Enhancing CropSyst for intercropping modeling

iCropM, 15-17 March 2016, Berlin

Bryan Carlson,

 Rolf Sommer*, Birthe Paul, Mirriam Muli and Claudio Stöckle
Intercropping

- Definition of intercropping:

Growing two (or more) plant species simultaneously overlapping in space and time.

- Benefits:
- better use of the acreage of land
- better nutrient use (efficiency)
- commensalism/allelopathy (e.g. Push-Pull systems)
- diversification (improved diet, reduction of production risk, improved soil protection/health)
- Costs:
- competition
- increased complexity
- allelopathy
- Some definitions:
- (effective) land equivalent ratio (LER)
- relative yield totals (RYT)

"The whole is greater than the sum of its parts!"

The importance of intercropping in sub-Saharan Africa

- Intercropping dominates in smallholder farming systems of SSA!

Napier-Desmodium, Tanzania

Maize-Cowpea, Zambia

Maize-Pigeon pea, Tanzania

The importance of intercropping in sub-Saharan Africa

Push-Pull System, Kenya

Maize-Bean, Kenya

Intercropping in CropSyst

"As simple as possible, but not any simpler."

- 1D
- 2 crops with now distinct row arrangement (no alley cropping or wide bed\&furrow systems with distinct 2D pattern)
- different planting dates possible (relay cropping)
- dominance of one species over the other may change over time (e.g. maize cow pea system)
- simulate the growth of these two species and the influence of competition
- light,
- water,
- nitrogen

Light interception (I)

$$
I=f * P A R
$$

$$
f=1-e^{-k * L A I}
$$

Three cases to consider:

1. Interception by the taller (T) species above the shorter species
2. Interception by the taller species within/below the shorter species
3. Interception of the shorter (S) species

Light interception (I)

The PAR fraction intercepted by the upper canopy is:
$f_{U}=1-e^{-k_{T} * L A I_{U}}$
eq. 3
The PAR fraction intercepted by the taller species at the lower canopy is:
$f_{L_{-} T}=\frac{L A I_{L_{-} T} * k_{T}}{L A I_{L_{-} T} * k_{T}+L A I_{L_{-} S} * k_{S}} 1-e^{\left[-L A I_{L_{-} T} * k_{T}-L A I_{L_{-} S} * k_{S}\right]}$ eq. 4
and that of the shorter species:
$f_{L_{-} S}=\frac{L A I_{L_{-} S} * k_{S}}{L A I_{L_{-} T} * k_{T}+L A I_{L_{-} S} * k_{S}} 1-e^{\left[-L A I_{L_{-} T} * k_{T}-L A I_{L_{-} S} * k_{S}\right]}$ eq. 5

Light interception (I)

The PAR intercepted at the upper canopy is:
$I_{U}=f_{U} * P A R$
eq. 6
The available PAR reaching the lower canopy must be reduced by this intercepted radiation.

Thus, the radiation intercepted by the two species at the lower canopy is:

$$
\begin{gathered}
I_{L_{-} T}=f_{L_{-} T} *\left(P A R-I_{U}\right) \\
I_{L_{-} S}=f_{L_{-} S} *\left(P A R-I_{U}\right)
\end{gathered}
$$

$$
\text { eq. } 7
$$

$$
\text { eq. } 8
$$

Transpiration and evaporative demand

- Partitioning of evaporative demand between the upper and lower canopy and between species done using actual radiation interceptions as scaling factors.

Water and N-uptake

- Non limiting conditions:
- uptake is calculated for each species as if it was growing alone using either the evaporative demand or crop-specific N -uptake boundaries as "sink".
- Limited conditions:
- demand/uptake of each species is reduced based on a user-defined "competiveness factor", so as to allow the sum of both demands to be equal to the available water or N .

Maize-Bean intercropping trial - Wote, Kenya

Maize-Bean intercropping trial - Wote, Kenya

200

Maize-Bean intercropping trial - Wote, Kenya

- Planting
- 20 October 2015
- 60 cm row spacing
- Fertilizer application
- 1.5 t /ha manure (maize and beans), incorporated before 5 day before planting
- $25 \mathrm{~kg} / \mathrm{ha}$ DAP at planting (maize only)
- $50 \mathrm{~kg} / \mathrm{ha}$ CAN topdressing of maize (16 Dec.)
- Maize phenology
- 50\% tasseling: 14 Dec.
- 50\% silking: 25 Dec.
- maturity: 5 Feb. 2016
- harvest: 16 Feb.
- Bean phenology
- start flowering:
- start grain filling:
- maturity:
- harvest:

Maize-bean intercropping trial - Wote, Kenya

13 November

4 December

15 December

8 January

Results - leaf area index and aboveground biomass

Results - Aboveground biomass inter- vs. mono-cropping

Results - Yield inter- vs. mono-cropping

Intercropping out-competes mono-cropping!

Outlooks

- some debugging
- implement simplified way of accommodating differences in plant density/spacing
- move from VBA to C++ version of CropSyst

