# RISING

# Sustainable intensification indicator framework for Africa RISING

Philip Grabowski (Michigan State University); Mark Musumba (Columbia University); Cheryl Palm (University of Florida); Sieg Snapp (Michigan State University)

Africa RISING East and Southern Africa Phase II Planning Meeting, Lilongwe, Malawi, 5-8 October 2016







## Five domains of Sustainable Intensification

kica RISING



## Sustainable Intensification as described in the proposal documents

#### Purpose and theory of change

The purpose of Africa RISING is to provide pathways out of **hunger** and **poverty** for smallholder families through sustainably intensified farming systems that sufficiently improve **food**, **nutrition**, **and income security**, particularly for **women** and children, and **conserve or enhance the natural resource base**.

The core focus will continue to be on the sustainable intensification of production from households and systems, with integrated multi-disciplinary research on **food security, nutrition, crops, livestock, water, trees, natural resources and markets** at the heart.

interventions aim to improve **whole farm productivity**, **maintain important ecosystem services**, and enhance the **resilience** of farm households to shocks. (p. iii)







## Attributes of Sustainable Systems



```
maden and priving variable
```



Lopez-Ridaura et al 2005 Multiscale methodological framework to derive criteria and indicators for sustainability evaluation of peasant NRM systems. *Environment, Development and Sustainability* 7:51–69





Less ( reliable, resilient, adaptable) system

















### How do we know if we are achieving this?

- You can't know what you don't measure!
- SI indicator framework
  - List of indicators with various metrics organized by scale
  - Exercise for identifying tradeoffs and synergies
  - Guide for selecting indicators and metrics
  - Support for visualizing the results



Adaptation from -- Kline, K. 2014; Stoorvogel et al. 2004



### ESA Writeshop studies (29)





### Writeshop (29) vs. On-line survey (39)





### ESA Writeshop studies (29)





### On-line survey results (39 scientists)



# Challenges to reliably collecting data on all important SI indicators

\* CaRISING

| Limitation                                 | Percent mentioning |
|--------------------------------------------|--------------------|
| Data quality (accuracy and precision)      | 50%                |
| High costs of data collection              | 45%                |
| Lack of expertise training/collecting data | 36%                |
| Time required                              | 32%                |
| Other (e.g. scale aggregation)             | 23%                |
| Lack of expertise training/collecting data | 36%                |



# Primary uses of the SI indicator framework

- 1. Assessing technologies
- 2. Identifying tradeoffs and synergies
- 3. Monitoring and Evaluation of Community-wide impact

# Utilizing a framework of indicators to assess sustainable intensification

Sieglinde Snapp<sup>1,2</sup>, Philip Grabowski<sup>1</sup>, Regis Chikowo<sup>1,3,</sup> Erin Anders<sup>1</sup> and Mateete Bekunda<sup>2</sup> Contact: snapp@msu.edu

<sup>1</sup>Plant Soil and Microbial Sciences Department, Michigan State University, East Lansing, Michigan - USA

<sup>2</sup> International Institute of Tropical Agriculture (IITA), Arusha – Tanzania <sup>3</sup>Department of Crop Science, University of Zimbabwe, Harare – Zimbabwe

# Evaluating relative sustainability of legume systems in Malawi

Systems compared:

RISING

- Mz0 Continuous sole maize no fertilizer
- MzNPK Continuous sole maize with 69 kg N/ha fertilizer
- PpMz Maize-Pigeonpea intercrop with 35 kg N/ha fertilizer
- GnPp-Mz Groundnut-Pigeonpea intercrop rotated with maize (35 kg N/ha fertilizer in maize phase)

Data sources:

- 1) Mother trials yield and biomass (2-3 seasons)
- 2) APSIM modeling results yield variability, long-term soil changes
- Survey data (baseline for prices + hh composition; baby trials survey for pairwise ranking of technologies





#### Golomoti





## Conclusion

- The SI indicator framework facilitated holistic analysis of legume systems and the identification of important data gaps
- A transdisciplinary approach (interdisciplinary research collaboratively engaging with farmers) is needed to develop and assess management practices for sustainable intensification



| Preliminary results from Mbola                     |                       |                 |  |  |  |  |  |
|----------------------------------------------------|-----------------------|-----------------|--|--|--|--|--|
| Table 1. Describes the indicators selected         |                       |                 |  |  |  |  |  |
| Indicators                                         | Basic Indicator       | Domain          |  |  |  |  |  |
| Maize yield in ton per ha                          | Crop yield            | Productivity    |  |  |  |  |  |
| Chemical fertilizer use per ha                     | Input use intensity   | Economic        |  |  |  |  |  |
| % total land allocated to maize                    | Crop diversification' | Economic        |  |  |  |  |  |
| % of household selling maize to the market         | Market Participation  | Economic        |  |  |  |  |  |
| % households with no incidence of water insecurity | Water Insecutiry      | Environmental   |  |  |  |  |  |
| % households with no incidence of food insecurity  | Food Insecurity       | Human condition |  |  |  |  |  |



## Questions?



# Primary uses of the SI indicator framework

- 1. Assessing technologies
- 2. Identifying tradeoffs and synergies
- 3. Monitoring and Evaluation of Community-wide impact



| Name:  |  |
|--------|--|
| Focus: |  |
|        |  |
|        |  |

#### Social

Gender equity

Age equity

Equity of marginalized groups

Level of social cohesion

Level of collective action

Conflicts over resources

#### <u>Productivity</u>

Crop production

Fodder production

Animal production

Variability in production

Economic

Profitability

Variability of profitability

Returns to land, labor and capital

Income diversification

Input use efficiency

Market participation

Market orientation

Poverty rates

#### Environment

Vegetative cover

Plant biodiversity

Fuel availability

Water availability

Water quality

Soil erosion

Soil carbon

Soil acidity

Soil salinity

Nutrient partial balance

Greenhouse gas emissions

Pesticide use

#### Human condition

Nutritional status Nutrition awareness Food security Capacity to experiment

Human health

Draw arrows for connections ----->

Use +, ++, or +++ to show synergies

Use -, 🛶 or --- to show tradeoffs



### Malawi – Africa RISING example





### Summary of indicators and metrics

| Domain                                                |                         | Indicators                |              | Measurement methods                       |                          | Proxies         |
|-------------------------------------------------------|-------------------------|---------------------------|--------------|-------------------------------------------|--------------------------|-----------------|
|                                                       |                         |                           |              | Popular measurement                       | Approximate measure      |                 |
| 1 Destructionites                                     |                         | Crop production kg/ha/yr. |              | Crop cuts                                 | Farmer recall            | NPP             |
| <u>1. Productivity</u> –                              | grain, biomass and      | Animal yield              |              | Livestock surveys                         | Farmer recall            | Regional sales  |
| animai products j                                     | per unit of fand per    | Fodder producti           | ivity        | Survey                                    | Crop cuts or measures    |                 |
| unit ume                                              |                         | Variability of p          | roduction    | Data over time                            | Farmer ranking           | Modeled data    |
|                                                       |                         | Profitability             |              | Survey/diary of inputs + outputs          | Gross margin             |                 |
|                                                       |                         | Variability of p          | rofitability | Profits over time Modeled profits         |                          |                 |
| 2                                                     |                         | Poverty rates             |              | Survey consumption, expenditure           | and assets               |                 |
| 2. Economic - in                                      | centives, constraints   | Market particip:          | ation        | Survey                                    |                          | Regional sales  |
| and efficiency                                        |                         | Income diversif           | ication      | Survey                                    |                          |                 |
|                                                       |                         | Input use efficiency      |              | Experiments                               | Recall                   |                 |
|                                                       |                         | Input use intensity       |              | Survey                                    |                          |                 |
|                                                       | <u>Part 1:</u> local    |                           | Carbon       | Soil test                                 | Biomass inputs           |                 |
|                                                       | natural resource        | Soil attributes           | Water        | Soil moisture                             | Visual estimate          |                 |
|                                                       | base for                |                           | Nutrients    | Soil nutrient tests                       | Crop performance         |                 |
| 3 Environment                                         | agriculture             |                           | Erosion      | Runoff measure                            | Visual estimates         | Sediment load   |
| 5. Environment                                        |                         | Vegetative cover          |              | Quadrats                                  | Remote sensing           |                 |
|                                                       | Part 2: impacts on      | Habitat or biodi          | versity loss | Transects                                 | Remote sensing           |                 |
|                                                       | ecosystem               | Water quality             |              | Various                                   |                          |                 |
|                                                       | services                | Pesticide use             |              | Observed application                      | Recall, sales            |                 |
|                                                       |                         | Greenhouse gas            | emissions    | Measured fluxes                           | Inputs and practices     |                 |
|                                                       |                         | Food security             |              | Survey - production                       | Consumption              | Production      |
| 4. Human condit                                       | <u>ion</u> – impacts on |                           |              | consumption and expenditure               |                          |                 |
| individuals                                           |                         | Nutrition                 |              | Anthropometric measures Dietary diversity |                          | Prod. diversity |
|                                                       |                         | Capacity to exp           | eriment      | Independent experiments                   | Testing out practices    |                 |
| 5 Social _ imma                                       | ts on relationships     | Gender equity             |              | Gender equity impact analysis             | Farmer ratings by gender |                 |
| <ol> <li>Social – impacts on relationships</li> </ol> |                         | Social capital            |              | Collective action                         | # conflicts              |                 |



### Example of -- Economic domain

| Indicator               | Field/plo<br>t | Farm                                                                    | Household                                                                                                                                                          | Landscape or<br>Administrative Unit                                | Measurement<br>method            |
|-------------------------|----------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|
| Market<br>participation | N/A            | % of<br>production<br>sold (by crop,<br>animal<br>product) <sup>1</sup> | -see farm                                                                                                                                                          | % households<br>selling an<br>agricultural<br>product <sup>1</sup> | <sup>1</sup> Household<br>survey |
| Market<br>orientation   | N/A            | % of land<br>allocated to<br>cash crops <sup>1</sup>                    | % of production<br>sold (by crop,<br>animal product) <sup>1</sup><br>% of land<br>allocated to cash<br>crops <sup>1</sup><br>( <i>Market</i><br>orientation index) |                                                                    | <sup>1</sup> Household<br>survey |

# RISING

# Choose indicators for an intervention or technology

- 1. Be specific about the intervention
- 2. What are the potential direct and indirect effects?
- 3. How can those be feasibly measured?

### Indicator selection guide

| Indicators for<br>Productivity<br>Domain       | Direct effect<br>(X if yes) | Indirect effect<br>(X if yes) | Likelihood of<br>indirect effect<br><i>rate from 1</i><br>(very unlikely)<br>to 5 (very<br>likely) | Magnitude of<br>effect (+ or - )<br>rate from 1<br>(weak) to 5<br>(very strong) | Justification if<br>the indicator<br>will not be<br>measured |
|------------------------------------------------|-----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|
| Yield                                          |                             |                               |                                                                                                    |                                                                                 |                                                              |
| Crop<br>harvest 1:                             |                             |                               |                                                                                                    |                                                                                 |                                                              |
| Crop<br>residue 1:                             |                             |                               |                                                                                                    |                                                                                 |                                                              |
| Fodder<br>production<br>considering<br>quality |                             |                               |                                                                                                    |                                                                                 |                                                              |
| Animal<br>productivity                         |                             |                               |                                                                                                    |                                                                                 |                                                              |
| Species 1:                                     |                             |                               |                                                                                                    |                                                                                 |                                                              |
| Species 2:                                     |                             |                               |                                                                                                    |                                                                                 |                                                              |



## **Discussion questions**

- 1. What indicators have you measured in Africa RISING already?
- 2. What indicators are of interest for Phase II? Why?
- 3. What concerns do you have about measuring those indicators effectively?

## Presentation of results

- Radar charts allow for transparency
- Readers can value each indicator as they see fit
- A computed index (e.g. per domain) tends to hide too much and provides little benefit
- Developing targets and threshold values would be useful, but challenging

### Radar chart generator in excel

- Instructions for how to enter information
- All indicators must be stated positively!

Intro: Radar charts require all axes to have the same range. This worksheet enables you to graph data with different ranges by converting the highest value in each row to "1".

• For example – erosion reduced

|                          | •                              |       | · · ·                         |             |                        | ·          | · ·     |        |                 |                         |         |                    |        |
|--------------------------|--------------------------------|-------|-------------------------------|-------------|------------------------|------------|---------|--------|-----------------|-------------------------|---------|--------------------|--------|
| The axis labels will aut | omatically list the indicator, | units | , maximum and minimum values. |             |                        |            |         |        |                 |                         |         |                    |        |
|                          |                                |       |                               |             |                        |            |         | Catego | ory 1           | Category 2              |         | Category 3         | Catego |
| Domain                   | Indicator                      | /     | Metric                        |             |                        |            | Units   |        |                 | /                       |         |                    |        |
| Productivity             | Stop 1: List indicators        | /     | Stop 1b: List motrics         | en 1c: Li   | st units               | -          |         |        | Step 3: List    | systems                 | ٦       |                    |        |
| Productivity             | This will be part of your      |       | Briefly describe the Thi      | s will auto | omatically be          |            |         |        | being compa     | red                     |         |                    |        |
| Economic                 | axis label.                    |       | metric used to measure part   | t of the a  | axis label             |            |         |        | Short labels fo | reach<br>will annoar in |         |                    |        |
| Economic                 | Noto that all indicators       |       | the indicator                 |             |                        |            |         |        | the legend.     |                         | 1       |                    |        |
| Environmental            | must be stated positively      |       |                               |             |                        |            |         |        | _               |                         |         |                    |        |
| Environmental            | (where higher is "better")     |       |                               |             | Step 2:                |            |         |        |                 | S                       | tep 4   | I: Data entry      |        |
| Human Condition          | for the radar chart to be      |       |                               | 1           | Add or delete rows a   | s ne       | eeded - |        |                 | E                       | nter t  | he data for each   |        |
| Human Condition          | easy to interpret.             | _     |                               |             | radar chart for each r | n c<br>row | orthe   |        |                 | In                      | Idicato | or for each system |        |
| Social                   | In the example notice          |       |                               |             |                        |            |         |        |                 |                         |         |                    |        |
| Social                   | "Erosion reduced" is used      |       |                               |             |                        |            |         |        |                 |                         |         |                    |        |
|                          | "Yield stability" is used      |       |                               |             |                        |            |         |        |                 |                         |         |                    |        |
|                          | instead of "Yield variability" |       |                               |             |                        |            |         |        |                 |                         |         |                    |        |
|                          |                                |       |                               |             |                        |            |         |        |                 |                         |         |                    |        |



### Mock example provided

| Domain          | Indicator                  | Units      | Conv.Mz no fert | CA Mz no fert | Conv.Mz fert | CA Mz fert  |
|-----------------|----------------------------|------------|-----------------|---------------|--------------|-------------|
| Productivity    | Yield (maize)              | kg/ha      | 1000            | 1200          | 1800         | 2020        |
| Productivity    | Yield stability (maize)    | prob.      | 0.8             | 0.9           | 0.85         | 0.95        |
| Economic        | Profitability              | \$/ha      | \$100           | \$120         | \$120        | \$142       |
| Economic        | Stability of profitability | prob.      | 0.95            | 0.9           | 0.8          | 0.85        |
| Environmental   | Soil Carbon                | % change   | -50.00%         | 0%            | 0%           | 50%         |
| Environmental   | Erosion reduced            | tons/ha/yr | 0               | 1.5           | 1            | 3           |
| Human Condition | Nutrition                  | % protein  | 0.416666667     | 0.5           | 0.75         | 0.841666667 |
| Human Condition | Food security              | months     | 5               | 6             | 9            | 10.1        |
| Social          | Gender equity              | % women    | 60%             | 50%           | 70%          | 80%         |
| Social          | Lack of conflict           | prob.      | 100%            | 80%           | 100%         | 80%         |

## RISING Kite All Control of Contro

### Output generated by mock example





# Primary uses of the SI indicator framework

- 1. Assessing technologies
- 2. Identifying tradeoffs and synergies
- 3. Monitoring and Evaluation of Community-wide impact

## RISING CARLENS CONTRACTOR OF C

### Approach to refining indicator list

- Synthesis of literature and stakeholder expertise to obtain list of indicators, metrics and methods at the four scales and identify gaps.
- Engage scientists and project managers involved in SI to curate the list of indicators and methods.
  - Meeting and field visit in Mali (October 2015)
    - Discussion and meeting with steering committee and Africa RISING scientist.
    - Field visit to Africa RISING sites and MV site
  - Ethiopia visit in November 2015 (Africa RISING)
    - Visit to Africa RISING sites
    - Interaction with project partners and scientist
    - Update the framework indicators and protocol (metric methods) list
  - Rwanda (CIALCA) (February and March 2016)
  - Online survey of scientist working in sustainable intensification research projects (May – July 2016)



## Thank You

### Africa Research in Sustainable Intensification for the Next Generation **africa-rising.net**









This presentation is licensed for use under the Creative Commons Attribution 4.0 International Licence.