Rift Valley fever virus seroprevalence among ruminants and humans in northeast Kenya

Johanna Lindahl^{1,2},Ian Njeru³, Joan Karanja³, Delia Grace¹, Bernard Bett¹

¹ International Livestock Research Institute, Nairobi, Kenya ²Swedish University of Agricultural Sciences, Uppsala, Sweden ³Ministry of Health, Nairobi, Kenya

Today's talk

- 1. An introduction to vector-borne diseases and Rift Valley fever
- 2. Our project
- 3. Conclusions

Ecosystem services – and disease emergence

Ecosystem service	Importance	Effect of decrease
Provisioning	Economics, livelihoods	Increased poverty
Regulating	Health, environment	Increased disease
Cultural	Well-being, recreation	Increased stress?
Supporting	Basis for the other services	Increase in all above

Why are vector-borne diseases emerging?

Climate and climate changes Globalization Urbanization Land use changes

Vector capacity and competence

k= $P_f=$ $P_e=$ Q= $H_{Br}=$ V=

Probability that a vector feeding on an infected host gets infected Probability that a vector survives from one meal to the next Probability that a vector survives the extrinsic incubation period, EIP Probability that a vector feeds from the right host — blood index for the host Host biting rate, the number of vectors feeding from an animal per day Probability of pathogens becoming infectious in the vector

C= Vector capacity

 $C = H_{Br} Qvk P_e/(1 - P_f)$

Rift Valley fever

- Bunyaviridae, phlebovirus
- High mortality, abortions in ruminants
- Haemorrhagic fever, encephalitis in humans
- Arbovirus but also directly transmitted

Inter-epidemic period

Epidemic

Buffaloes/ungulates

Increased vector populations

Above normal precipitation

Hatching of infected mosquitoes

Livestock

Humans

Spillover from livestock through vectors or body fluids

Infected eggs waiting in dambos

Why irrigation?

More and more range lands in Africa are being converted to crop lands through irrigation to alleviate food insecurity

Results: major trade-offs in ecosystem services

➤ More food produced (provisioning services) at the expense of biodiversity and regulatory services (disease, flooding, erosion)

Case study- irrigation and disease

Our project

- Rift Valley fever prevalence
 - Humans
 - Ruminants
- Land use changes
 - Protected area vs. irrigated area
 - Pastoralist areas

Hypothesis

- Irrigation in an arid and semiarid area increases the risk for Rift Valley fever
- But other diseases can also be affected by this...
- ... and the doctors don't know if it is Rift Valley fever

Study site with stagnant water in irrigation canals – source of water for the locals but also breeding grounds for mosquitoes

Study area

Study site

Tana River and Garissa counties, northeastern Kenya

Land use change

- Making changes in a highly diverse landscape
- Increased number of scavengers
- Increased numbers of mosquitoes

Dynamic drivers of disease in Africa Case study: Kenya

- Cross-sectional
 - Humans
 - Ruminants
 - Mosquitoes

- Wildlife
- Ticks

- Longitudinal
 - Human febrile cases
 - Livestock: shoats
 - Mosquitoes

Prevalence in humans

Significantly higher prevalence in men

Prevalence in ruminants

	Ruminants
Overall	25.59%
seropositivity	
Young	12.31%
Adults	30.22%
Male	14.81%
Female	28.80%

RVF-only part of the problem

- Too many differentials: Malaria, RVF, Dengue, YF,
 Brucella, Leptospira, Chikungunya, CCHF
- Socioeconomic consequences and factors

Unwillingness to pay for prevention

How much did you spend last year on the following health protection (Kenyan shilling)?

	Mosquito nets	Vaccines and routine clinic visits for kids	Boiling or other water treatment	Insurance (annual fee)	Other health prevention
Mean	762	254	6.8	0.9	586
Range	0-3150	0-5000	4 households paid between 150-600	households paid nothing, one household paid 200	0-6000

How much did you spend last year on the following health prevention for animals?

	Deworming	Vaccinations (to	Tick and fly	Insurance
		prevent not to treat)	treatments	(annual fee)
Mean	928	437	599	0
Range	0-11000	0-5000	0-5000	Not existing

The vicious cycle

Impact of poor animal health

GHG per kg of animal protein produced

Conclusions

- Land use changes can affect disease occurrence
- Irrigation can sustain inter-epidemic transmission
- More people, more food insecurity and more disease

Acknowledgements

CGIAR Research Program on Agriculture for Nutrition and Health

Thanks to:

The whole DDDAC team

All participants

better lives through livestock

ilri.org

ilri.org
better lives through livestock
ILRI is a member of the CGIAR Consortium

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 4223001 Email ilri-kenya@cgiar.org ILRI has offices in:
Central America • East Africa
• South Asia • Southeast and East Asia
• Southern Africa • West Africa

