al., 2013b; Tuan et al., 2014).  484 

6. Conclusion  485 

This paper applies a fuzzy soil mapping approach to derive fuzzy similarity functions in an effort 486 

to develop soil and soil fertility maps for a region in NW Vietnam. These functions are constructed 487 

from descriptive knowledge represented by environmental factors that have impacts on soil 488 

occurrences and soil fertility variations. To best describe the distinctive extreme relief 489 

characteristic of the study area, a detailed 29 fuzzy slopeform system was formulated and 490 

constructed on a hypothesis that spatial distribution of soils and their fertility degrees could be 491 

better achieved from this parameter. From the results of the study, the following conclusions are 492 

made: 493 

1) The system of 29 fuzzy slopeforms was successfully developed from five major slope 494 

positions. This parameter well delineates available surface forms of hill slopes from mountain 495 

tops to valleys, which allows the possibility to predict the occurrence of a soil and assess its 496 

fertility status at any location within the area of 10m by 10m.  497 



2) We were able to formulate the soil-environmental relationship based on the soil data acquired 498 

and soil fertility classes calculated for the mapping area. This confirms the ability of this soil 499 

mapping approach in obtaining descriptive knowledge for digital soil mapping of an area with 500 

limited or no soil information (Zhu et al., 2010). 501 

3) Good map accuracies of the RSG map and the soil subunit map (76% and 72%, respectively) 502 

reveal the applicability of the 29 fuzzy slopeform system in digital soil mapping for areas with 503 

extreme relief conditions like the one in this research. On the contrary, the validation of the 504 

soil fertility map shows just an average accuracy value of 60%. This is because: 505 

4) Soil fertility does not vary strongly with the change in the surface form. Instead, land-use age 506 

after deforestation has been found to have a greater impact on soil fertility decline in Yen Chau 507 

district (Häring et al., 2010; Häring et al., 2013a; Häring et al., 2013b). For instance, the 508 

knowledge of cultivation period acquired from farmer interviews put in comparison with the 509 

analytic data for soil fertility control reveals that soils at upper slope positions tend to be more 510 

fertile than those at lower slope positions for having a younger period of cultivation due to 511 

forest clearance for agriculture happened from the bottom. The quantification of this 512 

information in better capturing soil fertility using this fuzzy mapping approach, therefore, 513 

should create an interesting research topic for this area in the future. 514 
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Figure 2. The three basic forms of membership functions (Zhu et al., 1999) 



   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

   

 

  

 

 

Figure 3. Predicted soil map of a small area of the study area. The last four subsoil units (with blank colour 

patterns) are not found within this sample area, but characterized for the whole study area 

LEGEND - Reference Soil Groups with subsoil units 

River 

Cutanic-Humic Alisols 

Cutanic-Profondic Alisols 

Siltic Alisols 

Cutanic-Leptic Alisols 

Cutanic-Humic Luvisols 

Cutanic-Profondic Luvisols 

Siltic Luvisols 

Humic Cambisols 

Dystric Cambisols 

Luvic Cambisols 

Skeletic Regosols 

Dystric Leptosols 

Luvic-Haplic Phaeozems 

Calcic-Siltic Fluvisols 

Anthrosols/Paddy 

Forest 

Unmapped area 

Cutanic-Nitic Luvisols 

Cutanic-Leptic Luvisols 

Haplic-Chromic Vertisols 

Vertic-Allic Stagnosols 

Ü

0
0.5

1
1.5

2

0.25

km



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ridge 

Upper 

slope 

Middle slope 

Foot slope 

Legend

Parent material Luvisols with secondary units

Cutanic-Humic

Cutanic-Profondic, Cutanic-Vertic, Cutanic-Nitic, Cutanic-Chromic

Cutanic-Leptic, Cutanic-Nitic, Cutanic-Vertic, Cutanic-Chromic

Cutanic-Nitic, Cutanic-Vertic, Cutanic-Chromic, Cutanic-Siltic

Other soils

Parent material  

Cutanic-Humic 

Cutanic-Profondic 

Cutanic-Leptic 

Cutanic-Nitic, Cutanic-Siltic 

Other soils (Cambisols, Fluvisols, Gleysols, etc.) 

Luvisols with secondary units 

 

Forest  

 

Figure 4. Distribution of subsoil units along a slope for Luvisols  
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Figure 5. Predicted soil quality map of the study area (a), a 3D representation of major soil quality classes of a smaller are as example (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explanation of the supplementary data in the .csv plot data files:  

Luvisols = 1, Alisols = 2, VO = 1, SO = 2, SC = 3, K2yC2 = 4, K2yC1 = 5
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Figure 6. Variability of BS (%) for the ERS over different parent rocks and major reference soil groups 
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Figure 7. Locations of validation points 


