

Inoculation and P fertilizer improves food and feed production in grain legumes: Farmers' perceptions and treatment effects on yield and quality of residue biomass in Ethiopian highlands

Sisay Belete, Adugna Tolera, Melkamu Bezabih and Endalkachew W/Meskel

Workshop and Exhibition on Promoting Productivity and Market Access Technologies and Approaches to Improve Farm Income and Livelihoods in Ethiopia: Lessons from Action Research Projects, ILRI, Addis Ababa, 8-9 December 2016

Putting nitrogen fixation to work for smallholder farmers in Africa

Outline

- Introduction
- Objectives
- Data collection and analysis
- Results
- conclusion

- Grain legumes are largely produced in smallholder crop-livestock production system, a predominant agricultural activity in Ethiopian highlands
- Both crop and livestock production are vital for the livelihood of smallholder farmers.
- The two sub-systems are complementary to each other and interdependent

Livestock contribute

- ✓Draught power
- ✓Cash availability
- ✓Manure

✓Transport services

Crop residues

- Make >50% of biomass of crops
- Have become increasingly important sources of animal feed
- Contribute about 50% of feed supply
- Low nutritive value and wide variability
- Grain legume residues have better quality than cereal straws and stovers
- Any improvement of crop residue yield and quality would contribute to improvement in livestock production

- To evaluate effects of P fertilizer and Rhizobium inoculation on dry matter yield and nutritive value of grain legume haulms.
- To assess farmers' legume haulm utilization practices and their perception on the role of Rhizobium inoculation and P fertilizer in improving quantity and quality of haulm produced.

Study sites: N2Africa project sites

Household survey

- 90 farmers engaged in N2Africa project in three districts (Ada'a, Sinana and Damot-Gale) were selected and interviewed using semi-structure questionnaire.
- The information collected included households' legume haulm use practices and their perception on the effects of the inputs on haulm biomass yield and quality.

Data collection and analysis

Experimental study

- Four grain legumes (Faba bean, chickpea, haricot bean and soybean) were established under soybean) were established under soybean is four fertilizer treatments (Figure 1) on selected farmers' plots.
- Yield data (grain and haulm) was collected.
- Grain and haulm samples were collected and analyzed.

Experimental layout

Variables	Measures	HH responses (%)
Uses of haulms	Feed source	76.7
	Bio-fuel	11.4
	Mulching/bio- fertilizer	8.8
	Income source	3.1
Trends of haulm use as feed	Increasing	90.0
	No change	5.6
	Don't know	4.4

Putting nitrogen fixation to work for smallholder farmers in Africa

Results: Household perception on impacts of inoculation and P application on haulm traits

Variables	Measures	Haulm Yield (%)	Haulm quality (%)
	Yes	62.2	32.2
Do you think inoculants and P fertilizer application affect?	No	13.3	21.1
	Don't know	24.5	46.7
	Total	100	100
What impact is expected?	Improved	100	62.1
	Decreased	-	37.9
	Total	100	100

Chickpea Haricot bean 2.13 1.98 1.98

Grain yield responses of the legumes to rhizobium inoculation and/or P fertilizer

Result

3.00

Faba bean

2.84

2.55

2.65

2.87

Soybean

2.46

2.56

Haulm yield responses of faba bean, chickpea, haricot bean and soybean to rhizobium inoculation and/or P fertilizer

and view of the second se

Parameters	Treatment			
	+P+I	-P+I	+P-I	-P-I
CP (%DM)	6.52 ^a	6.45 ^a	6.38 ^a	5.25 ^b
NDF (%DM)	64.9 ^b	64.9 ^b	64.8 ^b	70.5 ^a
IVOMD (%DM)	47.0 ^a	46.4 ^a	46.7 ^a	43.0 ^b
ME (MJ/Kg DM)	6.85 ^a	6.77 ^a	6.81 ^a	6.29 ^b

Results: Nutritional value of chickpea haulm

Results: Nutritional values of haricot bean haulm

Treatments

	ricultion is				
Parameters	+P+I	-P+I	+P-I	-P-I	
CP (%DM)	7.50 ^a	6.85 ^{ab}	6.72 ^b	5.94 ^c	
NDF (%DM)	67.8 ^b	69.0 ^{ab}	69.9 ^a	69.8 ^a	
IVOMD (%DM)	57.8 ^a	56.8 ^{ab}	55.8 ^b	55.7 ^b	
ME (MJ/Kg)	8.72 ^a	8.65 ^{ab}	8.58 ^b	8.58 ^b	

Results: Nutritional value of soybean haulm

Parameters	Treatments				
_	+P+I	-P+I	+P-I	-P-I	
CP (%DM)	6.74 ^a	6.08 ^a	5.30 ^b	4.67 ^b	
NDF (%DM)	74.1 ^b	75.3 ^{ab}	75.5 ^a	76.4 ^a	
IVOMD (% DM)	50.6 ^a	50.2 ^{ab}	49.4 ^b	49.6 ^b	
ME (MJ/Kg DM)	8.82	8.79	8.76	8.74	

Results: Grain quality of chickpea, haricot bean and soybean

Crop spp.	Parameters	+P+l	-P+I	+P-I	-P-I	SL
Chickpea	CP (%DM)	20.2	19.7	19.8	19.8	ns
	ME (MJ/Kg DM)	10.49	10.46	10.5	10.49	ns
	IVOMD (% DM)	72.1	71.8	72.0	72.0	ns
Haricot bean	CP (%DM)	27.5 ^{ab}	26.8 ^b	27.8 ^a	27.0 ^b	*
	ME (MJ/Kg DM)	11.92 ^b	11.87 ^b	11.98 ^a	11.89 ^b	**
	TIVOMD (% DM)	82.6 ^{ab}	82.3 ^b	83.2 ^a	82.4 ^b	**
Soybean	CP (%DM)	42.97 ^a	43.17 ^a	40.73 ^b	39.32 ^b	***
	ME (MJ/Kg DM)	10.14 ^a	10.15 ^ª	9.73 ^b	9.50 ^b	***
	TIVOMD (% DM)	78.12 ^a	78.32 ^a	75.13 ^b	73.40 ^b	***

- The study showed that grain legume haulm is dominantly used as livestock feed with increasing trend
- Inoculation and P fertilization significantly improved grain yield in all crops and haulm yield of all crops except chickpea
- The soil fertility treatments improved the protein and energy contents while reducing the fiber content of the haulm => improved digestibility (IVOMD)
- Can enhance whole plant value and use of grain legumes in smallholder mixed crop-livestock production system.

N2Africa project - ILRI

Acknowledgements

- Partners at each project site
- Participating farmers