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ABSTRACT
Ecosystem service-support tools are commonly used to guide natural resource management.
Often, empirically based models are preferred due to low data requirements, simplicity and
clarity. Yet, uncertainty produced by local context or parameter estimation remains poorly
quantified and documented. We assessed model uncertainty of the Revised Universal Soil
Loss Equation – RUSLE developed mainly from US data. RUSLE is the most commonly applied
model to assess watershed-level soil loss. We performed a global sensitivity analysis (GSA) on
RUSLE with four dissimilar datasets to understand uncertainty and to provide recommenda-
tions for data collection and model parameterization. The datasets cover varying spatial levels
(plot, watershed and continental) and environmental conditions (temperate and tropical). We
found cover management and topography create the most uncertainty regardless of envir-
onmental conditions or data parameterization techniques. The importance of other RUSLE
factors varies across contexts. We argue that model uncertainty could be reduced through
better parameterization of cover management and topography factors while avoiding severe
soil losses by targeting soil conservation practices in areas where both factors interact and
enhance soil loss. We recommend incorporating GSA to assess empirical models’ uncertainty,
to guide model parameterization and to target soil conservation efforts.
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Introduction

Ecosystem service-support tools simulate biophysical
processes (e.g. soil loss, hydrology, pest control, polli-
nation) to quantify relationships between management
decisions, ecosystem processes and ecosystem services.
Increasingly, researchers use decision-focused ecosys-
tem service-support tools (e.g. Co$ting Nature,
InVEST, ARIES) to simplify data collection and ana-
lysis, and to simultaneously quantify trade-offs among
ecosystem services (Bagstad et al. 2013).
Understanding the accuracy of models simulating bio-
physical processes should play a key role in tool devel-
opment and decision-making, yet for most tools,
model uncertainty produced by local context or para-
meter estimation, remains poorly quantified and
documented.

Knowledge of the uncertainty produced from
parameter estimation is important to improve
model parameterization procedures during indivi-
dual ecosystem service quantification (Falk et al.
2009). This is particularly true for empirically for-
mulated models of biophysical processes, for exam-
ple, the Revised Universal Soil Loss Equation
(RUSLE). Because it is simple, robust (Gao et al.
2002; Lu et al. 2004; Bewket & Teferi 2009) and

inclusive of universally recognized factors affecting
erosion by water (Wischmeier & Smith 1978;
Panagos, Borrelli, Poesen et al. 2015), RUSLE is
the most commonly used model to estimate average
long-term soil loss in agricultural lands (Yu et al.
2001; Naipal et al. 2015; Panagos, Borrelli, Poesen
et al. 2015). Empirical models, such as RUSLE,
typically evaluate long-term trends rather than spe-
cific small spatial-level estimations (Yang et al.
2003; Lu et al. 2004; Wang et al. 2007; Nelson
et al. 2009; Schuler & Sattler 2010; Galdino et al.
2015). RUSLE is a deterministic and empirical-
based model built with parameter estimates from
mostly the US-based erosion studies, which might
not be appropriate if applied outside the range of
original estimates or using non-plot-level data (e.g.
remotely sensed data) (Wischmeier & Smith 1978;
Renard et al. 1997; Nearing et al. 2000).

Despite these limitations, practitioners and
researchers increasingly apply RUSLE at larger spatial
scales and under different environmental conditions
than its original intent (e.g. Biesemans et al. 2000; Lu
et al. 2004; Bewket & Teferi 2009; Falk et al. 2009;
Ligonja & Shrestha 2013; Galdino et al. 2015; Naipal
et al. 2015; Panagos, Borrelli, Poesen et al. 2015) and
it has been incorporated into ecosystem services

CONTACT Natalia Estrada-Carmona n.e.carmona@cgiar.org
The supplemental data for this article can be accessed here.

INTERNATIONAL JOURNAL OF BIODIVERSITY SCIENCE, ECOSYSTEM SERVICES & MANAGEMENT, 2017
VOL. 13, NO. 1, 40–50
http://dx.doi.org/10.1080/21513732.2016.1237383

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4329-5470
http://orcid.org/0000-0002-3631-8745
http://here
http://www.tandfonline.com


decision-support tools, such as InVEST (Sharp et al.
2012). Some skepticism exists in the scientific com-
munity on applying empirical models over physically
based models because they lack a representation of
processes which might lead to erroneous results;
however, in many developing countries, easy-to-use
models are often the only science-based option.

Studies on model accuracy are typically required to
assess uncertainty in our scientific understanding of
how decision-making might influence ecosystem ser-
vice provisioning. Model accuracy assessments are
particularly challenging in data-poor regions and
developing countries. However, a sensitivity analysis
can efficiently provide data to reduce uncertainty in
model predictions and decision-making (Harper et al.
2011). Sensitivity analyses assess both the parameters’
influence on prediction uncertainty and the influence
of parameter estimation (input data) on uncertainty
(Saltelli et al. 1999; Harper et al. 2011).

Local sensitivity analysis (LSA) is a common sta-
tistical method used to assess model behavior and the
effect of each factor on model predictions (e.g.
Renard & Ferreira 1993; Risse et al. 1993; Ferreira
et al. 1995). LSA estimates the contribution of each
model factor (or parameter, hereafter just mention
factor) to model predictions by varying each model
factor singly while holding other factors constant
(Saltelli et al. 1999). LSA is a constructive analysis,
but it does not capture interactions among factors
and interaction effects on model predictions
(Wagner 1995; Harper et al. 2011). Global sensitivity
analysis (GSA) is considered a more robust approach
because it considers higher order interactions among
factors to assess model behavior and to estimate
factor importance (Harper et al. 2011). GSA simulta-
neously varies all factors to account for all factor
uncertainty and evaluate the combined impact of
each factor on model predictions (Wagner 1995).

Sensitivity analysis assessments of RUSLE factors
at the plot level have found that the cover-manage-
ment factor (C factor) is the most important in
determining soil loss under different agricultural sys-
tems, with the second most important factor being
topography (Risse et al. 1993; Benkobi et al. 1994;
Ferreira et al. 1995). At the watershed level, discre-
pancies exist regarding which factor has more effect
on model predictions, with some studies highlighting
the topography factor (Biesemans et al. 2000; Galdino
et al. 2015), slope steepness (Falk et al. 2009), rainfall-
runoff erosivity (Zhang et al. 2013) and both slope
steepness and rainfall-runoff erosivity (Doetterl et al.
2012). In all cases, local sensitivity analyses were
applied.

Here, we focused on the influence of factor estima-
tion on prediction uncertainty rather than model
accuracy. We recognize that model formulations will
continue to be redesigned and improved, but the

importance of our work is to better understand
model sensitivity to factor and parameter estimation
for the application of particular biophysical models in
ecosystem service models, such as RUSLE. We con-
ducted a GSA of RUSLE using four distinct datasets
that cover different spatial levels and environmental
conditions, and using different parameterization
methods. The results of this study provide a descrip-
tion of model sensitivity within and among factor
estimates across different environmental conditions
and can be used to focus parameterization efforts
for future applications. The results are particularly
important in data-poor areas where parameterization
of physically based models is near impossible and
where empirically based models are the most acces-
sible tool to improve efforts to curb soil loss (e.g.
applications of the InVEST model).

Materials and methods

Dataset description

To understandmodel uncertainty, we conducted a GSA
on three datasets that cover different spatial levels (plot–
watershed–continental), used different methods
(ground-collected data versus geographical information
system (GIS) proxies) and covered different environ-
mental conditions (climatic, topographic, vegetation
and location). Particularly, the purpose of Costa Rica
(CR) and European Union (EU) datasets was to under-
stand how factor parameterization methods and factor
range (i.e. GIS proxies) influenced uncertainty. To
explore uncertainty in the largest possible parameter
space, we created a fourth synthetic dataset with the
widest possible RUSLE range of factor and parameter
estimates. We compared ranks of factor importance in
predicting soil loss and identified specific factor inter-
actions predicting greater and lower soil losses.

United States dataset
The US dataset is plot-level data of the original cali-
bration dataset (Risse et al. 1993). It includes 1,704
plot years of data from natural runoff in 198 plots at
21 sites with annual measurements of soil loss and
estimates of each RUSLE factor (C, R, LS, P, K), (see
also Rapp (1994) and Tiwari et al. (2000)). The US
dataset was primarily collected and measured prior to
1960, and therefore it does not represent modern
agricultural practices or instrumentation to measure
each factor (Risse et al. 1993). Tiwari et al. (2000)
estimated a Nash and Sutcliffe model efficiency of
R2 = 0.72. The Nash and Sutcliffe Efficiency is a
standard statistic for quantifying prediction accuracy,
particularly of soil loss.

The range of estimates for L and S factors in the
US dataset was relatively narrow because data were
obtained from agricultural plots where 80% of the
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data had a slope length (L factor) less than 25 m and
where 70% of the plots had a slope steepness (S
factor) less than 10°. The cover management factor
(C factor) included the average crop life cycle values
for 21 crops, mostly annual crops with large mean C
values (more erosive). This dataset covers a wide
range of rainfall-runoff erosivity factor (R factor)
and soil erodibility (K factor) (Figure 1).

To perform the GSA, we averaged annual measure-
ments of both soil loss and RUSLE factor estimates per
plot. We used mean values since RUSLE is better at
predicting long-term average values than annual values
or isolated events (Wischmeier & Smith 1978; Renard
et al. 1997).

Costa Rica dataset
We estimated RUSLE factors for a set of two CR
watersheds using a common approach to apply
RUSLE at a watershed level (Yang et al. 2003;
Hoyos 2005). We performed the analysis on data
from the Pacuare (64,919 ha) and Reventazón
(175,915 ha) watersheds located on the Caribbean
slopes of CR’s central mountain range. We estimated
L and S factors from a digital elevation model with
10-m resolution and with the ArcInfoTM Arc Macro
Language program developed by Van Remortel et al.
(2004). We collected C values for local crops from
previous regional studies (Gómez Delgado 2002;
Marchamalo & Romero 2007), whereas the land

Figure 1. Factor distribution and estimates for the EU (seven countries), the US, CR and T (theoretical) datasets (Box-plot). Mean
values are represented by the red diamonds. Factors with statistically similar (significant level p-value ≥0.05) mean and
distributions are indicated with an asterisk (*). Soil loss left figure indicate the maximum estimated values and soil loss right
figure is the same but limited to a maximum estimated soil loss of 60 t ha−1.
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uses were defined by a 1996 LandSat image classifica-
tion (Pedroni 2003). We obtained K values from
national-level Food and Agriculture Organization
(FAO) surveys and a 1:200,000 resolution soil-type
classification (FAO 1989). We estimated the R factor
using the total storm energy (E) at a maximum
30 min intensity (I30) for each erosive storm (i.e.
storms with total accumulated rainfall greater than
13 mm and separated by at least 6 h) for 148 station
years of measurements from 54 meteorological sta-
tions managed by the CR Institute of Electricity –
(ICE; Gómez Delgado 2002). We used 1.0 as our P
factor value due to the lack of detailed information
about support practices in the watersheds. We
sampled each layer by generating randomly distribu-
ted points at a minimum distance of 60 m with
ArcGIS 10.4 (ESRI 2016). We conducted the GSA
on the sample (~4.5% of the total pixels) to overcome
computational limitations.

European dataset
This dataset includes the peer-reviewed modeling of
five RUSLE factors at high resolution (100 m) for 28
countries and 90.3% of the area prone to soil erosion
in Europe (Panagos, Borrelli, Poesen et al. 2015).
Topography factor (LS) accounts for a precise estima-
tion of flow accumulation through the System for
Automated Geoscientific analysis (SAGA), original
LS equations (Desmet & Govers 1996) and a digital
elevation model with 25-m resolution. C factor novel
calculation includes data from remote sensing infor-
mation (land cover and surface cover) and statistical
data on agriculture and practices such as reduced/no
tillage, cover crops and plant residues (Panagos,
Borrelli, Meusburger, Alewell, et al. 2015). K factor
values were calculated from 19,969 soil samples sur-
veyed across 25 EU countries, the Wischmeier and
Smith (1978) nomograph and then interpolated using
a cubist regression model with remote sensing data
(MODIS and SRTM) as covariates (Panagos et al.
2014). R factor was calculated as the total storm
energy (E) at a maximum 30-min intensity (I30) for
each erosive storm (i.e. storms with total accumulated
rainfall greater than 6.35 mm or 12.7 mm in a period
of 15 min or 30 min, respectively) for 1,541 precipita-
tion stations across Europe (Panagos, Ballabio, et al.
2015). P factor includes practices such as stone walls,
grass margins and contour farming obtained from
226,653 observation points across 27 EU member
states (Panagos, Borrelli, Meusburger, van der
Zanden, et al. 2015). We conducted the GSA on a
subset of European countries covering less erosive
(Latvia, the Netherlands and Estonia which altogether
contribute 0.37% of the total soil loss in the EU) and
more erosive areas (Italy, Slovenia, Austria and Malta
which contribute 31.28% of the total soil loss in the
EU). As with the CR dataset, we conducted the GSA

using a randomly selected sample of 4.5% of the total
pixels per country (minimum distance between ran-
dom samples 200 m).

Theoretical dataset
To create the theoretical dataset, we used the reported
maximum andminimum values for each parameter and
estimated each RUSLE factor according to Agriculture
Handbooks 537 and 703 equations (Wischmeier &
Smith 1978; Renard et al. 1997 respectively;
Table A.1). The purpose of the theoretical dataset was
to evaluate model behavior given the largest possible
range of factor and parameter estimates. The ranges of
the parameters in this dataset are based on maximum
and minimum values corresponding to a physical pro-
cess or plot measurements (Table A.1). This is the only
dataset that provided us with information at the para-
meter level (C factor estimated with parameters such as
percentage of land area covered by surface cover (Sp),
canopy height (H), among others) (Tables 1 and A.1).
We used parameter-level estimates to evaluate factor-
level importance (Table A.1).

We created 30,000 Monte Carlo simulations of ran-
domly chosen parameter estimates in MatLab (Sobol’
2001). Each parameter set was created by randomly
drawing from a uniform distribution within the docu-
mented parameter ranges, and each factor value was
estimated using the reported equations (Renard et al.
1997, Table A.1). Random interactions between para-
meters were constrained (when required) to represent
real interactions; for example, to estimate the K factor,
the percentage of sand, silt and clay must add up to
100%.We used the simulations at each factor (6 factors)
and at parameter level (18 independent parameters,
Tables 1 and A.1) in the GSA. This randomization
process breaks potential correlations between para-
meters and factors, allowing exploration of a parameter
space that is larger than what might be expected to
occur naturally (Harper et al. 2011).

We conducted two statistical analyses. First, we
tested if there were significant differences in factor
distribution and factor mean values across datasets.
Second, we performed a GSA on the US, EU, CR and
theoretical datasets to assess factor importance and
factor interactions determining soil loss.

Factor comparisons among datasets
We assessed significant differences among datasets
and sampled data (EU and CR dataset), and among
mean factor values across datasets using the Kruskal–
Wallis test since factors do not follow a normal dis-
tribution. We then performed Conover post hoc pair-
wise comparisons to determine which factor
differences were statistically significant (PMCMR
package, Pohlert 2014). All analyses were performed
in the R statistics software (R Core Team 2016).
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Global sensitivity analyses

We applied the GSA approach designed by Harper et al.
(2011). This GSA approach uses Random Forest (RF) to
rank factor and parameter importance and classifica-
tion and regression tree (CART) to analyze and visua-
lize the complex relationships among model factors. RF
is an improved version of CART, since it is a forest (a
collection of trees) where each tree is created by boot-
strap sampling and where the factor and parameter at
each node of the tree is randomly selected (Cutler et al.
2007). For every tree, 30% of the data (called the out-of-
bag – OOB data) are randomly sampled and used to
estimate model efficiency by cross validating results
with the other 70% of the data (Cutler et al. 2007).
Model efficiency is estimated as one minus the ratio
between the mean squared error (MSE) and response
variable variance (Pang et al. 2006). We used the R
package randomForest 4.6–2 to estimate model effi-
ciency (Breiman & Cutler 2011).

The contribution of each factor to model predic-
tions (or importance) was assessed by the node
impurity metric, which measures changes in the resi-
dual sum of squared errors by splitting the factor at
each node of the tree (Breiman & Cutler 2011). Node
impurity values for each factor were normalized by
the sum of the total node impurity and reflect the
relative importance of each factor estimate using
randomForest 4.6–2 R package (Breiman & Cutler
2011). To visualize the higher order interactions
between factors, we applied a CART analysis to
each dataset. With CART, we were able to identify
the specific factor combinations that generated lower
and greater estimates of soil loss (R package rpart
4.1–9; Therneau & Atkinson 2011), indicating which
factors create the most uncertainty in model
predictions.

Results

GSAs across all the datasets showed that the RUSLE
predictions are most sensitive (i.e. produce the most
uncertain predictions) to the cover management fac-
tor (C factor) and topography factor (LS) regardless
of factor and parameter estimates (Figures 1 and 2).
When C factor distributions are narrow (e.g. in
Malta), the LS factor became the most important
factor (Figure 2). The relative importance of the C
factor was at least 1.4 times higher than LS factor in
each dataset except in Malta (Figure 2). At the para-
meter level, root mass density (Bur) and percent sur-
face cover (Sp) were the most important parameters
from the C factor driving uncertainty in model pre-
dictions in the theoretical dataset (Table 1, Figure 3).
This result was consistent despite significant differ-
ences among factor estimates across datasets (p-value
<0.05) except for C factor in Slovenia and LatviaTa
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(p-value = 0.13), LS factor in Malta and the US data
(p-value = 0.18) and P factor in Latvia and Estonia
data (p-value = 0.20) (Figure 1).

Factor distribution and variability may cause dif-
ferences in the less sensitive factors (Figures 1 and 2).
After the C and LS factors, soil erodibility (K factor)
was ranked as the third most sensitive factor in both,

low (e.g. Estonia, Latvia and the Netherlands) and
highly erosive countries (e.g. Austria, Italy)
(Figure 2), while R factor was the third most sensitive
in only highly erosive countries and datasets
(Figure 2). LS factor was the second most sensitive
factor in the CR dataset despite the greater rainfall-
runoff erosivity (R factor) estimates (Figure 2).

Figure 2. RUSLE factor importance for EU (seven countries), the US, CR and theoretical dataset. Sample size (n) and sample
distribution are indicated with dark gray points. Country size is indicated with the 200 km gray scale (except for Malta, outlined
scale = 10 km). Relative importance is the normalized factor node impurity metric obtained from the Random Forest statistical
procedure and indicates the relative importance of each factor in influencing model predictions.
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Higher order factor interactions, illustrated by the
CART analysis, confirm that the interaction between C
and LS factors is the most important in determining
greater magnitudes of soil loss across datasets
(Figure 4). In the EU dataset, severe soil loss (>10 t ha-
−1 year−1) occurredmostly in the erosive countries and in
areas with different C and LS thresholds. For example, in
Italy and Malta, croplands with C values above 0.08
located on areas with LS values of 1.2 or 1.6, respectively,
produced erosions above 10.8 t ha−1 year−1 (Figure 4).
Severe erosions in Austria and Slovenia occurred in crops
with C values above 0.01 located in roughed (LS > 4.39)
and level areas (LS > 0.91), respectively (Figure 4). In the
assessed-less erosive countries (Estonia, Latvia, the
Netherlands) the interactions between C and LS led to
very low soil losses (<2.1 t ha−1 year−1). Very low soil
losses in the most erosive countries mostly occurred on
areas with C values <0.01 (Figure 4). In CR and the US
datasets, non-severe erosion (2–10 t ha−1 year−1) mostly
occurred in croplands with C values <0.07 and <0.30
located on areas with LS values of <9.78 and <1.28,
respectively (Figure 4). Finally, themost important factor
interaction (C and LS factors) threshold was similar
C ~ 0.08–0.07 for the theoretical (within original equa-
tion factor estimates) and CR datasets (outside original
equation factor estimates) despite the differences in fac-
tor estimates and parameterization (Figures 1 and 3).

Severe soil losses account for >65% of the total esti-
mated soil loss in Austria, Italy, Malta and Slovenia
data; however, only 17–23% of the area in those regions
experience severe soil loss (>10 t ha−1 year−1) (Figure 4).
On the contrary, 53%, 60% and 74% of the data in the
CR, US and theoretical datasets produced severe soil
loss (Figure 4).

Discussion

RUSLE sensitivity across datasets

Our results show that cover management (C factor)
and topography (LS factor) are the most important
factors driving predicted soil loss in RUSLE regard-
less of parameter estimation technique or range of
estimates. Likewise, the C factor produced the great-
est degree of variation in model predictions. This
agrees with the early sensitivity analyses for the
RUSLE when applied at plot level (Risse et al. 1993;
Benkobi et al. 1994; Ferreira et al. 1995) but disagrees
with previous sensitivity assessments at the watershed
level (Biesemans et al. 2000; Falk et al. 2009; Zhang
et al. 2013; Galdino et al. 2015). The data from Malta
were an exception, where LS is the most important
due to the low C factor variability. Consistent impor-
tance of C and LS factors across datasets indicates
that RUSLE model prediction sensitivity is produced
from the original formulation of soil loss process
equations, with less uncertainty originating from fac-
tor and parameter estimates. RUSLE applications
should pay close attention to C and LS factor para-
meterization regardless of method used or data
source spatial level. More generally stated, the great-
est model prediction uncertainty is produced from
RUSLE C and LS factors formalization. Therefore,
focusing on C and LS factors estimation over other
factors may greatly reduce model prediction
uncertainty.

Topography (LS factor) is affected by digital eleva-
tion model spatial resolution (Gertner et al. 2002;
Yang et al. 2003; Van Remortel et al. 2004), its quality
(Lewis et al. 2005) and by the equations used to
calculate the factors, particularly the L factor (Van
Remortel et al. 2004; Kinnell 2007). However, LS
importance was similar between CR and EU datasets
despite the differences in dataset parameterization
(Panagos, Borrelli, Meusburger, et al. 2015).

We expected the R factor to be more important,
particularly in CR, due to significantly larger R values
and previous sensitivity analysis in a subtropical zone
(Zhang et al. 2013), yet this was not the case.
Nevertheless, the R factor was ranked as third most
important in countries and datasets with significantly
larger rainfall erosivity and average soil loss values
such as CR, Slovenia, the US and the theoretical
dataset. The P factor was often ranked as least impor-
tant despite the novel efforts to quantify it for the EU
(Panagos, Borrelli, Meusburger, van der Zanden, et al.
2015). The P factor was only ranked as third most
important in Malta due to the average value of 0.5
and the large density of stone walls (Panagos, Borrelli,
Meusburger, van der Zanden, et al. 2015).

Our consistent results obtained in the GSA were
due to the capacity of the method to capture a

Figure 3. Parameter (factor) importance for the theoretical
dataset. See Table 1 for parameter description.
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broader range of model sensitivities and interactions
among model factors and parameters (Wagner 1995),
both of which are important in understanding and
parameterizing complex models (Harper et al. 2011).
LS and C factors interactions indicate ~21% of the
area (sampled pixels, plots or simulations) is fre-
quently the source of severe soil losses (>10 t ha−1 yr−1)
particularly in the erosive countries in EU, indicating
that most soil loss occurs in limited landscape areas.
These results are consistent with soil loss assessment
in Eastern Himalaya (Mandal & Sharda 2013). In
contrast, we found that in CR, the US and in the
theoretical data, around 62% of the area produced
severe soil loss (> 10 t ha−1 year−1) which is also
consistent with soil loss assessment in Tanzania
(Ligonja & Shrestha 2013).

These findings have important implications for
ecosystem service management of all RUSLE factors,
C is the most easily managed factor (Panagos,
Borrelli, Meusburger, Alewell, et al. 2015).
Ecosystem service-based interventions (Fremier
et al. 2013; Mandal & Sharda 2013) and landscape

planning (de Groot et al. 2010) can facilitate and
guide targeted soil conservation efforts to greatly
reduce extremely high soil loss rates (Cerda et al.
2009; Galdino et al. 2015).

While novel and promising methods are tested to
improve factor parameterization and model accuracy,
practitioners can target efforts to reduce soil loss
through ecosystem services-based interventions (i.e.
plant cover). Vegetation influences soil loss through
complex processes (Schwilch et al. 2012). For exam-
ple, incorporating cover crops, grass filters, hedge-
rows, intercropping or agroforestry systems provide
a wide range of ecosystem services (Schipanski et al.
2014; Thorn et al. 2015; Garbach et al. 2016). In
particular, increased root density and surface cover
reduce and control soil loss (Linse et al. 2001; Gyssels
et al. 2005; De Baets et al. 2006, 2011; García-Orenes
et al. 2012). Our theoretical dataset indicated similar
results in which, the density of live and dead roots
found in soil surface and the percentage of surface
cover are the most important C factor parameters for
determining soil loss.

Figure 4. RUSLE factor interactions for EU (seven countries), the US, CR and theoretical datasets obtained from the CART
analysis. Each dataset is represented as a tree, the left side of the tree represents factors combinations and the right side
represent the end of the tree with the averaged soil loss, the percentage of data that follow each specific factor combination (or
tree branch) and the percentage of the total estimated soil loss. Factor interactions importance is from left to right, and the
value next to each factor is the factor threshold value at which the data are split and combined with the next factor.
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Incorporating sensitivity analysis into decision-
support tools to assess ecosystem services

Our discussion is not intended to support or refute
the application of RUSLE or other empirical models.
We understand RUSLE’s wide use and acceptance
(Eslinger et al. 2005; Panagos, Borrelli, Poesen et al.
2015) is due to its relative ease of calibration and lack
of data requirements compared with more physically
based models (Bewket & Teferi 2009). However, there
is a pressing need to guide science-based policy
(Daily et al. 2009; Adhikari & Nadella 2011). A
range of tools is needed to help untangle relationships
between management decisions, ecosystem processes
and ecosystem services, particularly at the scale at
which ecosystem services are produced and con-
sumed (Bagstad et al. 2013; Fremier et al. 2013).

We find that there is still poor adoption of sensitiv-
ity analysis in ecosystem service assessments, despite its
importance (Renard & Ferreira 1993; Ferreira et al.
1995) as a basic modeling exercise to support real-
world decision-making (Ruckelshaus et al. 2013). We
have demonstrated the applicability of GSA to assess
model uncertainty to improve science-based decision-
making. Our goal is to push the adoption of GSA as a
companion tool with empirical models for decision-
support of ecosystem services science (see Renard &
Ferreira 1993; Ferreira et al. 1995).

Conclusions

Empirical models play a key role as support tools
for ecosystem services assessment and decision-
making. The applicability of empirical-based mod-
els outside the original factor and parameter esti-
mates is a legitimate concern; however, we argue
this is better than a total lack of science. Here, we
demonstrate the applicability and importance of
conducting GSA to assess model uncertainty,
which can be a companion analysis for model accu-
racy. We used a widely used empirical model to
assess soil loss, which incorporates universally
recognized factors affecting erosion by water. We
compared model prediction uncertainty across spa-
tial-level, environmental conditions, and parameter-
ization method to show that cover management
and topography factors are the most important
factors in RUSLE.

GSA is more robust than LSA since it captures
interactions among factors and is less impacted by
data variability. We propose the use of GSA, parti-
cularly with empirical models, to better understand
model sensitivity to parameter estimation (see
Harper et al. 2011). GSA can help guide model
parameterization efforts on the factors that contri-
bute the greatest uncertainty in model predictions.

Similarly, GSA provides rich information for practi-
tioners to target efforts. Coupling sensitivity with
accuracy analysis will make the application of
empirical models more transparent and effective.
This is critical since empirical models will keep
playing a key role in decision-making, both in
data-poor and data-rich regions of the world; we
believe this is a better approach than the alternative
of making decisions in the absence of model
insights.
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