

RESEARCH PROGRAM ON

Livestock and Fish

More meat, milk and fish by and for the poor

Review of life-cycle assessments of livestock production: perspectives for application to environmental impact assessment in developing countries

Simon Fraval¹, Mats Lannerstad¹, Ylva Ran², An Notenbaert³, Simon Mugatha¹ and Mario Herrero⁴

¹ International Livestock Research Institute
 ² Stockholm Environment Institute
 ³ International Center for Tropical Agriculture
 ⁴ Commonwealth Scientific and Industrial Research Organisation

www.livestockfish.cgiar.org

December 2015

CGIAR is a global partnership that unites organizations engaged in research for a food-secure future. The CGIAR Research Program on Livestock and Fish aims to increase the productivity of small-scale livestock and fish systems in sustainable ways, making meat, milk and fish more available and affordable across the developing world. The Program brings together five partners: the International Livestock Research Institute (ILRI) with a mandate on livestock; WorldFish with a mandate on aquaculture; the International Center for Tropical Agriculture (CIAT), which works on forages; the International Center for Research in the Dry Areas (ICARDA), which works on small ruminants; and the Swedish University of Agricultural Sciences (SLU) which provides expertise particularly in animal health and genetics. http://livestockfish.cgiar.org

The Program thanks all donors and organizations who globally supported its work through their contributions to the <u>CGIAR system</u>

© 2015

O

This publication is licensed for use under the Creative Commons Attribution 4.0 International Licence. To view this licence, visit <u>https://creativecommons.org/licenses/by/4.0</u>.

Unless otherwise noted, you are free to share (copy and redistribute the material in any medium or format), adapt (remix, transform, and build upon the material) for any purpose, even commercially, under the following conditions:

• ATTRIBUTION. The work must be attributed, but not in any way that suggests endorsement by the publisher or the author(s).

Citation: Fraval, R., Lannerstad, M., Ran, Y., Notenbaert, A., Mugatha, S. and Herrero, M. 2015. Review of life-cycle assessments of livestock production: perspectives for application to environmental impact assessment in developing countries. Nairobi: ILRI.

Box 30709, Nairobi 00100, Kenya Phone: +254 20 422 3000 Fax: +254 20 422 3001 Email: ILRI-Kenya@cgiar.org ilri.org better lives through livestock ILRI is a member of the CGIAR Consortium

> Box 5689, Addis Ababa, Ethiopia Phone: +251 11 617 2000 Fax: +251 11 617 2001 Email: ILRI-Ethiopia@cgiar.org

Contents

Abstract	1
Acknowledgements	1
Introduction	2
Materials and methods	3
System boundaries, inventory, impact assessment and sensitivity	5
LCA element 1: Goal and scope	5
System boundaries	6
Functional unit	6
LCA element 2: Life cycle inventory	7
LCA element 3: Life cycle impact assessment	7
Current and emerging impact categories	7
Social and economic impact categories	9
Allocation and system expansion	9
LCA element 4: Sensitivity / uncertainty analysis	10
Source of impact, LCA comparison, mitigation and trade-offs	11
Through chain – source of impact	11
Comparison between systems and products	13
Mitigation	13
Trade-offs between impact categories	13
Lessons for a developing country setting	14
References	15
Annex 1: Components considered in sensitivity analyses	19
Annex 2: Summary of livestock LCAs assessed	21
Annex 3: Supplementary references	32

Abstract

This review draws on Life-Cycle Assessments (LCA) of livestock value chains. The current state of livestock LCAs is summarized, with an emphasis on limitations and lessons for a developing country context. Of the 149 LCAs reviewed, 19 incorporated developing countries. Key messages are: LCAs can be conducted for livestock value chains in developing countries; and, lessons can be learnt to improve the rigor of alternative methodologies including modeling, indicator specification, allocation of impact and incorporating sensitivity analysis. Further, results from existing LCAs provide a point of reference for future LCAs and sustainability assessments in developing countries.

Acknowledgements

Development and testing of the CLEANED framework was led by the International Livestock Research Institute, with Stockholm Environment Institute, International Center for Tropical Agriculture and the Commonwealth Scientific and Industrial Research Organisation. It was mainly funded by the Bill & Melinda Gates Foundation under the project "Comprehensive Livestock Environmental Assessment for Improved Nutrition, a Secured Environment and Sustainable Development along Livestock Value Chains - Pilot study on Smallholder Dairy Value Chains in East Africa". <u>https://www.ilri.org/cleaned</u>

Introduction

There is a sustained need for effective environmental assessment methodologies and frameworks for livestock production. This is particularly the case in a development context, where progress can be rapid and environmental safeguards weak.

Life-Cycle Assessment (LCA) provides a rigorous framework to assess a product or system against a range of environmental impact categories from the 'cradle to the grave'. LCA has been increasingly applied to agricultural products, including those from livestock. A limited number of published LCAs have assessed livestock in developing countries.

Defined by ISO 14040 and 14044, LCA sets out a clear method for analysis, including goal and scope definition, Life-Cycle Inventory (LCI), Life-Cycle Impact Assessment (LCIA) and sensitivity/uncertainty analysis (ISO 2009).

As a data intensive and complex methodology, LCA may not be suited to some developing country contexts. In these cases, the method employed can be enhanced from an understanding of existing livestock LCAs.

This review seeks to: summarize the current state (level of activity, range of impact categories, geographical spread) of LCA application to livestock production and products; summarize the current state of LCA application for livestock in developing countries; identify limitations for LCA application in a development context; identify lessons learnt by LCA practitioners applicable to researchers assessing the sustainability of livestock production in a developing country context.

Materials and methods

Literature has been collected from journals and institutions using search terms that relate to the LCA methodology, the livestock sector, sub-sectors, products, co-products and waste streams. Further, literature has been sought to support a critique of various LCA elements.

In total 201 livestock related LCAs were identified. The full text of 149 of these could be accessed through Scopus, ScienceDirect and other online sources. For all articles the sub-sector of focus was noted; further analysis was undertaken drawing on full text publications.

This review summarizes published works by each core element of an LCA. Elements are defined as: goal and scope, LCI, LCIA, sensitivity analysis and results from LCAs. Drawing from the results of LCAs, the review discusses the dominant sources of impact, comparing LCAs, mitigation and trade-offs.

Study	Country	Industry/Pro duct(s)	Functional unit	Value Chain length	Impact categories	Sen sitiv ity
Bennett et al. 2006	Argentina	Poultry	1kg LW	Cradle to plant door	GWP; ODP; HTP; FWAETP	No
de Léis et al. 2014	Brazil	Dairy	1kg ECM	Cradle to farm gate	GWP	Yes
(Ruviaro et al. 2014)	Brazil	Beef	1kg LWG	Cradle to farm gate	GWP	Yes
Alvarenga et al. 2012	Brazil	Broiler chickens	tonne of feed	Cradle to gate	GWP; AD; AP; EP; ODP; HTP; MAETP; TETP; POCP; LC	No
Gerbens- Leenes et al. 2013	Brazil, China, Netherlands, USA	Poultry, pork, beef	l of water type per kg of product	Feed production and herd management	Water footprint	No
Huang et al. 2014	China	Dairy	1kg FPCM	Cradle to packaged milk	H ₂ 0-e	Yes
Liang et al. 2013	China	Livestock	Average number of livestock	Husbandry and waste	GWP	No
Xie et al. 2011	China	Dairy	1000 l of milk	Packaging	Human health; EQ; AD	No
Opio et al. 2013	Global	Ruminant livestock	1kg CW or 1kg FPCM	Cradle to retail	GWP	Yes
FAO 2010	Global	Dairy	kg FPCM	Cradle to retail	GWP	Yes
Hagemann et al. 2011	38 countries, including 12 developing	Milk	kg FPCM	Cradle to gate	GWP	No
Zervas & Tsiplakou 2012	Global	Small ruminants and all livestock	LW	Cradle to grave	GWP	No
Daneshi et al. 2014	Iran	Dairy	1kg FPCM	Cradle to packaged milk	GWP	No
Alqaisi et al. 2013	Jordan	Dairy	kg FPCM	Cradle to gate	GWP	No
Weiler et al. 2014	Kenya	Livestock	1kg Milk	Cradle to farm gate	GWP	Yes

Table 1: Summary of livestock LCAs in developing countries

Bartl et al. 2011	Peru	Milk	kg FPCM or 1 animal	Feed production and herd management	GWP; AP; EP	Yes
Djekic et al. 2014	Serbia	Dairy	1kg dairy product	Cradle to packaged product	GWP; AP; EP; ODP; POCP; HTP	No
Tongpool et al. 2012	Thailand	Poultry - broiler	tonne of feed	Cradle to packaged feed	GWP; ODP; HTP; AD; POCP; PM; AP; EP; TETP; +3 others	No
Phong 2010	Vietnam	Agriculture/a quaculture	Kcal	Cradle to farm gate	GWP; EP; AP	No

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
ECM= Energy corrected milk	AP= acidification potential	GWP= Global Warming Potential
Kcal= kilocalorie	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
M ³ = Cubic metres	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised
Ha= Hectares	EQ= Ecosystem quality	by scarcity
SW=Slaughter weight	RD= Resource depletion	EF= Ecological footprint
LW= Live-weight	NREU= Non-renewable energy use	PM= Particulate matter formation
LWG= Live weight gain	LC= Land competition	
CW= Carcass weight	ODP= Ozone depletion potential	
HSCW = Hot Standard Carcass		
Weight		

System boundaries, inventory, impact assessment and sensitivity

Researchers have utilized the LCA methodology to address questions on the environmental impact of livestock production. Figure 1 shows a marked increase in the number of livestock related publications this decade; of all articles identified, 159 were published from 2010 to 2014. Subsectors of focus include beef, sheep, poultry and pig. Dairy has received the highest amount of research attention, accounting for 92 of the 201 publications identified.

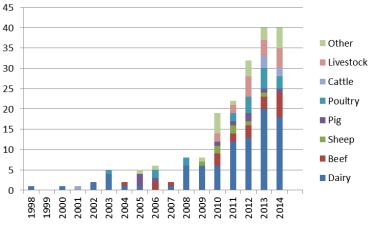


Figure 1: Publications by year and sub-sector n=201

The majority of livestock LCAs have been conducted in OECD countries. There are 19 studies that assess developing country¹ value chains, these are summarized in table 1 (refer to the Supplementary Information for a summary table of all studies).

LCA element 1: Goal and scope

The ISO standard for LCA requires practitioners to provide clear goals and a well-defined scope. This element is the basis for the Life-Cycle Inventory (LCI), and the impact categories assessed.

The LCAs reviewed in this study had a range of goals, from comparing products or systems, to challenging LCA methodology. The primary purposes are summarized in table 2.

Purpose category	Number of obs.
Improve LCA methodology	17
Quantify impact	39
Quantify marginal impact	1
Economic and social impact of mitigation	2
Footprinting	5
Hotspot identification	11

Table 2: summary of primary LCA purpose*

¹ Developing countries as defined by the World Bank

Global benchmarking	1	
Compare products or systems	60	
Mitigation options	19	
Environmental trade-offs	1	

*These categories reflect the primary goal that was stated, not the range of goals pursued in each study.

These goals incorporated a range of impact categories, with Global Warming Potential (GWP), Acidification Potential (AP) and Eutrophication Potential (EP) being the most common. Ninty-one studies assessed multiple impact categories, four of which assessed over 10 (summarized in supplementary information). Impact categories are discussed further in the Life-Cycle Impact Assessment (3.3. LCIA) section.

System boundaries

The scope of an LCA needs to be comprehensively defined to allow for peer review and comparison. The system boundaries describe the length of the value-chain assessed and the factors included/excluded from analysis. Regarding value-chain length, Nijdam et al. (2012, p. 762) summarized the prevailing trend in livestock LCAs: *"Although a full life cycle assessment should cover 'cradle to grave', most of the studies cover only the chain from 'cradle to farm gate'"*. Thirteen of the reviewed LCAs assessed from cradle to grave/consumption, with a further eleven assessing from cradle to port, retailer or packaged product. The prevalence of partial LCAs of livestock does allow for in-depth analysis of individual stages of the chain, but loses part of the power of an LCA. Spoilage due to on-farm practices, for example, can increase the environmental burden per unit of milk consumed and result in environmental impacts at the processor level.

Factors associated with the value-chain scope can be excluded if justified by an LCA practitioner. Grown and imported feed, animal husbandry, mortality, transport, electricity and capital infrastructure are all factors that need clear system boundaries. The defined system boundaries can have a significant impact on estimated environmental impact and comparability.

Functional unit

This is the unit that the environmental impacts are ascribed to. A detailed functional unit improves the clarity of LCA results and can provide a more accurate representation of the impacts. For LCAs assessing dairy, impact per kilogram of Fat and Protein Corrected Milk (FPCM) was a common unit of measurement, other functional units are summarized in table 1 and appendix table A1.

A functional unit can allow for comparison with other studies, however the variability in functional units hampers this (Reckmann et al. 2012; Yan, 2011). Further, the functional unit is often not suited to comparison between products; One litre of FPCM for example is not necessarily nutritionally equivalent to 1 kg of beef.

There has also been some debate about the relevance of area as a functional unit. Yan et al. (2011 P 373) argue that the "real reductions in impact need to be balanced against demand for products", of which area is neither a function nor measure.

LCA element 2: Life cycle inventory

The underlying data and parameters of an LCA are referred to as a Live-Cycle Inventory (LCI). A LCI for livestock generally includes farm and/or processor level data, assumed values for parameters, emission factors and modeling specifications.

Livestock related LCAs highlight the two drawbacks of the data intensive nature of the methodology. Firstly, the lack of available inventory data limits impact categories that can be assessed (Daneshi et al. 2014; Dolman et al. 2012; Castanheira et al. 2010; Thomassen et al. 2008).

Secondly, the use of default inventory data *"based on very simplified models of complex systems"*) can produce misleading results (Flysjö, et al., 2011, P. 466; Nijdam et al. 2012; O'Brien et al. 2012). This is particularly a challenge when LCI values are not clearly summarized, as in the case of some of the assessed LCAs.

LCA element 3: Life cycle impact assessment

Central to an LCA, Life-Cycle Impact Assessment is the process of utilizing inventory data to generate environmental impact indicators. Many of the impact categories utilized in the reviewed articles are listed in Table 2.

Impact category
Abiotic depletion
Acidification potential
Biodiversity
Ecosystem quality
Eutrophication potential
Fresh water aquatic ecotoxicity potential
Global Warming Potential
Particulate matter
Human toxicity potential (HTP)
Land competition
Land use
Marine aquatic ecotoxicity potential
Non-renewable energy use
Nutrient balance
Ozone depletion potential
Photochemical Ozone Creation Potential
Resource depletion
Soil acidification
Terrestrial ecotoxicity
Water depletion

Table 3. Impact categories in reviewed LCAs

Current and emerging impact categories

There is a continuum of acceptance of impact categories represented in livestock related LCAs. Atmospheric categories are accepted as adequate mid-point indicators, whereas location specific categories have been recently developed, are being improved or are emerging as new categories. Modeling the processes and flows of Green-House Gasses (GHGs) and converting GHGs to GWP as a mid-point indicator is widely accepted. The marginal impact on the concentration of GHGs is adequate as an environmental indicator because there are related global thresholds and reduction targets.

There are different models available to estimate the output of GHGs. The accuracy ruminant emissions in livestock LCAs (following IPCC guidelines) has been criticized as being too simplistic. This is especially the case for developing countries where other, more accurate models exist and are in ongoing development (Herrero et al. 2013). Further, the treatment of Land Use Change (LUC) differs between studies, where using PAS2050 or iLUC alters the results substantially (Dalgaard et al. 2014). The LEAP guidelines (2014) recommend impacts from LUC to be reported separately to the rest of the activities – making this facet of LCA more transparent.

Other impact categories where the location of emission/use is relevant includes: Eutrophication potential, acidification potential, ecotoxicity and water use. These mid-point indicators are rarely extended into end-point impact (Röös et al. 2013). There have been, however, rigorous debates on communicating the impacts associated with water depletion. Water use normalized by a local water stress index (WSI) removes some of the ambiguity in interpretation associated with volumetric water use (Ridoutt & Pfister 2010; Ridoutt et al. 2010). Several researchers have called for impact on water availability to be incorporated into more studies (Picasso, 2014; Reckmann et al. 2012). It should be noted that there are models available for extending eutrophication and acidification to end-point impact, such as ReCiPe (LEAP 2015).

A comprehensive measure for soil impacts is being debated in the literature. Garrigues et al. (2012) suggest developing a 'mid-point indicator' which would then inform an endpoint indicator called 'damage to ecosystem diversity'. Garrigues et al. (2012), Peters et al. (2011) and Yan et al. (2011) also stress the importance of developing the soil impact category for livestock LCAs. Current compaction indicators designed for crop production, for example, could be extended to incorporate livestock sources of impact (Garrigues et al. 2012); and micro nutrients can be assessed in an LCA framework (Peters et al. 2011).

Four of the 149 LCAs incorporated biodiversity (namely: Picasso 2014; Mueller et al. 2014; Binder et al. 2012; Haas et al. 2001). This is a complex and data intensive impact category. Most methods for assessing biodiversity use Species-Area Relationships (LEAP 2015). The LEAP review (2015) identifies four available methods for producing a biodiversity indicator: ReCiPe's Biodiversity loss indicator, Ecological Damage Potential, species richness and ecosystem productivity, and Mean Species Abundance (MSA - demonstrated in De Baan et al. 2013). Several authors are advocating for biodiversity to be incorporated into more livestock related LCAs (Dolman et al. 2012; Yan et al. 2011)

Other categories that have been proposed include: antibiotic use (Reckmann et al., 2012) and phosphorous loss (Yan et al. 2011).

Further, there is a need to incorporate a wide range of environmental impact categories in any given LCA so the trade-offs between them can be investigated (Picasso et al., 2014; de Boer et al. 2011; Ridoutt et al. 2011).

Social and economic impact categories

Several studies have called for greater integration of social and economic assessments along with environmental factors (Picasso et al. 2014; Weiler et al. 2014; Binder et al. 2012; Yan et al. 2011). Binder et al. (2012) assert that decision makers are poorly equipped without such a comprehensive assessment.

Fifteen studies did incorporate environmental impact categories along with the impact category that largely has economic implications: abiotic depletion. One novel approach of incorporating economic aspects was termed 'Life Cycle Costing', coupled with LCA (Asselin-Balençon & Jolliet 2014).

One interesting case where the lines between environmental and social aspects are burred is found in Weiler et al. (2014). In this study, environmental impact was allocated to social systems such as status, liquidity and substitutes to finance and insurance. While not explicitly quantifying the impacts across the lifecycle, this does raise some insights into the social trade-offs with environmental mitigation options.

Allocation and system expansion

When a functional unit relates to one of many goods produced by a system, the estimated impact per unit is not immediately apparent. In such cases, the environmental impact of the functional unit can simply be accepted as overstated and assigned solely to the functional unit as in Flysjö et al. (2012); impact can be allocated to co-products based on bio-physical or economic basis; or, the system boundaries can be expanded to conduct a consequential analysis.

Eight of the 149 reviewed studies used a Consequential LCA (CLCA). CLCA asks the question: what is the environmental impact of the co-product if it had to be produced elsewhere and then sold in the same marketplace? This is the preferred method of ISO 14044, where the environmental benefit of this co-product, if any, is then subtracted from the total impact and assigned to the functional unit (Avadí & Fréon 2013; Eady et al. 2012; O'Brien et al. 2012; Yan et al. 2011). This is a complex modeling process that requires insights into how agents (supermarkets, feed traders etc.) will act in hypothetical situations, for which economic models can be used (Nguyen et al. 2013). This modeling also requires additional LCI parameters, as studies on production systems often far away from the primary study location must be undertaken.

Multiple CLCA studies, according to their calculations, noted that attributional LCA (ALCA) impact estimates are overstated. Cederberg et al. (2003) found that biogenic emissions should be lower for the Swedish dairy industry, when the beef industry is considered. Lehuger et al. (2009 P. 624) found that *"four out of 10 [impact categories] were improved[/lessened] with system expansion"*. Flysjö et al. (2011) found that system expansion resulted in a 63–76% lower footprint for Swedish and New Zealand dairy production (compared to 100% allocation to milk).

The implementation of CLCA, however, has its limitations. It is data intensive and complex to model (Thoma et al. 2013), *"particularly for livestock"* (Eady et al. 2012, P. 148). The complexity of modelling also introduces another element of uncertainty into the results that needs to be accounted for. These reasons give an insight into why the majority of studies utilized ALCA methods.

An ALCA works to allocate emissions to various goods based on, depending on the relevance, biophysical relationships or by economic values (Eady et al. 2012; O'Brien et al. 2012). Goods can include feed for animal production versus human food as well as milk, eggs, meat, skins, hides, and fibre. Allocation methods can influence the estimated impact considerably (Flysjö et al. 2011; Cederberg et al. 2003).

The LEAP guidelines offer specific recommendations for allocation in livestock LCAs. For small ruminants, biophysical allocation is recommended on farm and economic allocation between fibre and meat. For poultry, system expansion between eggs and meat is recommended. For feed it is recommended to use biophysical allocation when inputs are not attributed to a specific crop, or using economic allocation or crop area.

The LEAP guidelines also provide detail for allocation for transport, processing, manure and fertilizers.

The LEAP guidelines and ISO standard allows for allocation to multiple products, but does not set limits on what can and can not be allocated to. de Vries and de Boer (2010) and Weiler et al. (2014) raise concerns of allocation in developing country contexts which have multiple functions. Weiler et al. (2014) found that the GHG estimates using economic allocation was higher at 2 kg CO₂-e compared to 1.6 kg CO₂-e for when non-market goods are allocated emissions. The inclusion of non-market goods and farmer centered valuations are a pertinent issues for livestock LCAs in developing countries and globally.

LCA element 4: Sensitivity / uncertainty analysis

A sensitivity analysis assesses the impact of an LCA component on the results. One third of the reviewed LCAs incorporated a sensitivity / uncertainty analysis (Refer to table A1 in the appendix for a summary of components assessed). Many of the sensitivity analyses indicated the most influential inputs, parameters and design features and presented the overall uncertainty on the results. The aim of these analyses is to provide decision makers with a more transparent source of information.

Some studies utilized Monte Carlo simulations (MCS) to characterize the uncertainty. Chen et al (2014) notes two limitations with using MCS. Firstly that the mean and distribution of each parameter in question needs to be known, and secondly that correlations between variables need to be investigated.

Source of impact, LCA comparison, mitigation and trade-offs

Through chain – source of impact

From the 24 LCAs assessing pre and post-farm gate activities, those activities pre-farm gate were generally the largest contributor to impact categories. Table 3 summarizes the percentage of impact attributable to pre-farm gate activities, by study and impact category; the majority of studies attributed over 70% of 'impact' to pre-farm activities.

In the case of dairy, Fantin et al. (2012) state that: "raw milk production at farms dominates the whole life cycle for all impact categories"; Yan et al (2011) stated that 80% of GHG emissions from European dairy is primary production related; For other livestock products, Roy et al. (2012, P.221) reaffirm that "the production stage is the main contributor [to GHGs] in the life cycle of meat [(chicken, pork and beef)]".

The dominance of pre-farm gate activities should not detract from the value of conducting through chain assessments. As mentioned in discussion on system boundaries, an assessment concluded at the farm gate assumes that the remaining value-chain components are effective.

The lesson here is that modeling and inventory specification on-farm will be a significant portion of the overall output for many impact categories (Kim et al. 2013; Fantin et al. 2012; Roy et al. 2012; Yan et al. 2011; Cederberg, 2009), greater allocation of effort may be justified for this stage of the chain if post farm gate functions are deemed efficient.

Table 4. Impact pre-farm gate for through chain studies (percent of total impact category)

	Begtsson, Seddon, 2013	Berlin, 2002	Davis et al., 2010	Fantin et al., 2012	Ridoutt, Pfister, 2010	Thevenot et al., 2013	Verge et al., 2013	Verge et al., 2013
	Chicken	Cheese	Pork chop (conventional)	Milk	Pasta sauce / Peanut M&Ms	Chicken	Milk	Yogurt
GWP	81.39	94.38	56.35^	85	-	89.67	86.9	72.2
Acidification	-	98.98	-	92	-	97.73	-	-
Eutrophication	-	99.36	96.44	97	-	98.22	-	-
РОСР	-	93.7	-	84	-	-	-	-
Ozone layer depletion	-	-	-	62	-	-	-	-
Water depletion / footprint*	75.08	-	-	-	97	-	-	-
Abiotic depletion	80.84	-	34.64 1	-	-	-	-	_
Ecopoints	87.12	-	-	-	-	-	-	-

*Stress-weighted, including grey water in Ridoutt et al. (2010)

^GWP: 13% of emissions at processor and 13% at household in Davis et al. (2010)

Abiotic depletion: 19% of impact at processor, packaging 14%, household 23%.

Comparison between systems and products

Many LCAs aim to compare systems within a subsector. A smaller portion of studies, however, compare impact categories between products. Several studies that do compare products, do so by harmonizing multiple LCAs.

Harmonizing LCAs is challenging due to variations in system boundaries, functional units, inventories utilized, the impact categories investigated and the method of allocation (Fantin et al., 2012; Bengtsson et al., 2013; Reckmann et al., 2012; Yan et al., 2011).

For chicken, Bengtsson et al. (2013) identified a range for GWP between 2000 and 5480 kgCO₂ eq/t of liveweight across eight studies.

de Vries and de Boer (2010) compared the impact categories from 16 LCAs on pork, chicken, beef, milk and egg. All studies are compared against common functional units – protein and daily intake. Ranges for land use, energy use, GWP, acidification and eutrophication were summarised. There was a strong overlap between GHG emissions (per kg of protein) for all products except beef, which had a lower bound of almost twice the emissions of other products.

Röös et al. (2013) analyzed 23 LCAs on pork, chicken and beef. Impact categories included: GWP, MJ primary energy, area in m², acidification and eutrophication.

Schmidinger & Stehfest (2012) also incorporated non-livestock products into their comparison. One of their findings was that *"soybased products like tofu can be more than half as high as those of intensive chicken breeding"* (Schmidinger & Stehfest 2012, P 970).

The LEAP guidelines aim to standardize livestock LCAs and the claims drawn from them. Guidelines include sections for system boundaries, co-product allocation, land use change and sensitivity analysis. As more LCAs follow these guidelines comparability will improve.

Mitigation

Some studies suggested system changes to mitigate environmental impacts, where many instances were confined to the farm. Some suggested that intensification could reduce GHG emission intensity (Weiler et al. 2014; Flysjo et al. 2011); Others focused on mitigation through manure management (Delgaard et al. 2014; Styles et al. 2014).

Trade-offs between impact categories

The trade-off between impact categories is an important consideration in the overall environmental benefit of mitigation activities (de Boer et al. 2011). Röös et al. (2013) did assess the relationship between impact categories; Findings varied between monogastrics and ruminants; Interventions on the carbon footprint of monogastrics did not negatively affect other impact categories; The case of ruminants was more complicated and variable. Studies such as Röös et al. (2013) though, are not common.

Lessons for a developing country setting

Despite challenges, LCAs can be conducted in a developing country context. In cases where limitations do not allow for an LCA, alternative methodologies can be strengthened from LCA principles. Limitations in developing countries precluding LCA could include a lack of accurate data for direct or indirect activities, lack of modeling of specific systems, limitation in expertise, time or financial constraints.

Existing livestock LCAs have addressed many challenges common to all environmental assessment frameworks. Lessons that can be drawn on in a developing country context relate to: models, system boundaries, data inventory, indicator design, allocation of impact, sensitivity analysis and transparency.

i. Existing LCAs provide for a wealth of models and indicators relating to the relationship between complex biophysical processes and environmental impacts. Some of these models and indicators could be transferrable to a developing country context.

ii. 'System boundaries' is an important concept for any environmental impact assessment. Clarity on what is outside the scope of analysis and why provides greater transparency for peers and target audiences and allows areas to be improved on in the future.

iii. The availability and accuracy of data is a limitation in a developing country context. Ideally locally specific data should be sourced and in some instances, over several years. In the case that this is not possible, results need to be presented with relevant caveats. This is particularly the case for pre-farm gate data, due to the share of burden for many impact factors

iv. The LCA methodology does not yet cater for all livestock related environmental impact categories. In particular, soil and biodiversity impact categories are under active development. Integrating social and economic aspects into LCA does not appear to have a strong basis in literature or standards as yet.

v. The LEAP guidelines can increase consistency of impact allocation and reporting between LCAs. There is still need, however, to provide guidelines on multi-functional systems in developing countries.

vi. The largest source of impact often comes from on-farm activities. While losing some of the benefit of undertaking an LCA, it can be justified to analyze up to the farm gate.

vii. Sensitivity analysis of various components of an environmental assessment allows for future improvement and transparency. In instances where Monte Carlo simulations are undertaken, assumptions need to be stated.

viii. Existing impact assessments and mitigation proposals can be assessed in developing country contexts.

viii. Trade-offs between impact categories need to be considered when assessing the environmental benefit of an intervention.

References

- Alqaisi, O. et al., 2013. Nutritional and ecological evaluation of dairy farming systems based on concentrate feeding regimes in semi-arid environments of Jordan. *Saudi Journal of Biological Sciences*. http://linkinghub.elsevier.com/retrieve/pii/S1319562X1300048X.
- Alvarenga, R.A.F. De, da Silva Júnior, V.P. & Soares, S.R., 2012. Comparison of the ecological footprint and a life cycle impact assessment method for a case study on Brazilian broiler feed production. *Journal of Cleaner Production*, 28: 25–32. http://linkinghub.elsevier.com/retrieve/pii/S0959652611002356.
- Asselin-Balençon, A.C. & Jolliet, O., 2014. Metrics and indices to assess the life cycle costs and greenhouse gas impacts of a dairy digester. *Journal of Cleaner Production*, 79: 98–107.
- Avadí, A. & Fréon, P., 2013. Life cycle assessment of fisheries: A review for fisheries scientists and managers. Fisheries Research, 143: 21–38. http://linkinghub.elsevier.com/retrieve/pii/S016578361300009X
- De Baan, L., Alkemade, R. & Koellner, T., 2013. Land use impacts on biodiversity in LCA: A global approach. *International Journal of Life Cycle Assessment*, 18(6): 1216–1230.
- Bartl, K., Gómez, C.A. & Nemecek, T., 2011. Life cycle assessment of milk produced in two smallholder dairy systems in the highlands and the coast of Peru. *Journal of Cleaner Production*, 19(13): 1494–1505. http://www.sciencedirect.com/science/article/pii/S0959652611001260
- Bennett, R.M., Phipps, R.H. & Strange, A.M., 2006. The use of life cycle assessment to compare the environmental impact of production and feeding of conventional and genetically modified maize for broiler production in Argentina. *Journal of Animal and Feed Sciences*, 15(1): 71–82.
- Binder, C.R., Schmid, A. & Steinberger, J.K., 2012. Sustainability solution space of the Swiss milk value added chain. *Ecological Economics*, 83: 210–220.
- De Boer, I. et al., 2011. Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment. *Current Opinion in Environmental Sustainability*, 3(5): 423–431. http://linkinghub.elsevier.com/retrieve/pii/S1877343511000856.
- Dalgaard, R., Schmidt, J. & Flysjö, A., 2014. Generic model for calculating carbon footprint of milk using four different LCA modelling approaches. *Journal of Cleaner Production*, 73: 1–8. http://linkinghub.elsevier.com/retrieve/pii/S0959652614000389
- Daneshi, A. et al., 2014. Greenhouse gas emissions of packaged fluid milk production in Tehran. *Journal of Cleaner Production*, 80: 150–158.
- Djekic, I. et al., 2014. Environmental life-cycle assessment of various dairy products. *Journal of Cleaner Production*, 68: 64–72. http://www.scopus.com/inward/record.url?eid=2-s2.0-84897113630&partnerID=tZOtx3y1.
- Dolman, M.A.A., Vrolijk, H.C.J.C.J. & de Boer, I.J.M.J.M., 2012. Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms. *Livestock Science*, 149(1–2): 143–154. http://www.sciencedirect.com/science/article/pii/S1871141312002715.
- Eady, S., Carre, A. & Grant, T., 2012. Life cycle assessment modelling of complex agricultural systems with multiple food and fibre co-products. *Journal of Cleaner Production*, 28(null): 143–149.

FAO, 2010. Greenhouse Gas Emissions from the Dairy Sector.

- Flysjö, A., Cederberg, C., et al., 2011. How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. *The International Journal of Life Cycle Assessment*, 16(5): 420–430.
- Flysjö, A., Henriksson, M., et al., 2011. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agricultural Systems, 104(6): 459–469. http://www.sciencedirect.com/science/article/pii/S0308521X11000412.
- Flysjö, A. et al., 2012. The interaction between milk and beef production and emissions from land use change critical considerations in life cycle assessment and carbon footprint studies of milk. *Journal of Cleaner Production*, 28(0): 134–142. http://www.sciencedirect.com/science/article/pii/S0959652611004823
- Garrigues, E. et al., 2012. Soil quality in Life Cycle Assessment: Towards development of an indicator. *Ecological Indicators*, 18(0): 434–442. http://www.sciencedirect.com/science/article/pii/S1470160X1100416X.
- Gerbens-Leenes, P.W., Mekonnen, M.M. & Hoekstra, a. Y., 2013. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. *Water Resources and Industry*, 1-2: 25–36. http://linkinghub.elsevier.com/retrieve/pii/S2212371713000024
- Haas, G., Wetterich, F. & Köpke, U., 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. *Agriculture, Ecosystems & Environment*, 83(1–2): 43–53. http://www.sciencedirect.com/science/article/pii/S0167880900001602
- Hagemann, M. et al., 2011. Benchmarking of greenhouse gas emissions of bovine milk production systems for 38 countries. *Animal Feed Science and Technology*, 166–167(0): 46–58. http://www.sciencedirect.com/science/article/pii/S0377840111001210.
- Herrero, M. et al., 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. *Proceedings of the National Academy of Sciences of the United States of America*, 110(52): 20888–93. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3876224
- Huang, J. et al., 2014. Water availability footprint of milk and milk products from large-scale dairy production systems in Northeast China. *Journal of Cleaner Production*, 79: 91–97.
- ISO, 2009. Environmental management The ISO 14000 family of International Standards ISO in brief ISO and the environment.
- LEAP, 2015. A review of indicators and methods to assess biodiversity application to livestock production at global scale, Rome, Italy.
- Lehuger, S., Gabrielle, B. & Gagnaire, N., 2009. Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed. *Journal of Cleaner Production*, 17(6): 616–624. http://linkinghub.elsevier.com/retrieve/pii/S0959652608002564.
- De Léis, C.M. et al., 2014. Carbon footprint of milk production in Brazil: a comparative case study. *The International Journal of Life Cycle Assessment*, 20(1): 46–60.
- Liang, L. et al., 2013. Estimation of nitrous oxide and methane emission from livestock of urban agriculture in Beijing. *Agriculture, Ecosystems & Environment*, 170: 28–35. http://linkinghub.elsevier.com/retrieve/pii/S0167880913000327 [Accessed August 9, 2013].

- Mueller, C., de Baan, L. & Koellner, T., 2014. Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. *The International Journal of Life Cycle Assessment*, 19(1): 52–68. http://dx.doi.org/10.1007/s11367-013-0638-5.
- Nguyen, T.T.H. et al., 2013. Consequential LCA of switching from maize silage-based to grass-based dairy systems. International Journal of Life Cycle Assessment, 18(8): 1470–1484.
- Nijdam, D., Rood, T. & Westhoek, H., 2012. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. *Food Policy*, 37(6): 760–770.
- O'Brien, D. et al., 2012. A life cycle assessment of seasonal grass-based and confinement dairy farms. *Agricultural Systems*, 107(0): 33–46.
- Opio, C. et al., 2013. Greenhouse gas emissions from ruminant supply chains- A global life cycle assessment,
- Peters, G.M. et al., 2011. Assessing agricultural soil acidification and nutrient management in life cycle assessment. *The International Journal of Life Cycle Assessment*, 16(5): 431–441.
- Phong, L.T., 2010. Dynamics of sustainability in Integrated Agriculture-Aquaculture systems in the Mekong Delta,
- Reckmann, K., Traulsen, I. & Krieter, J., 2012. Environmental Impact Assessment methodology with special emphasis on European pork production. *Journal of Environmental Management*, 107(0): 102–109. http://www.sciencedirect.com/science/article/pii/S030147971200196X.
- Ridoutt, B.G. et al., 2010. Short communication: The water footprint of dairy products: case study involving skim milk powder. *Journal of dairy science*, 93(11): 5114–7. http://dx.doi.org/10.3168/jds.2010-3546.
- Ridoutt, B.G. & Pfister, S., 2010. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. *Global Environmental Change*, 20(1): 113–120. http://dx.doi.org/10.1016/j.gloenvcha.2009.08.003.
- Ridoutt, B.G., Sanguansri, P. & Harper, G.S., 2011. Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia. *Sustainability*, 3(12): 2443–2455.
- Röös, E. et al., 2013. Can carbon footprint serve as an indicator of the environmental impact of meat production? *Ecological Indicators*, 24(0): 573–581.
- Ruviaro, C.F. et al., 2014. Carbon footprint in different beef production systems on a southern Brazilian farm: a case study. *Journal of Cleaner Production*.
- Schmidinger, K. & Stehfest, E., 2012. Including CO2 implications of land occupation in LCAs—method and example for livestock products. *The International Journal of Life Cycle Assessment*, 17(8): 962–972.
- Thoma, G., Jolliet, O. & Wang, Y., 2013. A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. *International Dairy Journal*, 31: S41–S49. http://linkinghub.elsevier.com/retrieve/pii/S0958694612001951
- Tongpool, R. et al., 2012. Improvement of the environmental performance of broiler feeds: a study via life cycle assessment. *Journal of Cleaner Production*, 35(0): 16–24. http://www.sciencedirect.com/science/article/pii/S0959652612002302.

- Weiler, V. et al., 2014. Handling multi-functionality of livestock in a life cycle assessment: the case of smallholder dairying in Kenya. *Current Opinion in Environmental Sustainability*, 8: 29–38.
- Xie, M. et al., 2011. A comparative study on milk packaging using life cycle assessment: from PA-PE-AI laminate and polyethylene in China. *Journal of Cleaner Production*, 19(17-18): 2100–2106. http://linkinghub.elsevier.com/retrieve/pii/S0959652611002344.
- Yan, M.-J., Humphreys, J. & Holden, N.M., 2011. An evaluation of life cycle assessment of European milk production. Journal of Environmental Management, 92(3): 372–379. http://www.sciencedirect.com/science/article/pii/S0301479710003579
- Zervas, G. & Tsiplakou, E., 2012. An assessment of {GHG} emissions from small ruminants in comparison with {GHG} emissions from large ruminants and monogastric livestock. *Atmospheric Environment*, 49(0): 13–23. http://www.sciencedirect.com/science/article/pii/S1352231011012258.

Annex 1: Components considered in sensitivity analyses

Study	Sensitivity component
Adom et al., 2013	Mill inputs
Bartl et al., 2011	Allocation choices
Basset-mens et al., 2006	Crop yields, feed ratios
Battini et al., 2014	Manure storage
Belflower et al., 2012	Management changes
Berlin, 2002	System boundaries and allocation
Binder et al., 2012	Changes to sustainability ranges - ie. parameters
Casey et al., 2006	Emission factors
Chen et al., 2014	Manure management, animal housing and leachate
Dalgaard et al., 2014	Beef system, crop yields; milk yield
de Boer et al., 2012	Effect of crop yields and root depth on water requirements
de Leis et al., 2014	Feed quality parameters
De vries et al, 2012	Minimum and maximum values for LUC, higher fugitive methane emissions from the digestion facility, a higher electric efficiency of the biogas engine, and increased NFRV of the digestates.
Dudley et al., 2014	Land use change, soil emissions, soil carbon, enteric fermentation, manure methane emissions, dry matter intake, crop yield, animal mass
Eide et al., 2003	Amount of cleaning chemical used
FAO, 2010	Herd and feed characteristics
Flysjö et al., 2012	Emission factors
Guerci et al., 2014	Allocation and land use change
Huang et al., 2014	Allocation (economic and biophysical), farm type compared to average farm
Ledgard et al., 2011	Including customer travel
Lehuger et al., 2009	Cropping techniques
Leinonen et al., 2012	Activity data
Leinonen et al., 2013	Uncertainty analysis
Lijo et al., 2014	Methane losses, production of heat and energy
Mogensen et al., 2014	Emission factors and assumptions
Nguyen et al., 2013	Prices
Nielsen and Høier, 2009	Assumptions
O'Brien et al., 2011	Country specific emission factors
O'Brien et al., 2012	Biophysical v economic allocation
Ogino et al., 2013	N excretion rate, N2O emission factor from waste water, emissions from feed and supplements
Opio et al., 2013	Parameters and emission factors; soy production scenarios; land use change
Pelletier et al., 2010	Modeling SOC
Picasso et al., 2014	Rate of soil sequestration
Prapaspongsa et al., 2010	Manure dry matter, manure storage and application conditions, marginal electricity suppliers

Roer et al., 2013	Emission factors for livestock and land
Ross et al., 2014	IPCC coefficients and EFs
Rotz et al., 2010	Activity data
Ruviaro et al., 2014	Feed quality parameters and intake
Samuel-Fitwi et al., 2013	Energy sources
Sandars et al., 2003	Key variables
Sanders and Webber, 2014	Energy and transport
Schader et al., 2014	Milk yield, concentrates
Sonesson & Berlin 2003	Assumptions
Styles et al., 2014	Ranking of feedstock options
Thevenot et al., 2013	Emission factors for ammonia emissions
Thoma et al., 2013	Products loss/waste at consumer stage
Thomassen et al., 2008	Market situations
van der Werf et al., 2005	Calculation methods
Van Middelaar et al., 2013	Carbon payback period after conversion from grassland
Zehetmeier et al., 2014	Parameters or variables that are important contributors to GHG emissions and show a high degree of variability

2006 Gollnow et al. 2014 Williams et al. 2014	Argentina Australia Australia	Poultry Dairy	1kg LW 1kg FPCM	Cradle to plant door	GWP; ODP; HTP; FWAETP	No
2014 Williams et al. 2014		Dairy	1kg FPCM			
2014	Australia		0	Cradle to farm gate	GWP	No
Bengtsson &		Dairy	1I FPCM	Cradle to farm gate	GWP	No
Seddon 2013	Australia	Poultry	ton of roast chicken breast fillet	Cradle to consumption point	Eco-points: AD; AP; TETP; MAETP; EP; GWP; HTP; ionizing radiation; land transformation and use; ODP; POCP; respiratory effects; and water depletion	No
Ridoutt et al. 2013	Australia	Beef	kg LW	Cradle to farm gate	GWP; consumptive water use; LU	No
Eady et al. 2012	Australia	Sheep mixed	tonne grain, kg greasy wool, animal	Cradle to farm gate	GWP	No
Peters et al. 2011	Australia	Red meat	1 kg of HSCW meat	On farm (gate to gate)	Nutrient balance; soil acidification	No
Ridoutt et al. 2011	Australia	Beef	1kg LW	Cradle to farm gate	GWP; H2O-e	No
Ridoutt et al. 2010	Australia	Dairy	tonne of SMP delived to Japan	Cradle to port	Н2О-е	No
Ridoutt & Pfister 2010	Australia	Lamb	kg lamb at retail	Cradle Australia to retailer in USA	Н2О-е	No
Biswas et al. 2010	Australia	Sheep	1kg meat / wool	Cradle to farm gate	GWP	No
Peters et al. 2010	Australia	Red meat	1 kg of HSCW meat	Cradle to processing gate	Transferred water; net water use	No
Peters et al. 2010	Australia	Red meat	1 kg of HSCW meat	Cradle to farm gate	GWP; total energy; waste	No
Wood et al. 2006	Australia	Conventional v organic	Dollars of sales	Cradle to farm gate	GWP; water use; land disturbance; total energy use	No
Functional unit abb			Impact category abbrevia HTP= human toxicity pote		EP= Eutrophication potential AD= Abiotic depletion	

Annex 2: Summary of livestock LCAs assessed

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	AP= acidification potential	GWP= Global Warming Potential
M ³ = Cubic metres	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
Ha= Hectares	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised
SW=Slaughter weight	EQ= Ecosystem quality	by scarcity
LW= Live-weight	RD= Resource depletion	EF= Ecological footprint
LWG= Live weight gain	NREU= Non-renewable energy use	PM= Particulate matter formation
CW= Carcass weight	LC= Land competition	
HSCW = Hot Standard Carcass Weight	ODP= Ozone depletion potential	

Study	Country	Industry	/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Meul et al. 2014	Belgium	Dairy		1kg FPCM	Cradle to farm gate	GWP; AP; EP	No
de Léis et al. 2014	Brazil	Dairy		1kg ECM	Cradle to farm gate	GWP	Yes
Ruviaro et al. 2014	Brazil	Beef		1kg LWG	Cradle to farm gate	GWP	Yes
Alvarenga et al. 2012	Brazil	Broiler c	nickens	tonne of feed	Cradle to farm gate	GWP; AD; AP; EP; ODP; HTP; MAETP; TETP; POCP and LC	No
Gerbens-Leenes et	Brazil, China,	Poultry,	pork, beef	l of water type per	Feed production an	d Water footprint	No
al. 2013	Netherlands, USA			kg of product	herd management		
Hünerberg et al. 2014	Canada	Beef		1kg LW	Cradle to farm gate	GWP	No
Zhang et al. 2013	Canada	Dairy		disposal of 1100 tonnes of organic waste	Manure manageme	ent GWP; AP; EP; AD	No
Beauchemin et al. 2010	Canada	Beef		kg of beef	Cradle to farm gate	GWP	No
Beauchemin et al. 2011	Canada	Beef		kg of beef	Herd	GWP	No
Vergé et al. 2013	Canada	Dairy		% of annual emissions by product	Cradle to packaged product	GWP	No
Huang et al. 2014	China	Dairy		1kg FPCM	Cradle to packaged milk	Н20-е	Yes
Luo et al. 2014	China	Pig		Annual production	Farm and manure management	GWP; EP; AP	No
Liang et al. 2013	China	Livestoc	ζ.	Average number of livestock	Husbandry and was	te GWP	No
Yang et al. 2012	China	Pig bioga aquacult		MJ	Pigsty, fishpond, biodigestor	GWP	No
Functional unit abbr	eviations			ory abbreviations	-	EP= Eutrophication potential	
FPCM= Fat and prote			HTP= human	toxicity potential (HTP)		AD= Abiotic depletion	
ECM= Energy correct				sh water aquatic ecotoxic	city potential	TETP= Terrestrial ecotoxicity	
Kcal= kilocalorie			AP= acidificat	•		GWP= Global Warming Potential	
M ³ = Cubic metres				ine aquatic ecotoxicity po	otential	LU= Land use	
Ha= Hectares				chemical Ozone Creation		H20-e= water depletion normalised by scar	city
SW=Slaughter weigh	t		EQ= Ecosyste			EF= Ecological footprint	,
LW= Live-weight	-		RD= Resource			PM= Particulate matter formation	
LWG= Live weight ga	in			enewable energy use			

CW= Carcass weight HSCW = Hot Standard Carcass Weight	LC= Land competition ODP= Ozone depletion potential	

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Zhong et al. 2013	China	Pig manure	Ton dry solids	Manure management	GWP	No
Xie et al. 2011	China	Dairy	1000 l of milk	Packaging	Human health; EQ; AD	No
Dalgaard et al. 2014	Denmark and Sweden	Dairy	1kg ECM	Cradle to farm gate	GWP	Yes
Kristensen et al. 2011	Denmark	Dairy	kg FPCM	Cradle to farm gate	GWP	No
Oxenboll et al. 2011	Denmark	Poultry	Relative difference	Cradle to farm gate	GWP; AP; EP	No
Prapaspongsa et al. 2010	Denmark	Pig manure	1 ton of raw pig manure	manure management system	GWP; EP; PM	Yes
Nielsen & Høier 2009	Denmark	Dairy	1000kg mozzarella cheese	Cradle to processed product	GWP; AP; EP; AD; LU; POCP	Yes
Katajajuuri et al. 2014	Finland	Poultry	1,000 kg of sliced broiler chicken fillet	Cradle to retailer	GWP	No
Virtanen et al. 2011	Finland	Multiple food	% of daily consumer impact	Cradle to grave	GWP	No
Chen & Corson 2014	France	Dairy	1000 l milk sold, ha of land	On-farm	GWP; EP; AP	Yes
Nguyen et al. 2013	France	Dairy	1t FPCM	Cradle to farm gate	GWP; land use	Yes
Lehuger et al. 2009	France	Dairy	tonne of feed	Cradle to feed fed	GWP;TETP; MAETP; EP; HTP; TETP; POCP; AP; LU	Yes
Basset-mens et al. 2006	France	Pig	1kg LW; Ha land	Cradle to farm gate	GWP; AP; EP	Yes
van der Werf et al. 2005	France	Pig feed	1000 kg of pig feed	Feed production to pigs mouth	GWP; AP; TETP; EP; NREU; LU	Yes
van der Werf et al. 2009	France	Dairy	1000 I milk sold, ha of land	On-farm	GWP; EP; AP	No

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	potential	GWP= Global Warming Potential
M ³ = Cubic metres	AP= acidification potential	LU= Land use
Ha= Hectares	MAETP= Marine aquatic ecotoxicity	H20-e= water depletion normalised by scarcity
SW=Slaughter weight	potential	EF= Ecological footprint
LW= Live-weight	POCP= Photochemical Ozone Creation	PM= Particulate matter formation
LWG= Live weight gain	Potential	
CW= Carcass weight	EQ= Ecosystem quality	
HSCW = Hot Standard Carcass Weight	RD= Resource depletion	
	NREU= Non-renewable energy use	
	LC= Land competition	
	ODP= Ozone depletion potential	

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Prudêncio da Silva et al. 2014	France and Brazil	Poultry	1 tonne of chicken	Cradle to packaged product	GWP; AP; EP; TETP; LU; total energy	No
Nguyen et al. 2012	France, Brazil, Malaysia	Poultry feed	1 kg of feed	Feed production	GWP; AP; EP; LU; TETP; EN	No
Zehetmeier et al. 2014	Germany	Beef	1kg FPCM	Cradle to farm gate	GWP; LU	Yes
Michel et al. 2010	Germany	Manure	На	Cradle to manure management	GWP; AP; EP; NREU; ground water pollution	No
Haas et al. 2001	Germany	Cattle	На	Undefined	GWP; NREU; AP; EP; HTP; biodiversity; landscape image; animal welfare	No
Daneshi et al. 2014	Iran	Dairy	1kg FPCM	Cradle to packaged milk	GWP	No
O'Brien et al. 2014	Ireland	Dairy	1kg FPCM	Cradle to farm gate	GWP	No
O'Brien et al. 2012	Ireland	Dairy	tonne of FPCM sold, tonne of milk solids sold, on-farm area occupied, total farm area occupied	Cradle to farm gate	GWP; EP; AP; LU; NREU	Yes
O'Brien et al. 2011	Ireland	Dairy	На р.а	Cradle to farm gate	GWP	Yes
Casey & Holden 2006	Ireland	Beef	liveweight per year	Cradle to farm gate	GWP	Yes

Battini et al. 2014	Italy	Dairy biodigestor	1kg FPCM	Cradle to farm gate	GWP	Yes
Guerci et al. 2014	Italy	Dairy	1kg FPCM	Cradle to farm gate	GWP	Yes
Lijó et al. 2014	Italy	Pig biodigestor	100 kWh	Biomass production to manure management	GWP; AP; EP ODP; POCP; NREU	Yes
Torquati et al. 2014	Italy	Dairy	kWh	Farm and manure management	GWP	No
Guerci et al. 2013	Italy	Dairy	1kg FPCM	Cradle to farm gate	GWP; AP; EP; LU; NREU	No
Fantin et al. 2012	Italy	Dairy	1 l of packaged milk	Cradle to distribution centre	GWP; ODP; POCP; AP; EP; NREU; hazardous and non-hazardous waste	Yes

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Ogino et al. 2013	Japan	Pig	one marketed pig	Cradle to farm gate	GWP; AP; EP	Yes
Oishi et al. 2013	Japan	Cattle	kg of total weight output of live calves and culled cows from birth to culling	Cradle to farm gate	GWP; EP; AP	No
Ogingo et al. 2008	Japan	Dairy	1kg FCM	Cradle to farm gate	GWP; AP; EP; NREU	No
Ogingo et al. 2007	Japan	Beef	1 beef calf	Cradle to farm gate	GWP; AP; EP; total energy	No
Ogino et al. 2004	Japan	Beef	Finished cattle	Fattening system and inputs	GWP; AP;EP	No
Roy et al. 2012	Japan	Meat	kg meat / 1g protein / MJ of energy	Cradle to grave	GWP	No
Alqaisi et al. 2013	Jordan	Dairy	kg FPCM	Cradle to gate	GWP	No
Weiler et al. 2014	Kenya	Livestock	1kg Milk	Cradle to farm gate	GWP	No
Baek et al. 2014	Korea	Dairy	1kg FPCM	Cradle to farm gate	GWP	No
Dolman et al. 2014	Netherlands	Dairy	1kg FPCM	Cradle to farm gate	GWP; AP; EP; LU; NREU	No
Dekker et al. 2013	Netherlands	Eggs	Per kg of egg	Cradle to farm gate	GWP; AP; EP; LU; energy use; nutrient balance	No
Van Middelaar et al. 2013	Netherlands	Dairy	ton of FPCM	Cradle to farm gate	GWP	Yes
De Boer et al. 2012	Netherlands	Dairy	kg FPCM	Cradle to farm gate	HH; EQ; RD	Yes
Dolman et al. 2012	Netherlands	Pig	100 kg SW	Cradle to farm gate	LU; NREU; GWP; EP; AP	No

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	AP= acidification potential	GWP= Global Warming Potential
M ³ = Cubic metres	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
Ha= Hectares	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised by scarcity
SW=Slaughter weight	EQ= Ecosystem quality	EF= Ecological footprint
LW= Live-weight	RD= Resource depletion	PM= Particulate matter formation
LWG= Live weight gain	NREU= Non-renewable energy use	
CW= Carcass weight	LC= Land competition	
HSCW = Hot Standard Carcass Weight	ODP= Ozone depletion potential	

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
De Vries et al. 2012	Netherlands	Manure	1 ton untreated liquid manure	Manure management	GWP, AP; EP; AD; PM	No
De Vries et al. 2012	Netherlands	Pig manure	1 ton substrate	Manure management and application	GWP; AD; EP; AP; LU; PM	Yes
van Middelaar et al. 2011	Netherlands	Cheese	kg cheese / m2 land	Cradle to retailer	GWP; LU; NREU	Yes
Thomassen et al. 2009	Netherlands	Dairy	kg of FPCM	Cradle to farm gate	GWP; EU; NREU; EP; AP	No
Thomassen et al. 2008	Netherlands	Dairy	kg of FPCM leaving the farm gate	Cradle to farm gate	Land use; energy use; GWP; AP; EP	No
Thomassen et al. 2008b	Netherlands	Dairy	kg FPCM	Cradle to farm gate	LU; NREU; GWP; AP; EP	Yes
Zonderland- Thomassen et al. 2014	New Zealand	Beef and sheep	1kg LW	Cradle to farm gate	Н2О-е; ЕР	No
Zonderland- Thomassen & Ledgard 2012	New Zealand	Dairy	kg FPCM	Cradle to farm gate	Water footprint	No
Ledgard et al. 2011	New Zealand	Lamb	kg of NZ lamb purchased in the UK	Cradle to grave	GWP	Yes
Flysjö et al. 2012	New Zealand and Sweden	Dairy	kg FPCM	Cradle to farm gate	GWP	Yes
Roer et al. 2013	Norway	Cattle	kg FPCM and 1 kg carcass	Cradle to farm gate	GWP; AD; MAETP; EP; HT; ODP; LU; AP; TETP	Yes
Ellingsen & Aanondsen 2006	Norway	Cod Poultry comparison	0.2 kg fillets	Cradle to consumer	GWP; AP; EP; total energy use; TETP; MAETP	No
Eide et al. 2003	Norway	Dairy	10,950 cleans of dairy equipment in year	Chemical production to usage	GWP; NREU; POCP	Yes

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Eide 2002	Norway	Dairy	1000l milk	Cradle to grave	GWP; EP; AP; ODP; POCP; Ecotoxicity; total energy use	No
Flysjö et al. 2011	NZ + Sweden	Dairy	1kg ECM	Cradle to farm gate	GWP	No
Bartl et al. 2011	Peru	Milk	kg FPCM or 1 animal	Feed production and herd management	GWP; AP; EP	Yes
González-García et al. 2014	Portugal	Poultry	168.4 g of protein	Cradle to slaughterhouse gate	GWP; AP; EP; POCP; AD; NREU	No
Castanheira et al. 2010	Potugal	Dairy	tonne of milk	Cradle to farm gate	GWP; AP; EP; AD; POCP	No
Thévenot et al. 2013	Reunion Island	Poultry	tonne of packed whole chickens	Cradle to packaged product	GWP; AP; EP	Yes
Djekic et al. 2014	Serbia	Dairy	1kg dairy product	Cradle to packaged product	GWP; AP; EP; ODP; POCP; HTP	No
Devers et al. 2013	South Africa	Pork	1kg CW	Cradle to farm gate	GWP; AP; EP	No
Ripoll-Bosch et al. 2013	Spain	sheep	kg LW	Cradle to farm gate	GWP	No
Bayo et al. 2012	Spain	Pig manure	1m3 of pig slurry	Manure and land management	GWP; AP; EP	No
Del Prado et al. 2013	Spain	Dairy	kg of FPCM	Cradle to farm gate	GWP	No
Meneses et al. 2012	Spain	Dairy	m3 of biogas	Waste management	GWP; EP; AP; TETP; MAETP; radiation; ODP; AD	No
Iribarren et al. 2011	Spain	Dairy	l of raw milk	Cradle to farm gate	AP; EP; GWP; LC; NREU	No
Joy et al. 2011	Spain	Lamb	kg lamb meat	Cradle to farm gate	GWP	No
Hospido et al. 2003	Spain	Dairy	1l milk	Cradle to packaged product	GWP; ODP; AP; EP; POCP; AD	No
Davis et al. 2010	Spain and Sweden	Meat v legumes	Meal	Cradle to plate	GWP; EP; AP; LU; NREU	No
Mueller et al. 2014	Sweden	Dairy	1 l of milk	Cradle to farm gate	Biodiversity	No
Berlin et al. 2008	Sweden	Dairy	1kg consumed product	Cradle to consumed product	GWP; EP; EN; POCP	No

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	AP= acidification potential	GWP= Global Warming Potential
M ³ = Cubic metres	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
Ha= Hectares	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised by scarcity
SW=Slaughter weight	EQ= Ecosystem quality	EF= Ecological footprint
LW= Live-weight	RD= Resource depletion	PM= Particulate matter formation
LWG= Live weight gain	NREU= Non-renewable energy use	
CW= Carcass weight	LC= Land competition	
HSCW = Hot Standard Carcass Weight	ODP= Ozone depletion potential	

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Davis & Sonesson 2008	Sweden	Chicken dinner	Meal	Cradle to prepared meal	GWP; AP; EP; ODP	No
Cederberg & Stadig 2003	Sweden	Dairy and beef	1kg ECM / bone-free meat	Cradle to farm gate	GWP; EP; AP; LU; pesticide use; energy use	No
Berlin et al. 2007	Sweden	Dairy	% of waste	Processor to packaged	GWP; EP; AP; POCP	No
Sonesson & Berlin 2003	Sweden	Dairy	Scenario / year	Farm gate to grave	GWP; AP; EP; POCP; NOx; Use of net energy; primary energy carriers	Yes
Berlin 2002	Sweden	Cheese	kg of packaged cheese	Cradle to packaging	GWP; AD; AP; EP; POCP; MAETP; ETEP	Yes
Cederberg & Mattsson 2000	Sweden	Dairy	tonne FPCM	Cradle to farm gate	GWP; AD; LU; human health; AP; EP; POCP	No
Mogensen et al. 2014	Sweden and Denmark	Cattle	1kg CW	Cradle to farm gate	GWP	Yes
Schader et al. 2014	Switzerlan d	Dairy	Ha cultivated / 1kg FPCM	Cradle to farm gate	GWP	Yes
Binder et al. 2012	Switzerlan d	Dairy	1kg milk	Milk value chain	GWP; biodiversity; social; economic	Yes
Tongpool et al. 2012	Thailand	Poultry - broiler	tonne of feed	Cradle to packaged feed	GWP; ODP; HTP; AD; POCP; PM; AP; EP; TETP; +3 others	No
Leinonen et al., 2013	UK	Poultry	tonne of product	Cradle to feed fed	GWP; EP; AP	Yes

Mezzullo et al. 2013	UK	Cattle	m3 biogas	Manure management	Carcinogens; respiratory inorganics; GWP; radiation; ODP; TETP; MAETP; AP; UP; NREU	No
Bell et al. 2011	UK	Dairy	Ha and FPCM	Cradle to farm gate	GWP; LU	No
Webb et al. 2014	UK	Livestock	CW; million eggs; 11 milk	Cradle to farm gate	GWP; LU	No
Sandars et al. 2003	UK	Pork	1000kg of pork	Manure management and application	GWP; smog; EP; AP	Yes

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	AP= acidification potential	GWP= Global Warming Potential
M ³ = Cubic metres	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
Ha= Hectares	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised by scarcity
SW=Slaughter weight	EQ= Ecosystem quality	EF= Ecological footprint
LW= Live-weight	RD= Resource depletion	PM= Particulate matter formation
LWG= Live weight gain	NREU= Non-renewable energy use	
CW= Carcass weight	LC= Land competition	
HSCW = Hot Standard Carcass Weight	ODP= Ozone depletion potential	

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Ross et al. 2014	UK	Dairy	1kg ECM	Cradle to farm gate	GWP	Yes
Styles et al. 2014	UK	Dairy biodigestor	DM codigested	Feed, animal, manure	GWP; AP; EP	Yes
					GWP; AP; EP; AD; LU; pesticide	
Leinonen et al. 2012	UK	Poultry	1,000 kg of eggs	Cradle to farm gate	use	Yes
O'Brien et al. 2014	UK, Ireland, US	Dairy	1kg ECM	Cradle to farm gate	GWP	No
Picasso et al. 2014	Uruguay	Red meat	1kg LW	Cradle to farm gate	GWP; EP; TETP; AD; biodiversity; soil erosion	Yes
Pelletier et al. 2013	USA	Eggs	Tonne of liquid egg	Cradle to processing	GWP	No
Adom et al. 2013	USA	Dairy feed	kg of milled dairy feed	Feed production	GWP	Yes
Belflower et al. 2012	USA	Dairy	cow and FPCM	Cradle to farm gate	GWP; AP; erosion; EP	Yes
Rotz et al. 2010	USA	Dairy	kg FPCM	Cradle to farm gate	GWP	Yes
Zabaniotou & Kassidi 2003	USA	Poultry	50,000 egg cartons	Egg carton manufacture	GWP; AP; EP; ODP; POCP; winter smog; heavy metals; Carcinogenic substances; Nutrient enrichment	No
Ghafoori et al. 2006	USA	Beef/biodigestor	1 MWh	Feed, animal, manure	GWP	No
Stone et al. 2012	USA	Pig	1 pig	Cradle to farm gate	GWP; EP; AP; TETP	No
Coats et al. 2013	USA	Manure	Percent change	Manure management	GWP	No
Nutter et al. 2013	USA	Dairy	1KG fluid milk	Processing to distribution	GWP	No
Kim et al. 2013	USA	Dairy	kg moisture free cheese	Cradle to grave	GWP; EN; EP; HTP; TETP; LU; POCP; Water use	No
Asselin-Balençon & Jolliet 2014	USA	Dairy biodigestor	1l milk	Cradle to farm gate	GWP	No

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	AP= acidification potential	GWP= Global Warming Potential
M ³ = Cubic metres	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
Ha= Hectares	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised by scarcity
SW=Slaughter weight	EQ= Ecosystem quality	EF= Ecological footprint
LW= Live-weight	RD= Resource depletion	PM= Particulate matter formation
LWG= Live weight gain	NREU= Non-renewable energy use	
CW= Carcass weight	LC= Land competition	
HSCW = Hot Standard Carcass Weight	ODP= Ozone depletion potential	

Study	Country	Industry/Product(s)	Functional unit	Value Chain length	Impact categories	Sensitivity
Stackhouse-Lawson et al. 2012	USA	Beef	Production system	Cradle to farm gate	GWP	No
Venczel & Powers 2010	USA	Manure	600 cows per day	Animal to manure management	GWP	No
Pelletier et al. 2010	USA	Beef	1kg LW	Cradle to farm gate	GWP; EP; EF; total energy use	Yes
Dudley et al. 2014	USA	Beef	1kg LW	Cradle to farm gate	GWP	Yes
Thoma, Popp, et al. 2013	USA	Dairy	1kg milk	Cradle to grave	GWP	Yes
Sanders & Webber 2014	USA	Beef	1kg beef / wheat	Cradle to food preparation	GWP	Yes
Phong 2010	Vietnam	Agriculture/aquaculture	Kcal	Cradle to farm gate	GWP; EP; AP	No
Opio et al. 2013	Global	Ruminant livestock	1kg CW or 1kg FPCM	Cradle to retail	GWP	Yes
FAO 2010	Global	Dairy	kg FPCM	Cradle to retail	GWP	Yes
Zervas & Tsiplakou 2012	Global	Small ruminants and all livestock	LW	Cradle to grave	GWP	No
de Vries & de Boer 2010	Meta analysis	Multiple livestock	kg of edible product	Not detailed	GWP; LU; NREU; EP; AP	No
Röös et al. 2013	Meta analysis	Meat	kg of bone free meet	Various	GWP; AP; EP; LU	No
Ercin et al. 2012	Various	Soy, Animal	150g paddy, litre of milk	Cradle to grave	Volumetric water	No
Nijdam et al. 2012	Multiple	Animal products	kg of protein	Cradle to farm gate	LU	No
Weiss & Leip 2012	Europe	Livestock	kg meat	Cradle to farm gate	GWP (including LULUC)	No

Functional unit abbreviations	Impact category abbreviations	EP= Eutrophication potential
FPCM= Fat and protein corrected milk	HTP= human toxicity potential (HTP)	AD= Abiotic depletion
ECM= Energy corrected milk	FWAETP= fresh water aquatic ecotoxicity potential	TETP= Terrestrial ecotoxicity
Kcal= kilocalorie	AP= acidification potential	GWP= Global Warming Potential
M ³ = Cubic metres	MAETP= Marine aquatic ecotoxicity potential	LU= Land use
Ha= Hectares	POCP= Photochemical Ozone Creation Potential	H20-e= water depletion normalised by scarcity
SW=Slaughter weight	EQ= Ecosystem quality	EF= Ecological footprint
LW= Live-weight	RD= Resource depletion	PM= Particulate matter formation
LWG= Live weight gain	NREU= Non-renewable energy use	
CW= Carcass weight	LC= Land competition	
HSCW = Hot Standard Carcass Weight	ODP= Ozone depletion potential	

Annex 3: Supplementary references

- Adom, F. et al., 2013. Carbon footprint analysis of dairy feed from a mill in Michigan, USA. International Dairy Journal, 31: S21–S28. http://linkinghub.elsevier.com/retrieve/pii/S0958694612002038.
- Alqaisi, O. et al., 2013. Nutritional and ecological evaluation of dairy farming systems based on concentrate feeding regimes in semi-arid environments of Jordan. *Saudi Journal of Biological Sciences*. http://linkinghub.elsevier.com/retrieve/pii/S1319562X1300048X.
- Alvarenga, R.A.F. De, da Silva Júnior, V.P. & Soares, S.R., 2012. Comparison of the ecological footprint and a life cycle impact assessment method for a case study on Brazilian broiler feed production. *Journal of Cleaner Production*, 28: 25–32. http://linkinghub.elsevier.com/retrieve/pii/S0959652611002356.
- Asselin-Balençon, A.C. & Jolliet, O., 2014. Metrics and indices to assess the life cycle costs and greenhouse gas impacts of a dairy digester. *Journal of Cleaner Production*, 79: 98– 107.
- Baek, C.-Y.Y., Lee, K.-M.M. & Park, K.-H.H., 2014. Quantification and control of the greenhouse gas emissions from a dairy cow system. *Journal of Cleaner Production*, 70: 50–60.
- Bartl, K., Gómez, C.A. & Nemecek, T., 2011. Life cycle assessment of milk produced in two smallholder dairy systems in the highlands and the coast of Peru. *Journal of Cleaner Production*, 19(13): 1494–1505.
 http://www.sciencedirect.com/science/article/pii/S0959652611001260.
- Basset-mens, C. et al., 2006. Implications of Uncertainty and Variability in the Life Cycle Assessment of Pig Production Systems. *The International Journal of Life Cycle Assessment*, 11(5): 298–304.
- Battini, F. et al., 2014. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. *The Science of the total environment*, 481(1): 196–208.
- Bayo, J. et al., 2012. Environmental assessment of pig slurry management after local characterization and normalization. *Journal of Cleaner Production*, 32: 227–235.
- Beauchemin, K.A. et al., 2010. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. *Agricultural Systems*, 103(6): 371–379. http://linkinghub.elsevier.com/retrieve/pii/S0308521X10000387.

- Beauchemin, K.A. et al., 2011. Mitigation of greenhouse gas emissions from beef production in western Canada – Evaluation using farm-based life cycle assessment. *Animal Feed Science and Technology*, 166-167: 663–677.
- Belflower, J.B. et al., 2012. A case study of the potential environmental impacts of different dairy production systems in Georgia. *Agricultural Systems*, 108: 84–93. http://linkinghub.elsevier.com/retrieve/pii/S0308521X12000133.
- Bell, M.J. et al., 2011. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. *Journal of dairy science*, 94(7): 3662–78. http://dx.doi.org/10.3168/jds.2010-4023.
- Bengtsson, J. & Seddon, J., 2013. Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. *Journal of Cleaner Production*, 41(null): 291–300.
- Bennett, R.M., Phipps, R.H. & Strange, A.M., 2006. The use of life cycle assessment to compare the environmental impact of production and feeding of conventional and genetically modified maize for broiler production in Argentina. *Journal of Animal and Feed Sciences*, 15(1): 71–82.
- Berlin, J., 2002. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. International Dairy Journal, 12(11): 939–953. http://linkinghub.elsevier.com/retrieve/pii/S0958694602001127.
- Berlin, J., Sonesson, U. & Tillman, A.-M., 2007. A life cycle based method to minimise environmental impact of dairy production through product sequencing. *Journal of Cleaner Production*, 15(4): 347–356.
- Berlin, J., Sonesson, U. & Tillman, A.-M., 2008. Product Chain Actors' Potential for Greening the Product Life Cycle. *Journal of Industrial Ecology*, 12(1): 95–110.
- Binder, C.R., Schmid, A. & Steinberger, J.K., 2012. Sustainability solution space of the Swiss milk value added chain. *Ecological Economics*, 83: 210–220.
- Biswas, W.K. et al., 2010. Global warming contributions from wheat, sheep meat and wool production in Victoria, Australia a life cycle assessment. *Journal of Cleaner Production*, 18(14): 1386–1392.
 http://www.sciencedirect.com/science/article/pii/S0959652610001769.
- De Boer, I.J.M. et al., 2012. Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: the case of Dutch milk production in Noord-Brabant. *The International Journal of Life Cycle Assessment*, 18(1): 193–203. http://link.springer.com/10.1007/s11367-012-0446-3.

- Casey, J.W. & Holden, N.M., 2006. Quantification of GHG emissions from sucker-beef production in Ireland. *Agricultural Systems*, 90(1-3): 79–98. http://linkinghub.elsevier.com/retrieve/pii/S0308521X0500257X.
- Castanheira, É.G. et al., 2010. The environmental performance of milk production on a typical Portuguese dairy farm. *Agricultural Systems*, 103(7): 498–507.
- Cederberg, C. & Mattsson, B., 2000. Life cycle assessment of milk production a comparison of conventional and organic farming. *Journal of Cleaner Production*, 8(1): 49–60. http://www.sciencedirect.com/science/article/pii/S095965269900311X.
- Cederberg, C. & Stadig, M., 2003. System Expansion and Allocation in Life Cycle Assessment of Milk and Beef Production. *International Journal of Life Cycle Assessment*, 8(6): 350– 356.
- Chen, X. & Corson, M.S., 2014. Influence of emission-factor uncertainty and farmcharacteristic variability in LCA estimates of environmental impacts of French dairy farms. *Journal of Cleaner Production*, 81: 150–157.
- Coats, E.R. et al., 2013. An integrated two-stage anaerobic digestion and biofuel production process to reduce life cycle GHG emissions from US dairies. *Biofuels, Bioproducts and Biorefining*, 7(4): 459–473.
- Dalgaard, R., Schmidt, J. & Flysjö, A., 2014. Generic model for calculating carbon footprint of milk using four different LCA modelling approaches. *Journal of Cleaner Production*, 73: 1–8. http://linkinghub.elsevier.com/retrieve/pii/S095965261400038.
- Daneshi, A. et al., 2014. Greenhouse gas emissions of packaged fluid milk production in Tehran. *Journal of Cleaner Production*, 80: 150–158.
- Davis, J. et al., 2010. Environmental impact of four meals with different protein sources: Case studies in Spain and Sweden. *Food Research International*, 43(7): 1874–1884. http://www.sciencedirect.com/science/article/pii/S0963996909002658.
- Davis, J. & Sonesson, U., 2008. Life cycle assessment of integrated food chains—a Swedish case study of two chicken meals. *The International Journal of Life Cycle Assessment*, 13(7): 574–584.
- Dekker, S.E.M. et al., 2013. Effect of origin and composition of diet on ecological impact of the organic egg production chain. *Livestock Science*, 151(2-3): 271–283.
- Devers, L., Kleynhans, T.E.E. & Mathijs, E., 2013. Comparative life cycle assessment of Flemish and Western Cape pork production. *Agrekon*, 51(4): 105–128.
- Djekic, I. et al., 2014. Environmental life-cycle assessment of various dairy products. *Journal* of Cleaner Production, 68: 64–72.

- Dolman, M.A. et al., 2014. Benchmarking the economic, environmental and societal performance of Dutch dairy farms aiming at internal recycling of nutrients. *Journal of Cleaner Production*, 73: 245–252.
- Dolman, M.A.A., Vrolijk, H.C.J.C.J. & de Boer, I.J.M.J.M., 2012. Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms. *Livestock Science*, 149(1–2): 143–154. http://www.sciencedirect.com/science/article/pii/S1871141312002715.
- Dudley, Q.M. et al., 2014. Uncertainties in life cycle greenhouse gas emissions from U.S. beef cattle. *Journal of Cleaner Production*, 75: 31–39.
- Eady, S., Carre, A. & Grant, T., 2012. Life cycle assessment modelling of complex agricultural systems with multiple food and fibre co-products. *Journal of Cleaner Production*, 28(null): 143–149.
- Eide, M., Homleid, J.. & Mattsson, B., 2003. Life cycle assessment (LCA) of cleaning-in-place processes in dairies. *LWT Food Science and Technology*, 36(3): 303–314.
- Eide, M.H., 2002. Life cycle assessment (LCA) of industrial milk production. *International Journal of Life Cycle Assessment*, 7(2): 115–126.
- Ellingsen, H. & Aanondsen, S.A., 2006. Environmental Impacts of Wild Caught Cod and Farmed Salmon - A Comparison with Chicken (7 pp). *The International Journal of Life Cycle Assessment*, 11(1): 60–65.
- Ercin, a. E., Aldaya, M.M. & Hoekstra, A.Y., 2012. The water footprint of soy milk and soy burger and equivalent animal products. *Ecological Indicators*, 18: 392–402. http://linkinghub.elsevier.com/retrieve/pii/S1470160X11004110.
- Fantin, V. et al., 2012. Life cycle assessment of Italian high quality milk production. A comparison with an EPD study. *Journal of Cleaner Production*, 28: 150–159. http://linkinghub.elsevier.com/retrieve/pii/S095965261100388X.
- FAO, 2010. Greenhouse Gas Emissions from the Dairy Sector a Life Cycle Assessment,
- Flysjö, A. et al., 2011. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. *Agricultural Systems*, 104(6): 459–469. http://www.sciencedirect.com/science/article/pii/S0308521X11000412.
- Flysjö, A. et al., 2012. The interaction between milk and beef production and emissions from land use change – critical considerations in life cycle assessment and carbon footprint studies of milk. *Journal of Cleaner Production*, 28(0): 134–142. http://www.sciencedirect.com/science/article/pii/S0959652611004823.

- Gerbens-Leenes, P.W., Mekonnen, M.M. & Hoekstra, a. Y., 2013. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. *Water Resources and Industry*, 1-2: 25–36. http://linkinghub.elsevier.com/retrieve/pii/S2212371713000024.
- Ghafoori, E., Flynn, P.C. & David Checkel, M., 2006. Global Warming Impact of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. *International Journal of Green Energy*, 3(3): 257–270.
- Gollnow, S. et al., 2014. Carbon footprint of milk production from dairy cows in Australia. *International Dairy Journal*, 37(1): 31–38.
- González-García, S. et al., 2014. Life Cycle Assessment of broiler chicken production: a Portuguese case study. *Journal of Cleaner Production*, 74: 125–134.
- Guerci, M. et al., 2013. Effect of farming strategies on environmental impact of intensive dairy farms in Italy. *Journal of Dairy Research*, 80(03): 300–308.
- Guerci, M. et al., 2014. Effect of summer grazing on carbon footprint of milk in Italian Alps: a sensitivity approach. *Journal of Cleaner Production*, 73: 236–244.
- Haas, G., Wetterich, F. & Köpke, U., 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. *Agriculture, Ecosystems & Environment*, 83(1–2): 43–53.
 http://www.sciencedirect.com/science/article/pii/S0167880900001602.
- Hospido, A., Moreira, M.T.T. & Feijoo, G., 2003. Simplified life cycle assessment of galician milk production. *International Dairy Journal*, 13(10): 783–796.
- Huang, J. et al., 2014. Water availability footprint of milk and milk products from large-scale dairy production systems in Northeast China. *Journal of Cleaner Production*, 79: 91–97.
- Hünerberg, M. et al., 2014. Feeding high concentrations of corn dried distillers' grains decreases methane, but increases nitrous oxide emissions from beef cattle production. *Agricultural Systems*, 127: 19–27.
- Iribarren, D. et al., 2011. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. *The Science of the total environment*, 409(10): 1786–98.
- Joy, M. et al., 2011. A comparison of three production systems in Greenhouse gas emissions throughout the life cycle of Spanish lamb-meat : A comparison of three production systems. , 130: 125–130.

- Katajajuuri, J.-M.. J.M., Grönroos, J.J.. & Usva, K.K.., 2014. Energy use and greenhouse gas emissions and related improvement options of the broiler chicken meat supply chain. *International Journal of Sustainable Development*, 17(1): 49–61.
- Kim, D. et al., 2013. Life cycle assessment of cheese and whey production in the USA. *The International Journal of Life Cycle Assessment*, 18(5): 1019–1035.
- Kristensen, T. et al., 2011. Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach. *Livestock Science*, 140(1–3): 136–148.
- Ledgard, S.F. et al., 2011. Carbon footprinting of New Zealand lamb from the perspective of an exporting nation. *Animal Frontiers*, 1(1): 40–45. http://www.animalfrontiers.org/cgi/doi/10.2527/af.2011-0010.
- Lehuger, S., Gabrielle, B. & Gagnaire, N., 2009. Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed. *Journal* of Cleaner Production, 17(6): 616–624. http://linkinghub.elsevier.com/retrieve/pii/S0959652608002564.
- Leinonen, I. et al., 2012. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems. *Poultry science*, 91(1): 26–40.
- De Léis, C.M. et al., 2014. Carbon footprint of milk production in Brazil: a comparative case study. *The International Journal of Life Cycle Assessment*, 20(1): 46–60. http://link.springer.com/10.1007/s11367-014-0813-3.
- Liang, L. et al., 2013. Estimation of nitrous oxide and methane emission from livestock of urban agriculture in Beijing. *Agriculture, Ecosystems & Environment*, 170: 28–35. http://linkinghub.elsevier.com/retrieve/pii/S0167880913000327 [Accessed August 9, 2013].
- Lijó, L. et al., 2014. Life Cycle Assessment of electricity production in Italy from anaerobic codigestion of pig slurry and energy crops. *Renewable Energy*, 68: 625–635.
- Luo, Y. et al., 2014. Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm. *Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA*, 32(1): 4–12.
- Meneses, M., Pasqualino, J. & Castells, F., 2012. Environmental assessment of the milk life cycle: the effect of packaging selection and the variability of milk production data. *Journal of environmental management*, 107: 76–83. http://www.ncbi.nlm.nih.gov/pubmed/22591834.

- Meul, M. et al., 2014. Potential of life cycle assessment to support environmental decision making at commercial dairy farms. *Agricultural Systems*, 131: 105–115.
- Mezzullo, W.G., McManus, M.C. & Hammond, G.P., 2013. Life cycle assessment of a smallscale anaerobic digestion plant from cattle waste. *Applied Energy*, 102: 657–664. http://dx.doi.org/10.1016/j.apenergy.2012.08.008.
- Michel, J., Weiske, A. & Möller, K., 2010. The effect of biogas digestion on the environmental impact and energy balances in organic cropping systems using the life-cycle assessment methodology. *Renewable Agriculture and Food Systems*, 25(03): 204–218.
- Van Middelaar, C.E. et al., 2011. Eco-efficiency in the production chain of Dutch semi-hard cheese. *Livestock Science*, 139(1-2): 91–99.
- Van Middelaar, C.E. et al., 2013. Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters. *Agricultural Systems*, 121: 9–22. http://linkinghub.elsevier.com/retrieve/pii/S0308521X13000723.
- Mogensen, L. et al., 2014. Method for calculating carbon footprint of cattle feeds including contribution from soil carbon changes and use of cattle manure. *Journal of Cleaner Production*, 73: 40–51.
- Mueller, C., de Baan, L. & Koellner, T., 2014. Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. *International Journal of Life Cycle Assessment*, 19(1): 52–68. http://dx.doi.org/10.1007/s11367-013-0638-5.
- Nguyen, T.T.H. et al., 2013. Consequential LCA of switching from maize silage-based to grassbased dairy systems. *International Journal of Life Cycle Assessment*, 18(8): 1470–1484.
- Nguyen, T.T.H. et al., 2012. Using environmental constraints to formulate low-impact poultry feeds. *Journal of Cleaner Production*, 28: 215–224.
- Nielsen, P.H. & Høier, E., 2009. Environmental assessment of yield improvements obtained by the use of the enzyme phospholipase in mozzarella cheese production. *International Journal of Life Cycle Assessment*, 14(2): 137–143.
- Nijdam, D., Rood, T. & Westhoek, H., 2012. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. *Food Policy*, 37(6): 760–770.
- Nutter, D.W. et al., 2013. Greenhouse gas emission analysis for USA fluid milk processing plants: Processing, packaging, and distribution. *International Dairy Journal*, 31(1): S57–S64.

- O'Brien, D. et al., 2014. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. *Journal of dairy science*, 97(3): 1835–51. http://www.ncbi.nlm.nih.gov/pubmed/24440256.
- O'Brien, D. et al., 2012. A life cycle assessment of seasonal grass-based and confinement dairy farms. *Agricultural Systems*, 107(0): 33–46.
- O'Brien, D. et al., 2014. An appraisal of carbon footprint of milk from commercial grassbased dairy farms in Ireland according to a certified life cycle assessment methodology. *International Journal of Life Cycle Assessment*, 19(8): 1469–1481.
- O'Brien, D. et al., 2011. The effect of methodology on estimates of greenhouse gas emissions from grass-based dairy systems. *Agriculture, Ecosystems & Environment*, 141(1-2): 39–48.
- OGINO, A. et al., 2008. Environmental impacts of a Japanese dairy farming system using whole-crop rice silage as evaluated by life cycle assessment. *Animal Science Journal*, 79(6): 727–736.
- Ogino, A. et al., 2004. Environmental impacts of the Japanese beef-fattening system with different feeding lengths as evaluated by a life-cycle assessment method. *Journal of Animal Science*, 82(7): 2115–2122.
- OGINO, A. et al., 2007. Evaluating environmental impacts of the Japanese beef cow-calf system by the life cycle assessment method. *Animal Science Journal*, 78(4): 424–432.
- Ogino, A. et al., 2013. Life cycle assessment of Japanese pig farming using low-protein diet supplemented with amino acids. *Soil Science and Plant Nutrition*, 59(1): 107–118. http://www.tandfonline.com/doi/abs/10.1080/00380768.2012.730476.
- Oishi, K. et al., 2013. Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems. *Agricultural Systems*, 115: 95–103.
- Opio, C. et al., 2013. Greenhouse gas emissions from ruminant supply chains- A global life cycle assessment,
- Oxenboll, K.M., Pontoppidan, K. & Fru-Nji, F., 2011. Use of a protease in poultry feed offers promising environmental benefits. *International Journal of Poultry Science*, 10(11): 842–848.
- Pelletier, N., Ibarburu, M. & Xin, H., 2013. A carbon footprint analysis of egg production and processing supply chains in the Midwestern United States. *Journal of Cleaner Production*, 54: 108–114. http://linkinghub.elsevier.com/retrieve/pii/S0959652613002874.

- Pelletier, N., Pirog, R. & Rasmussen, R., 2010. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. *Agricultural Systems*, 103(6): 380–389.
- Peters, G.M. et al., 2010. Accounting for water use in Australian red meat production. *The International Journal of Life Cycle Assessment*, 15(3): 311–320.
- Peters, G.M. et al., 2011. Assessing agricultural soil acidification and nutrient management in life cycle assessment. *The International Journal of Life Cycle Assessment*, 16(5): 431–441.
- Peters, G.M. et al., 2010. Red meat production in australia: life cycle assessment and comparison with overseas studies. *Environmental science & technology*, 44(4): 1327–32.
- Phong, L.T., 2010. Dynamics of sustainability in Integrated Agriculture-Aquaculture systems in the Mekong Delta,
- Picasso, V.D. et al., 2014. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay. *Meat science*, 98(3): 346–54.
- Del Prado, A. et al., 2013. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. *The Science of the total environment*, 465: 156–165.
- Prapaspongsa, T. et al., 2010. LCA of comprehensive pig manure management incorporating integrated technology systems. *Journal of Cleaner Production*, 18(14): 1413–1422.
- Prudêncio da Silva, V. et al., 2014. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. *Journal of Environmental Management*, 133: 222–231. http://dx.doi.org/10.1016/j.jenvman.2013.12.011.
- Ridoutt, B.G. et al., 2013. Carbon, water and land use footprints of beef cattle production systems in southern Australia. *Journal of Cleaner Production*, 73: 1–7. http://linkinghub.elsevier.com/retrieve/pii/S0959652613005349.
- Ridoutt, B.G. et al., 2010. Short communication: The water footprint of dairy products: case study involving skim milk powder. *Journal of dairy science*, 93(11): 5114–7. http://dx.doi.org/10.3168/jds.2010-3546.
- Ridoutt, B.G. & Pfister, S., 2010. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. *Global Environmental Change*, 20(1): 113–120. http://dx.doi.org/10.1016/j.gloenvcha.2009.08.003.

- Ridoutt, B.G., Sanguansri, P. & Harper, G.S., 2011. Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia. *Sustainability*, 3(12): 2443–2455.
- Ripoll-Bosch, R. et al., 2013. Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. *Agricultural Systems*, 116: 60–68. http://linkinghub.elsevier.com/retrieve/pii/S0308521X12001618
- Roer, A.-G. et al., 2013. Environmental impacts of combined milk and meat production in Norway according to a life cycle assessment with expanded system boundaries. *Livestock Science*, 155(2–3): 384–396.
- Röös, E. et al., 2013. Can carbon footprint serve as an indicator of the environmental impact of meat production? *Ecological Indicators*, 24(0): 573–581.
- Ross, S.A. et al., 2014. Effect of cattle genotype and feeding regime on greenhouse gas emissions intensity in high producing dairy cows. *Livestock Science*, 170: 158–171.
- Rotz, C.A., Montes, F. & Chianese, D.S., 2010. The carbon footprint of dairy production systems through partial life cycle assessment. *Journal of dairy science*, 93(3): 1266–82. http://dx.doi.org/10.3168/jds.2009-2162.
- Roy, P. et al., 2012. Life cycle of meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan. *Journal of environmental management*, 93(1): 218–24. http://www.ncbi.nlm.nih.gov/pubmed/22054588.
- Ruviaro, C.F. et al., 2014. Carbon footprint in different beef production systems on a southern Brazilian farm: a case study. *Journal of Cleaner Production*.
- Sandars, D.L.L. et al., 2003. Environmental Benefits of Livestock Manure Management Practices and Technology by Life Cycle Assessment. *Biosystems Engineering*, 84(3): 267–281.
- Sanders, K.T. & Webber, M.E., 2014. A comparative analysis of the greenhouse gas emissions intensity of wheat and beef in the United States. *Environmental Research Letters*, 9(4), p.044011.
- Schader, C. et al., 2014. Quantification of the effectiveness of greenhouse gas mitigation measures in Swiss organic milk production using a life cycle assessment approach. *Journal of Cleaner Production*, 73: 227–235.
- Sonesson, U. & Berlin, J., 2003. Environmental impact of future milk supply chains in Sweden: a scenario study. *Journal of Cleaner Production*, 11(3): 253–266.
- Stackhouse-Lawson, K.R. et al., 2012. Carbon footprint and ammonia emissions of California beef production systems 1. *Journal of Animal Science*, 90(12): 4641–4655.

- Stone, J.J. et al., 2012. The life cycle impacts of feed for modern grow-finish Northern Great Plains US swine production. *Agricultural Systems*, 106(1): 1–10.
- Styles, D. et al., 2014. Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. *GCB Bioenergy*, p.n/a–n/a.
- Thévenot, A. et al., 2013. Accounting for farm diversity in Life Cycle Assessment studies the case of poultry production in a tropical island. *Journal of Cleaner Production*, 57: 280–292. http://linkinghub.elsevier.com/retrieve/pii/S0959652613003454
- Thoma, G. et al., 2013. Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. *International Dairy Journal*, 31(1): S3–S14.
- Thomassen, M. a. et al., 2009. Relating life cycle assessment indicators to gross value added for Dutch dairy farms. *Ecological Economics*, 68(8-9): 2278–2284. http://linkinghub.elsevier.com/retrieve/pii/S0921800909000731
- Thomassen, M.A., Dalgaard, R., et al., 2008. Attributional and consequential LCA of milk production. *The International Journal of Life Cycle Assessment*, 13(4): 339–349. http://link.springer.com/10.1007/s11367-008-0007-y
- Thomassen, M.A., Calker, K.J. van, et al., 2008. Life cycle assessment of conventional and organic milk production in the Netherlands. *Agricultural Systems*: 95–107. http://www.sciencedirect.com/science/article/pii/S0308521X07000819.
- Tongpool, R. et al., 2012. Improvement of the environmental performance of broiler feeds: a study via life cycle assessment. *Journal of Cleaner Production*, 35(0): 16–24. http://www.sciencedirect.com/science/article/pii/S0959652612002302.
- Torquati, B. et al., 2014. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria. *Sustainability*, 6(10): 6696–6713.
- Venczel, M. & Powers, S.E., 2010. Anaerobic digestion and related best management practices: Utilizing life cycle assessment. In American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010. American Society of Agricultural and Biological Engineers: 3470–3484.
- Vergé, X.P.C. et al., 2013. Carbon footprint of Canadian dairy products: Calculations and issues. Journal of dairy science, 96(9): 6091–6104. http://www.ncbi.nlm.nih.gov/pubmed/23831091
- Virtanen, Y. et al., 2011. Carbon footprint of food approaches from national input–output statistics and a LCA of a food portion. *Journal of Cleaner Production*, 19(16): 1849–1856. http://linkinghub.elsevier.com/retrieve/pii/S0959652611002423

- De Vries, J.W. et al., 2012. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy A life cycle perspective. *Bioresource Technology*, 125: 239–248.
- De Vries, J.W.W., Groenestein, C.M.M. & De Boer, I.J.M.J.M., 2012. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. *Journal of Environmental Management*, 102(x): 173–183.
- De Vries, M. & de Boer, I.J.M., 2010. Comparing environmental impacts for livestock products: A review of life cycle assessments. *Livestock Science*, 128(1-3): 1–11.
- Webb, J. et al., 2014. Can UK livestock production be configured to maintain production while meeting targets to reduce emissions of greenhouse gases and ammonia? *Journal of Cleaner Production*, 83: 204–211.
- Weiler, V. et al., 2014. Handling multi-functionality of livestock in a life cycle assessment: the case of smallholder dairying in Kenya. *Current Opinion in Environmental Sustainability*, 8: 29–38.
- Weiss, F. & Leip, A., 2012. Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model. *Agriculture, Ecosystems & Environment*, 149: 124–134.
- Van der Werf, H.M.G. et al., 2009. An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. *Journal of environmental management*, 90(11): 3643–52. http://dx.doi.org/10.1016/j.jenvman.2009.07.003
- Van der Werf, H.M.G. et al., 2005. The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne. *Agricultural Systems*, 83(2): 153– 177.
- Williams, S.R.O. et al., 2014. Reducing methane on-farm by feeding diets high in fat may not always reduce life cycle greenhouse gas emissions. *International Journal of Life Cycle Assessment*, 19(1): 69–78.
- Wood, R. et al., 2006. A comparative study of some environmental impacts of conventional and organic farming in Australia. *Agricultural Systems*, 89(2-3): 324–348. http://dx.doi.org/10.1016/j.agsy.2005.09.007.
- Xie, M. et al., 2011. A comparative study on milk packaging using life cycle assessment: from PA-PE-Al laminate and polyethylene in China. *Journal of Cleaner Production*, 19(17-18): 2100–2106. http://linkinghub.elsevier.com/retrieve/pii/S0959652611002344
- Yang, Q. et al., 2012. Nonrenewable energy cost and greenhouse gas emissions of a "pigbiogas-fish" system in China.(In Chinese). *TheScientificWorldJournal*, 2012, p.862021.

- Zabaniotou, A. & Kassidi, E., 2003. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. *Journal of Cleaner Production*, 11(5): 549–559.
- Zehetmeier, M. et al., 2014. A dominance analysis of greenhouse gas emissions, beef output and land use of German dairy farms. *Agricultural Systems*, 129: 55–67.
- Zervas, G. & Tsiplakou, E., 2012. An assessment of {GHG} emissions from small ruminants in comparison with {GHG} emissions from large ruminants and monogastric livestock.
 Atmospheric Environment, 49(0): 13–23.
 http://www.sciencedirect.com/science/article/pii/S1352231011012258.
- Zhang, S. et al., 2013. A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia. *Bioresource Technology*, 150: 496–505. http://dx.doi.org/10.1016/j.biortech.2013.09.076.
- Zhong, J. et al., 2013. Greenhouse gas emission from the total process of swine manure composting and land application of compost. *Atmospheric Environment*, 81: 348–355.
- Zonderland-Thomassen, M.A. & Ledgard, S.F., 2012. Water footprinting A comparison of methods using New Zealand dairy farming as a case study. *Agricultural Systems*, 110(null): 30–40. http://dx.doi.org/10.1016/j.agsy.2012.03.006
- Zonderland-Thomassen, M.A., Lieffering, M. & Ledgard, S.F., 2014. Water footprint of beef cattle and sheep produced in New Zealand: water scarcity and eutrophication impacts. *Journal of Cleaner Production*, 73: 253–262.