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Abstract Maize is grown by millions of smallholder farmers
in South Asia (SA) under diverse environments. The crop is
grown in different seasons in a year with varying exposure to
weather extremes, including high temperatures at critical
growth stages which are expected to increase with climate
change. This study assesses the impact of current and future
heat stress onmaize and the benefit of heat-tolerant varieties in
SA. Annual mean maximum temperatures may increase by
1.4–1.8 °C in 2030 and 2.1–2.6 °C in 2050, with large month-
ly, seasonal, and spatial variations across SA. The extent of
heat stressed areas in SA could increase by up to 12% in 2030
and 21 % in 2050 relative to the baseline. The impact of heat
stress and the benefit from heat-tolerant varieties vary with the
level of temperature increase and planting season. At a region-
al scale, climate change would reduce rainfed maize yield by

an average of 3.3–6.4 % in 2030 and 5.2–12.2 % in 2050 and
irrigated yield by 3–8% in 2030 and 5–14% in 2050 if current
varieties were grown under the future climate. Under
projected climate, heat-tolerant varieties could minimize yield
loss (relative to current maize varieties) by up to 36 and 93 %
in 2030 and 33 and 86 % in 2050 under rainfed and irrigated
conditions, respectively. Heat-tolerant maize varieties, there-
fore, have the potential to shield maize farmers from severe
yield loss due to heat stress and help them adapt to climate
change impacts.
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1 Introduction

Climate change poses a formidable threat to the sustainable
development of South Asia (SA), as the region is vulnerable to
the impacts of climate change due to high population density,
poverty, and lack of resources for adaptation (Ahmed and
Suphachalasai 2014). Despite rapid urbanization, the majority
of the SA population is still rural and dependent on agriculture
for their livelihoods (Hijioka et al. 2014) and will remain
vulnerable to climate shocks for the foreseeable future.

Warming has occurred across most of South Asia over the
twentieth century and into the twenty-first century with more
frequent incidences of temperature extremes (Lal 2005; Lal
2011; Hijioka et al. 2014). Records indicate a decrease in the
number of cold days and nights and an increase in the number
of warm days and nights across most of Asia since 1950; and
heat wave frequency has increased since the middle of the
twentieth century in large parts of Asia (Hijioka et al. 2014).

Many studies suggest that the frequency of high daytime
and night time temperatures will increase in the near future,
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and this will present a tremendous challenge to global food
production and food security (Lobell et al. 2011a; Cairns et al.
2012; Hijioka et al. 2014). Extreme heat stress during the crop
reproductive period can be critical for crop productivity, and
hence projected changes in the frequency and severity of ex-
treme climatic events are expected to negatively impact crop
yields and global food production (Knox et al. 2012; Gourdji
et al. 2013; Deryng et al. 2014). Each rise in mean temperature
by 1 °C is predicted to cause huge yield losses in India, and
farmers are projected to lose up to US$20 billion each year
(FAO 2008; Swaminathan and Kesavan 2012).

Maize production has been growing rapidly in SA over the
last decades with an annual harvested area reaching 12 mil-
lion ha recently (FAOSTAT 2013). The growth is in response
to a surge in regional maize demand, driven by economic
growth, changing diets, and the rapidly growing poultry sec-
tor, where maize constitutes about 65 % of the poultry ration
(Shiferaw et al. 2011; Hellin et al. 2015). Maize is now grown
by millions of smallholder farmers in the region almost all
year round mostly under sub-tropical rainfed lowland
conditions.

Maize is particularly vulnerable to heat stress during the
reproductive stage (Rattalino Edreira et al. 2011; Cairns
et al. 2012; Mayer et al. 2014; Rezaei et al. 2015), and it is
reported that each degree increase in a day where the temper-
ature exceeds 30 °C reduces the final yield of maize by 1 %
under favorable growing conditions and by 1.7 % under
drought-stressed conditions (Lobell et al. 2011b). Most of
the sub-tropical maize-growing areas in SA are highly vulner-
able to high temperature stress, particularly during the pre-
monsoon season when maize is prone to severe heat stress
during anthesis and early grain-filling stages (Prasanna 2011).

Development and effective targeting of heat-tolerant maize
varieties is needed to improve the resilience of maize produc-
tion under heat-stressed conditions. Currently, there is little
quantitative information to illustrate the potential benefits of
heat-tolerant maize varieties across SA to inform research and
investment decisions. This is partly due to a lack of ex-ante
analytical tools that allow for exploration under future climatic
conditions. Recently, however, crop models have been used
for the comparison of various scenarios and strategies, such as
quantifying the potential benefits of incorporating drought
tolerance, heat tolerance, and other yield-enhancing traits into
commonly grown cultivars of different crops under climate
change (Rinaldi et al. 2007; Singh et al. 2014a; Singh et al.
2014b; Singh et al. 2014c; Kadiyala et al. 2015). The present
paper contributes to the literature with the case of heat-tolerant
maize in SA. The objectives of this study were to assess the
effects of current and future heat stress onmaize in SA in order
to (a) estimate the impacts of climate change on maize yield
and (b) quantify the benefits of heat-tolerant maize varieties at
different spatial and temporal scales in the region using crop-
modeling approaches.

2 Methodology

2.1 Description of the study region

The study was conducted in the SA region which includes
seven countries: Afghanistan, Bangladesh, Bhutan, India,
Nepal, Pakistan, and Sri Lanka. The climate of the region
varies considerably from tropical in the south to temperate and
alpine in the north and is mainly influenced by latitude, altitude,
and the seasonal impact of the monsoon. Although planting
seasons can vary, most areas plant maize under rainfed condi-
tions from June onward for the monsoon season and/or under
irrigated conditions around October and/or March. Despite high
rates of economic growth and steady progress in poverty reduc-
tion in recent years, nearly half of the world’s poor live in the
region and comprise nearly a third of the 1.5 billion inhabitants
(Ahmed and Suphachalasai 2014). Moreover, climate
change is emerging as a significant risk to sustainment of
economic development and growth in the region.

2.2 Identification of current and future heat stress
hotspots

The heat stress hotspots were identified after a geospatial anal-
ysis of baseline 1950–2000 (2000) and future, 2020–2049
(2030), and 2040–2069 (2050) climate datasets (monthly
maximum and minimum temperatures) using the ArcGIS spa-
tial analyst tool. The baseline climate data were obtained from
the WorldClim database (Hijmans et al. 2005; http://www.
worldclim.org/), while the projected downscaled climate
data for Commonwealth Scientific and Industrial Research
Organisation (CSIRO-Mk3.6) and Model for Interdisciplinary
Research on Climate (MIROC-ESM-CHEM) general
circulation models (GCMs) for the medium representative con-
centration pathway (RCP6.0) scenario (van Vuuren et al. 2011;
van Vuuren and Carter 2014) were obtained from the Climate
Change Agriculture and Food Security (CCAFS) climate data
portal (CCAFS 2014; http://www.ccafs-climate.org/).
Discernable differences between the various emission scenarios
only become apparent after the mid-century (van Vuuren and
Carter 2014), and hence, only RCP6.0 was used for this study.

2.3 Model description, calibration, and evaluation

The cropping system model (CSM) used to simulate maize
growth was Crop Estimation through Resource and
Environment Synthesis, CERES-Maize (Jones and Kiniry
1986), which is embedded in the Decision Support System
for Agrotechnology Transfer, DSSAT v4.5 (Jones et al.
2003; Hoogenboom et al. 2010). CERES-Maize is a pro-
cess-based, management-oriented model that utilizes water,
carbon, nitrogen, and energy balance principles to simulate
the growth and development of maize plants within an
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agricultural system. The model runs with a daily time step and
simulates crop growth, development, and yield of specific
cultivars based on the effects of weather, soil characteristics,
and crop-management practices (Jones et al. 2003).

The CERES-Maize model was calibrated for four hybrid
maize varieties currently grown in South Asia (31Y45,
900MG, DKC9108, HTMH540), using yield and phenology
(2010–2013) and crop growth (2013) data collected from
Hyderabad (17.62858 N, 78.55928 E) research station. The
CERES-Maize model requires six genetic coefficients which
govern the life cycle and reproductive growth of maize culti-
vars (Table 1). A stepwise iterative calibration procedure was
followedwhereby genetic coefficients which determine anthe-
sis and physiological maturity dates (P1, P2, and P5) were
adjusted in the first stage of the process, followed by those
coefficients which influence yield (G2 and G3). Rooting pro-
file (RGF) and soil fertility factor (SPLF) were also adjusted
together with G2 and G3 whenever necessary. Default coeffi-
cients provided in DSSAT4.5 for a medium-maturing maize
cultivar were used as initial values for the calibration.
Coefficients were accepted as final when simulated values
closely matched the measured ones. The model was evaluated
using phenology, yield, and yield component data collected
from full irrigated experiments in 2013 at Bheemarayanagudi
(16.80417 N, 76.80219 E) and Ludhiana (31.0243 N,
75.81856 E) research stations. The agreement between simu-
lated and measured values during calibration and evaluation
was assessed using root mean square error (RMSE) and index
of agreement or d-index (Willmott 1982), which are calculated
using the following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Si is the simulated value for the ith observation,Oi is the
measured value for the ith observation, Ō is the mean of the
measured values, and n is the number of observations.

Soil profile and daily climate (rainfall, maximum and min-
imum temperatures) data were collected from the experimen-
tal sites, while daily solar radiation data were obtained from
the NASA-POWER database (NASA-POWER 2015). Data
on crop management (including planting date, plant density,
fertilization, and irrigation) were collected during the course
of the experiments and were also collected from the regional
trial database of the CIMMYT-Asia maize program at
Hyderabad.

2.4 Modeling of heat tolerance

Temperature is one of the major environmental factors that
control the rate of growth, development, and yield of crops.
Since crops have specific temperature requirements to com-
plete a given growth stage, extremely high and low tempera-
tures that coincide with critical stages such as anthesis can
have detrimental effects on crop growth, development, and
yield (Luo 2011). Crops have three major cardinal tempera-
tures: base (Tbase), a lower and upper optimum (Topt1 and
Topt2), and maximum (Tmax). The rate of crop development
processes is a positive linear function of temperature between
Tbase and Topt1 and a negative linear function between Topt2 and
Tmax (Roberts and Summerfield 1987). High temperature ep-
isodes close to the time of anthesis are more detrimental to the
yield of many crops than the effects of the increase in mean
seasonal temperature (Wheeler et al. 2000; Luo 2011).
Occurrence of heat stress around silking drastically reduces
kernel set in maize due to an increased abortion of kernels
(Rattalino Edreira et al. 2011; Rezaei et al. 2015), while heat
stress during the grain-filling period reduces kernel weight
through a premature cessation of grain filling (Mayer et al.
2014). Heat tolerance in the current version of CERES-
Maize model is a species-wide trait described in the species
file. Heat tolerance was therefore incorporated into the

Table 1 Genetic coefficients of four benchmark maize varieties determined from field experiment data

Coefficient Description Variety

31Y45 DKC9108 HTMH5401 900MG

P1 Thermal time from seedling emergence to the end of the juvenile stage
(degree days above the base temperature of 8 °C in the juvenile stage)

320.0 320.0 300.0 320.0

P2 Photoperiod sensitivity associated with delayed growth under unfavorable
long-day length condition (no unit)

0.70 0.70 0.70 0.70

P5 Thermal time from silking to physiological maturity (degree days above the
base temperature of 8 °C in the maturity stage)

980.0 890.0 995.0 995.0

G2 Potential maximum number of kernels per plant 950.0 950.0 920.0 798.0

G3 Kernel filling rate under optimum condition (mg day−1) 9.80 9.80 9.80 8.70

PHINT Interval in thermal time between successive leaf appearances
(degree days above a base temperature of 8 °C)

38.90 38.90 38.90 38.90
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CERES-Maize model by modifying the temperature thresh-
olds affecting the relative grain-filling rate (RGFIL).
Accordingly, heat-tolerant varieties had higher (+2) Topt2
and Tmax values than current maize varieties. This is similar
to the method used by Singh et al. (2014c) in CERES-
sorghum.

2.5 Estimation of climate change impacts

The impacts of climate change on maize were determined by
simulating maize growth under both the baseline and future
climates. We use benchmark maize varieties that are currently
grown in SA for the business-as-usual scenario, whereby the
current maize varieties (or similar genetic material) will con-
tinue to be grown under the future climate. Maize is grown
under both rainfed and irrigated systems in SA, and hence the
impacts were determined for the two systems using the three
prevailing seasons. The model was run using June planting for
the rainfed systems and November and March plantings for
the irrigated systems. Since projections for rainfall in SA are
more uncertain than for temperature (Hijioka et al. 2014), we
estimated the impact of climate change on maize productivity
under two scenarios: (1) a future climate where temperatures
increase but rainfall conditions remain unchanged (hereafter
scenario 1) and (2) a future climate where both future temper-
ature and rainfall conditions change according to GCM pro-
jections (hereafter scenario 2). While the first scenario allows
for estimating the impacts of heat stress alone, the second one
incorporates both heat and water stress effects simultaneously.

2.5.1 Impact estimation under climate scenario 1 (heat stress
only)

The impacts under scenario 1 were determined at a represen-
tative site. Because of long-term data availability and relative-
ly higher baseline temperature conditions, Hyderabad was se-
lected to estimate the impact of different levels of heat stress
on maize yield without changing rainfall conditions. To
achieve this, yields of current maize varieties were simulated
for 13 years at Hyderabad with maximum and minimum daily
temperatures increasing by 1, 2, 3, 4, and 5 °C from the current
climate (2000–2012) to represent different levels of heating
under a future climate. Simulations were run for 13 years for
rainfed (June planting) and irrigated (November and March
planting) systems, and the average values of the 13 years were
reported for each planting season. The impacts under each
temperature increase were determined relative to the simulated
values under the current climate (2000–2012) conditions.

2.5.2 Impact estimation under climate scenario 2

The second scenario involved estimation of the impacts of
climate change on maize across SA under future (2030 and

2050) climate conditions, which are projected by the GCMs
selected for this study, using a spatial crop modeling approach.
In order to simulate maize yield at regional level, SA was di-
vided into square pixels (grid cells) with a square length of 5 arc
minutes (≈10 km at the equator), and each pixel was considered
as a field. The spatial allocation model (SPAM) raster map for
maize (You andWood 2006) was used to select maize-growing
areas of SA using the Geographic Resources Analysis Support
System (GRASS) software (http://grass.osgeo.org/).

For each grid cell, soil inputs to the model were obtained
from a set of 27 generic soil profiles (HC27), developed by
blending and interpreting information from both the
Harmonized World Soil Database (HWSD) (FAO/IIASA/
ISRIC/ISSCAS/JRC 2008) and the WISE database (Batjes
2009) based on texture, rooting depth, and organic carbon
content. Simulations were run for all soils in each grid cell,
and the cell-specific output was computed from the area-
weighted average based on the area share of each soil in the
grid cell.

A rule-based automatic planting (70 % soil moisture within
a 30-cm soil depth, monthly maximum temperature <50 °C
and minimum temperature >7 °C within a 135 days planting
window) was used to determine an area-specific sowing date
for rainfed maize, while varieties were planted on specified
dates for irrigated maize. The maize varieties were sown at 7
plants m−2, and an average of 1000 kg ha−1 crop residue was
used as initial residue input to the model. All varieties were
simulated with three equal split applications of 200 and
300 kg ha−1 nitrogen for rainfed and irrigated conditions, re-
spectively. Details on spatial simulation of maize can be found
in Tesfaye et al. (2015).

The potential impact of climate change under both scenario
1 and scenario 2 was estimated by calculating changes in
maize yield between baseline and future climates as follows
(Eq. 3):

ΔY ¼ Y fi−Yb
� �

Yb
ð3Þ

whereΔY is change of yield, Yfi is yield under future climate i,
and Yb is yield under the baseline climate.

2.5.3 Estimation of the benefit of heat-tolerant varieties

Like current maize varieties, heat-tolerant varieties were sim-
ulated under scenario 1 and scenario 2 climate conditions
described above. Next, the benefit from heat stress tolerance
was estimated by comparing the simulated yield of heat-
tolerant maize varieties with current varieties under a given
set of climate as follows (Eq. 4):

ΔY ¼ Yvhi−Yvcið Þ
Yvci

ð4Þ
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where ΔY is change of yield, Yvh is the yield of the heat-
tolerant maize variety under climate i, and Yvc is the yield of
the current maize variety under climate i.

3 Results

3.1 Current and future heat stress hotspots in SA

The two GCMs predicted an annual average increase of the
annual mean maximum temperature by 1.4–1.8 °C in 2030
and by 2.1–2.6 °C in 2050 across SA. Similarly, the mean
annual minimum temperature was projected to increase by
1.6–1.8 °C in 2030 and by 2.4–2.8 °C in 2050 (Fig. 1).
Although the two GCMs projected increases in temperature
in both 2030 and 2050 across SA, MIROC projected consis-
tently higher increases in maximum and minimum tempera-
tures than CSIRO across months and seasons, whereas
CSIRO projected almost the same increase across seasons
(Fig. 1). The projected increases in annual mean maximum
and minimum temperatures by MIROC were higher than
those of CSIRO by 0.42 and 0.22 °C in 2030 and 0.43 and
0.25 °C in 2050, respectively. In 2030, the increase in monthly

mean maximum temperature ranged from 1 °C (September,
CSIRO) to 2.5 °C (May, MIROC) while that of the mean
minimum temperature ranged from 1.1 °C (March, CSIRO)
to 2.4 °C (May, MIROC). Similarly, the increase in mean
monthly maximum temperature in 2050 ranged from 1.4 °C
(September, CSIRO) to 3.1 °C (May, MIROC).

From the total physical area of about 508Mha in SA, about
50–60 % of the area is already under heat stress (>35 °C)
under the current climate from April to June, the pre-
monsoon hot season (Fig. 2a). During the monsoon, the heat
stress under the current climate subsides from 23% of the total
area in July to 8 % in October (Fig. 2a). Mean maximum
temperatures remain below the maximum limit of maize under
the baseline climate in the post-monsoon cool season
(November to February) across all areas in SA.

The heat stress affected area in SA will increase under
the future climate, particularly in the pre-monsoon and
monsoon season (Fig. 2b). Relative to the baseline, the
increase in heat-stressed areas ranged from 3 %
(February) to 12 % (March) in 2030, and 3 % (February)
to 21 % (March) in 2050 (Fig. 2b). While March to
October will be the period for future increases in heat-
stressed areas, the month of March will see the highest
increase in both 2030 and 2050 (Fig. 2b).
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temperatures across South Asia as projected by CSIRO and MIROC
global circulation models in 2030 and 2050 relative to the baseline
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3.2 Model calibration and evaluation

A comparison of measured and simulated days to anthesis and
maturity of the four varieties, for both the calibration and
evaluation dataset, showed good agreement between the mea-
sured and simulated values, indicating that the benchmark
varieties were accurately represented by the calibrated genetic
coefficients shown in Table 1. For the combined calibration
and evaluation dataset, RMSE averaged 3.8 days for anthesis
and 6.6 days for maturity with a d-index value of 0.85 and
0.76, respectively. The average simulated yield of the bench-
mark varieties across all site seasons was closely related to the
measured grain yield. The RMSE and d-index values for the
combined calibration and evaluation yield data were 1.2 t ha−1

and 0.91, respectively.

3.3 Impact of climate change on maize yield

3.3.1 Impact under climate scenario 1

A 1 °C increase in maximum and minimum temperature
above the current climate (2000–2012) at Hyderabad already
has a detrimental effect on the modeled yield of current maize
varieties—with modeled yields declining further with incre-
mental temperatures and the degree of the impact varying by
season (Fig. 3). Among planting seasons, the impact of heat
stress on the yield of current maize varieties was the highest in
the already heat stressed March–May season, while it was
lower in the monsoon (June–September) season. Relative to
the baseline climate, an increase in maximum and minimum
temperatures by 1 °C caused a yield reduction of 55, 13, and
32 %, while an increase by 5 °C caused a reduction of 98, 64,
and 75% in theMarch, June, and November planting seasons,
respectively (Fig. 3).

3.3.2 Impact under climate scenario 2

Yield reductions due to climate change were generally higher
under the MIROC than under the CSIRO GCM projections in
both 2030 and 2050 for both rainfed and irrigated systems
(Figs. 4 and 5). Under rainfed conditions, climate change is
likely to reduce maize yield across SA by an average of 3.3–
6.4% in 2030 and 5.2–12.2% in 2050 if current varieties were
grown under future climate conditions. In 2030, most areas in
SA may experience a yield reduction of 5–15 %, while some
pockets in southern and eastern India and in Bangladesh may
see a yield increase (Fig. 4). In 2050, however, a large part of
SA may experience a yield reduction of 15–25 %, and a con-
siderable part of the regionmay see a reduction of above 25%,
particularly under the MIROC GCM projection (Fig. 5). The
areas with severe yield reduction are scattered across northern,
eastern, and southern India, including the southern part of
Nepal (Fig. 5).

SA may also experience an irrigated yield reduction of
3.0 % (CSIRO) to 8.2 % (MIROC) in 2030 and 5.4 %
(CSIRO) to 13.8 % (MIROC) in 2050. Although scattered
all over the region, the areas that experience the highest irri-
gated maize yield reduction are located in the irrigated areas of
Afghanistan, Pakistan, and eastern India (Figs. 4 and 5).

3.4 Role of heat-tolerant maize varieties in reducing
the impact of climate change

Heat-tolerant maize varieties showed good potential for min-
imizing the impact of heat stress on grain yield under climate
scenario 1 (Fig. 6). Depending on the level of temperature
increase above the current levels, heat-tolerant varieties gave
a yield advantage of 5–27, 1–10, and 6–8 % in the March,
June, and November planting seasons, respectively, relative to
the current maize varieties. Because of existing differences in
the degree of heat stress among the growing seasons, the ad-
vantage from heat-tolerant varieties in reducing yield loss
from heat stress varied with temperature levels. For example,
the advantage of growing heat-tolerant varieties decreases
with an increase in heat stress level in the March planting
season, whereas it increases with temperature increase in the
June planting season (Fig. 6). On the other hand, the benefit
from heat-tolerant varieties remained almost the same across
increasing temperature levels in the November planting sea-
son, suggesting that future temperature increases during this
season may not have a significant heat stress effect on maize
yield.

Compared to current varieties on a regional scale, heat-
tolerant varieties minimized yield reduction due to climate
change (climate scenario 2) by up to 36 % under rainfed and
93 % under irrigated conditions in 2030 and by up to 33 and
86% in 2050, respectively. According to the GCM projection,
the spatial average yield benefit of heat-tolerant varieties over

-100-80-60-40-200

Mar-May

Jun-Sep

Nov-Feb

Rela�ve grain yield reduc�on (%)

Temerature (oC)
5
4
3
2
1

Fig. 3 Impact of increased temperature levels (under baseline rainfall
and irrigation conditions) on the grain yield of maize varieties currently
grown in South Asia
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that of current varieties ranged from 18 to 28% and 18 to 19%
in 2030 and from 16 to 18 % and 16 to 21 % in 2050 under
rainfed and irrigated conditions, respectively. Higher (>20 %)
yield benefits of rainfed heat-tolerant varieties occurred in
most areas of India in 2030 and 2050 except in the central part
(Figs. 7 and 8). Similarly, the highest yield benefit of irrigated
heat-tolerant varieties was found in most irrigated areas of
Afghanistan and Pakistan and in large parts of India except
the central part (Figs. 7 and 8).

4 Discussion

Climate change will adversely affect food security in SA
(Schmidhuber and Tubiello 2007) and there is an urgent need
to develop technologies that adapt to the changing climate.
Climate change, coupled with increased cultivation of maize
in the warmer seasons and environments, will further exacer-
bate the detrimental impacts of heat stress on maize produc-
tivity in SA (Prasanna 2011). Therefore, developing and
deploying climate-resilient germplasm has become one of
the topmost priorities in the tropical/sub-tropical maize-
growing regions (Cairns et al. 2012). For example, various

sources of heat-tolerance traits have been identified in the
maize germplasm accessions of CIMMYT for breeding new
varieties in SA and sub-Saharan Africa that are high yielding
as well as having improved drought and heat tolerance.
However, an early assessment of the potential benefits of
new technologies would be useful before significant invest-
ments are made. This study assessed the potential impact of
climate change on maize production in SA in 2030 and 2050
under two scenarios: (1) a business-as-usual scenario where
current maize varieties or similar genetic material are grown
under future climate conditions, and (2) an adaptation scenario
where current maize varieties are replaced with heat-tolerant
maize varieties in the future.

Similar to previous studies (e.g., Ahmed and Suphachalasai
2014; Chauhan et al. 2014; Lal 2011, 2005) that reported
future temperature increases in the different parts of SA, the
GCMs used in this study projected an increase in mean max-
imum and minimum temperatures across SA in 2030 and
2050. The annual mean maximum and minimum temperature
increases will remain below 2 °C by 2030 but will exceed 2 °C
by 2050 under the RCP 6.0 scenario used in this study. The
temperature projections were generally higher for the MIROC
than for the CSIRO GCM. This could be due to the fact that

Fig. 4 Impact of climate change on rainfed (upper panel) and irrigated (lower panel) maize across South Asia in 2030 using CSIRO (left panel) and
MIROC (right panel) climate projections
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the version of MIROC used in this study (MIROC-ESM-
CHEM) included a robust atmospheric chemistry component
which was found to reproduce past records reasonably well
(Watanabe et al. 2011).

The future increase in temperatures and associated heat
stress levels for maize varies across seasons, locations, and
time periods. A large proportion of the total area in SA has

already been under heat stress (>35 °C), particularly between
April and June (Fig. 2), and this is projected to increase by 7–
12 % in 2030 and by 10–21 % by 2050 (Fig. 3). Maize is
grown three times per year in many parts of SA, and this
exposes the crop to different levels of heat stress, particularly
for spring (pre-monsoon) maize which has become an impor-
tant option for intensifying and diversifying cropping systems
in SA, especially in the upper and middle Indo-Gangetic
Plains (Prasanna 2011). The highest current and future heat
stress levels occur in the March–May season when existing
temperature levels are already stressful for maize, followed by
the June–September season. On the other hand, both current
and future heat stress levels are relatively lower for the
October–February period, as temperatures remain within the
maximum threshold for maize growing during this period,
thus making it a preferred season for growing relatively
heat-sensitive maize varieties, as compared to the March–
May season.

Crop simulation models have been used to forecast crop
growth and yield advantages due to new technologies in dif-
ferent target environments. The models provide a means to
modify cultivar traits within the observed limits of their genet-
ic variability and to assess the potential benefit of

Fig. 5 Impact of climate change on rainfed (upper panel) and irrigated (lower panel) maize across South Asia in 2050 using CSIRO (left panel) and
MIROC (right panel) climate projections
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incorporating such traits singly or in multiple combinations
for the target environment (Boote et al. 2001; Singh et al.
2012). However, models need to be calibrated and evaluated
for the target environment before they are applied. The efforts
made to calibrate and evaluate the CERES-Maize model in the
current study indicate that the benchmark varieties were accu-
rately represented by the calibrated genetic coefficients and
that the CERES-Maize model has captured the response of
the maize varieties across environments.

Simulation of maize yield under increasing temperature
levels while maintaining baseline rainfall conditions at
Hyderabad indicates that yield decreases with an increase in
temperature in all planting seasons. However, yield was gen-
erally higher in the November planting season by at least
twofold and sixfold across temperature levels (0–5 °C) com-
pared to the June and March planting seasons, respectively.
For example, the average simulated maize yields were 1.2,
2.6, and 6.9 t ha−1 under the baseline climate, and 0.5, 2.0,
and 3.7 t ha−1 under the +2 °C warmer climate for the March,
June, and November plantings, respectively. The three plant-
ing seasons have unique temperature distributions: in the
March planting season, temperatures are relatively lower dur-
ing the planting and vegetative growth stages but increase

during the anthesis and reproductive growth stages of maize;
in the June planting season, temperatures are relatively higher
during the planting and vegetative growth stages (June–July)
but decrease as the maize plants progress toward the anthesis
and reproductive growth phases (August–September); and in
the November planting, temperatures are generally lower than
the other two seasons with a seasonal distribution of some-
what higher values during planting (November) and lower
ones afterward (December–February).

Extreme heat stress during the crop reproductive period
is more critical for crop productivity than the mean sea-
sonal temperature (Luo 2011; Deryng et al. 2014).
Several studies have found that temperatures of above
35 °C are damaging to several processes including maize
pollen viability (Herrero and Johnson 1980; Schoper et al.
1987; Dupuis and Dumas 1990), kernel growth rate (po-
tential), and final kernel size (Jones et al. 1984) as well as
grain sink strength and yield (Commuri and Jones 2001).
This, therefore, explains why the largest relative yield
reduction occurred in the March–May season and the
lowest in the June–September season in the current study
despite similar seasonal mean temperature levels in the
two seasons.

Fig. 7 Yield advantage of heat-tolerant varieties over that of current maize varieties in 2030 under rainfed (upper panel) and irrigated (lower panel)
conditions across South Asia using CSIRO (left panel) and MIROC (right panel) climate projections
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Simulation of the yield of current maize varieties under
future temperature and rainfall conditions at a regional scale
in 2030 and 2050 indicates that maize will be affected by
climate change across SA and that the impact will vary both
spatially and temporally. Although some pockets in southern
and eastern India and Bangladesh may see yield increases,
most areas in SA are likely to experience an average yield
reduction of up to 15 % in 2030 and 25 % in 2050 (Figs. 5
and 6). This is in line with previous findings that indicate that
maize is a crop that faces progressively worse impacts under a
range of RCPs by the 2080s than spring wheat or soybean at a
global scale (Deryng et al. 2014). The authors find that ex-
treme heat stress at anthesis by the 2080s (relative to the
1980s), under RCP 8.5 with CO2 fertilization effects, could
double global losses of maize yield and that strong heat stress
at anthesis would be responsible for up to 45 % of global
average maize yield losses. Another impact of high tempera-
ture is the acceleration of the phenological cycle which usually
limits the period required for normal growth and development
of crops. For example, acceleration of the phenological cycle
due to projected (2050) high temperature resulted in the re-
duction of groundnut yield in the southern part of India
(Kadiyala et al. 2015).

In as much as the impacts of climate change on maize are
quantified effectively using simulation models, such models
can also be used to study the implications of adaptation op-
tions. In this study, we used cropmodels to assess the potential
of heat-tolerant maize varieties as one of the options for
adapting maize to the changing climate conditions in SA.
The results clearly indicate the potential of heat-tolerant vari-
eties in minimizing the maize yield losses expected under
climate change in SA. In already heat-stressed areas such as
Hyderabad, heat-tolerant maize varieties could still minimize
yield losses under future climate conditions, although the effect
varies with the degree of future temperature increase and with
planting season. The regional simulations indicated that by im-
proving heat tolerance alone, it is possible to reduce maize yield
loss by up to 36 and 33 % under rainfed conditions and by 93
and 86 % under irrigated conditions in 2030 and 2050, respec-
tively. However, the wide range of impacts across SA under-
scores the need for carefully targeted adaptation responses. It
also underlines the need to complement breeding with other
innovations as heat stress tolerant varieties alone would not be
sufficient to cope with climate change. The advantages of heat-
tolerant varieties were found to be more pronounced under irri-
gated conditions compared to rainfed, in part associated with the

Fig. 8 Yield advantage of heat-tolerant varieties over that of current maize varieties in 2050 under rainfed (upper panel) and irrigated (lower panel)
conditions across South Asia using CSIRO (left panel) and MIROC (right panel) climate projections
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divergent seasonality and associated temperature stress. Still, it
is also important to consider other factors such as drought in
adapting maize to the changing climate in the region. For exam-
ple, models have shown that incorporating both drought and
heat tolerance traits have resulted in an increase in the yield of
sorghum (Singh et al. 2014c), groundnuts (Singh et al. 2014b),
and chickpeas (Singh et al. 2014a) in several environments.

Our study involved some important assumptions and un-
certainties. Firstly, CERES-Maize does not include crop pest
and disease losses, and hence these factors are assumed to be
well controlled. Secondly, our study focused only on heat stress
tolerance during the reproductive stage of maize and does not
consider other breeding or agronomic adaptation options, for
the sake of focusing on the unequivocal component of climate
change—temperature increase. Thirdly, the study assumed that
water remains available in irrigated cropland which may not be
realistic under future climate conditions. Fourthly, the effect of
CO2 fertilization on maize yield is not included mainly because
maize is a C4 plant where the potential for CO2 fertilization
effects remain unclear and uncertainties related to model sensi-
tivity to CO2 fertilization (Challinor et al. 2009; Ruane et al.
2011). Finally, our study used two GCMs and one crop model
and therefore may have omitted a source of model uncer-
tainties. This indicates scope for future studies on the response
of maize to climate change in SA.

5 Conclusion

This study quantifies the impact of climate change on maize
production in SA and the benefit from growing heat stress
tolerant varieties under different climate change scenarios.
The results showed spatial and temporal disparities in the im-
pacts of climate change within SA and underscored the need
for carefully targeted adaptation responses including breeding
for greater crop heat stress tolerance. Incorporating heat toler-
ance traits into maize varieties showed great promise for
adapting maize to the changing climate. This study thereby
helps researchers and decision makers understand the extent
of climate change and its potential impacts to identify and
target vulnerable areas and to analyze benefits from investing
in heat stress tolerant maize research for development.

In addition, the results of this study have important impli-
cations for the current efforts to diversify cropping systems in
SA. For instance, maize is seen as an option to diversify the
intensive wheat–rice cropping systems in the Indo-Gangetic
plains, but the potential of maize varies by cropping season.
Therefore, it is important to identify the combinations of grow-
ing regions and seasons for which these diversification efforts
would be the most promising, in order to lead to a sustainable
increase in crop production in the region. Thus, beyond the
recent study, it is necessary to assess the potential for keeping
maize production at the current level and to be able to further

increase it to meet the growing demand for maize, especially in
those regions under rainfed conditions where farmers currently
grow varieties that are not tolerant to heat stress. This requires a
more in-depth analysis of specific maize-growing environ-
ments, current varieties adopted, and future demand for maize
grain in terms of quantity, quality, and types of grain.
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