
 

 1 

Marker-based estimates reveal significant non-additive effects in clonally 1 
propagated cassava (Manihot esculenta): implications for the prediction of total 2 
genetic value and the selection of varieties 3 
 4 

Marnin D. Wolfe*, Peter Kulakow†, Ismail Y. Rabbi†, Jean-Luc Jannink*,‡ 5 

 6 

* Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA  7 
†  International Institute for Tropical Agriculture (IITA), Ibadan, Oyo, Nigeria 8 
‡ USDA-ARS, R.W. Holley Center for Agriculture and Health, Ithaca, NY, USA  9 
 10 

  11 

 G3: Genes|Genomes|Genetics Early Online, published on August 31, 2016 as doi:10.1534/g3.116.033332

© The Author(s) 2013. Published by the Genetics Society of America. 



 

 2 

Running Title: Marker-based estimation of non-additive effects in cassava 12 
 13 
 14 
Key words: genomic selection, non-additive effects, cassava 15 
 16 
 17 
Corresponding Author:  18 
Marnin D. Wolfe 19 
Cornell University 20 
Department of Plant Breeding and Genetics 21 
417 Bradfield Hall 22 
306 Tower Road 23 
Ithaca, NY 14853 24 
Email: wolfemd@gmail.com 25 
Phone: 239-595-5081  26 



 

 3 

ABSTRACT 27 

 28 

In clonally propagated crops, non-additive genetic effects can be effectively 29 

exploited by the identification of superior genetic individuals as varieties. Cassava 30 

(Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds 31 

of millions. We quantified the amount and nature of non-additive genetic variation for 32 

three key traits in a breeding population of cassava from sub-Saharan Africa using 33 

additive and non-additive genome-wide marker-based relationship matrices. We then 34 

assessed the accuracy of genomic prediction for total (additive plus non-additive) genetic 35 

value. We confirmed previous findings based on diallel populations, that non-additive 36 

genetic variation is significant for key cassava traits. Specifically, we found that 37 

dominance is particularly important for root yield and epistasis contributes strongly to 38 

variation in CMD resistance. Further, we showed that total genetic value predicted 39 

observed phenotypes more accurately than additive only models for root yield but not for 40 

dry matter content, which is mostly additive or for CMD resistance, which has high 41 

narrow-sense heritability. We address the implication of these results for cassava 42 

breeding and put our work in the context of previous results in cassava, and other plant 43 

and animal species. 44 

  45 
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INTRODUCTION 46 

 47 

Understanding genetic architecture requires the decomposition of genetic variance 48 

into additive, dominance, and epistatic components (Fisher 1918; Cockerham 1954; 49 

Kempthorne 1954). However, partitioning genetic variance components is notoriously 50 

difficult, requiring specialized breeding designs (e.g. diallel crosses) and pedigree 51 

information, (Lynch and Walsh 1998) often limiting the genetic diversity that can be 52 

sampled in any one given study. Genome-wide molecular marker data now enable the 53 

accurate measurement of relatedness in the form of genomic realized relationship 54 

matrices (GRMs; VanRaden 2008; Heffner et al. 2009; Lorenz et al. 2011). GRMs, in 55 

contrast to pedigrees directly measure Mendelian sampling (variation in relatedness 56 

within relatedness classes such as full-siblings; Heffner et al. 2009). Further, GRMs can 57 

measure relationships even in diverse, nominally unrelated samples expanding the 58 

potential for studying inheritance in natural and breeding populations (Lorenz et al. 2011).  59 

Estimation of narrow-sense heritability and prediction of breeding values in 60 

genomic selection programs is becoming increasingly common using additive 61 

formulations of GRMs (Visscher et al. 2008). Several recent studies have described 62 

dominance and epistatic GRMs for the partitioning of non-additive genetic variance using 63 

genome-wide SNP markers (Su et al. 2012; Vitezica et al. 2013; Muñoz et al. 2014; 64 

Wang et al. 2014). Models using these new formulations have been shown to provide 65 

improved partitioning of genetic variances relative to pedigree-based approaches (Su et al. 66 

2012; Muñoz et al. 2014). These new models can be used not only to estimate genetic 67 

variances but also for genomic prediction of total genetic value in genomic selection 68 
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breeding programs (Su et al. 2012; Vitezica et al. 2013; Muñoz et al. 2014; Wang et al. 69 

2014). 70 

 Cassava is a vegetatively propagated, staple food crop that is high in starch and 71 

feeds half a billion people worldwide (http://faostat.fao.org). Efforts to improve cassava 72 

genetically with cutting edge methodologies including transgenic and genomic selection 73 

(GS) approaches are underway thanks to new genomic resources (Prochnik et al. 2012; 74 

ICGMC, 2015). Prediction with additive models has recently been evaluated (Oliveira et 75 

al. 2012; Ly et al. 2013) and genomic selection using standard models is currently being 76 

tested (http://www.nextgencassava.org). Vegetatively propagated crop (e.g. cassava) 77 

breeding can exploit non-additive genetic effects by identifying superior clones as 78 

varieties (Ceballos et al. 2015).  79 

Diallelic studies in cassava indicate that non-additive genetic effects (e.g. specific 80 

combining ability) are strong, particularly for root yield traits (Cach et al. 2005, 2006; 81 

Calle et al. 2005; Jaramillo et al. 2005; Pérez, Ceballos, Calle, et al. 2005; Pérez, 82 

Ceballos, Jaramillo, et al. 2005; Zacarias and Labuschagne 2010; Kulembeka et al. 2012; 83 

Tumuhimbise et al. 2014; Ceballos et al. 2015; Chalwe et al. 2015). If the limited 84 

number of parents tested thus far represents the broader cassava breeding germplasm, 85 

genetic gains, especially for already low-heritability root yield traits will be slow 86 

regardless of the breeding scheme employed (e.g. phenotypic vs. pedigree vs. genomic 87 

selection). Breeding gains have indeed been slow in cassava (Ceballos et al. 2012) and 88 

low accuracies have been reported for genomic prediction of yield compared with 89 

cassava mosaic disease (CMD) resistance and dry matter (DM) content (Oliveira et al. 90 

2012; Ly et al. 2013). However, cassava varieties are evaluated and disseminated to 91 
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farmers by clonal propagation, meaning that accurate prediction of total (additive plus 92 

non-additive) genetic value could contribute to variety selection. 93 

In this study, we test whether certain cassava traits, especially root yield have 94 

relatively large non-additive genetic variances that account for low genomic prediction 95 

accuracies previously observed. We estimate additive and non-additive variance 96 

components using genomic relationship matrices in two datasets of cassava from the 97 

International Institute of Tropical Agriculture’s (IITA) genomic selection breeding 98 

program. Further, we assess the accuracy of predicting total genetic value using the 99 

additive and non-additive models. We discuss the origin of non-additive genetic variance 100 

in cassava, its potential effect on cassava breeding, and its role in genomic selection 101 

strategies for cassava improvement in the future.  102 

 103 

METHODS 104 

Germplasm and Phenotyping Trials 105 

We examined additive and non-additive effects in two datasets of cassava that have 106 

been genotyped and phenotyped as part of the Next Generation Cassava Breeding 107 

Program at IITA, Nigeria (http://www.nextgencassava.org). The IITA’s Genetic Gain 108 

(GG) collection contains 694 historically important clones, most of which are advanced 109 

breeding lines although some are classified as superior landraces. These lines have been 110 

selected and maintained clonally since 1970 (Okechukwu and Dixon 2008; Ly et al. 111 

2013). Most of these materials are derived from the cassava gene pool from West Africa 112 

as well as parents derived from the breeding program at Amani Station in Tanzania and 113 
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hybrids of germplasm introduced from Latin America. Available information on the GG 114 

accessions included in our analyses is provided in Table S1. 115 

IITA’s Genetic Gain trials were conducted in seven locations over 14 years (2000 to 116 

2014) in Nigeria for a total of 24,373 observations. Each GG trial comprises a 117 

randomized, incomplete block design replicated one or two times per location and year. 118 

Since materials have been occasionally lost and new, selected materials are continuously 119 

added to the GG, the number of clones trialed in a given year changes gradually across 120 

years, generally increasing. The sample sizes, number of replicates and number of clones 121 

from the GG in each of the trials (location-year combinations) are provided in Table S2. 122 

Theory suggests that founding events and truncation selection can both lead to a 123 

conversion of non-additive genetic variation into additive variance. This can happen 124 

because of the induction of linkage disequilibrium and reduction in allele frequency (or 125 

fixation of alleles) at some loci relative to others (Goodnight 1988; Turelli and Barton 126 

2006; Hallander and Waldmann 2007). Consequently, our results might depend on the 127 

dataset examined. We therefore analyzed an additional dataset: a collection of 2187 128 

clones that are the direct descendants of truncation selection on the GG. Briefly, in 2012 129 

the GG and all available historical phenotype data was used as a reference dataset to 130 

obtain genomic estimated breeding values (GEBVs) using the genomic BLUP (GBLUP) 131 

model (VanRaden 2008; Heffner et al. 2009). Selection was based on an index that 132 

included mean cassava mosaic disease severity (MCMDS), mean cassava bacterial blight 133 

disease severity (MCBBS), dry matter content (DM), harvest index (HI) and fresh root 134 

weight (RTWT). This index of GEBVs was used to select 83 members of the GG to cross 135 

and generated a collection of 135 full-sib families, which we refer to as the GS Cycle 1 136 
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(C1). In the C1, family sizes are 18.3 on average (median 14, range from 3 to 82).  137 

Parents have an average of 59.5 progeny (median 38, range from 5 to 406).  The pedigree 138 

of the C1 is available in Table S3. Further, information about the germplasm analyzed, 139 

including data regarding the genetic structure of the population have been published 140 

previously (Wolfe et al. 2016), however we also provide plots of the first four principal 141 

components of the additive genetic relationship matrix (see below) in the supplement 142 

(Figure S1). 143 

Cycle 1 progenies were evaluated in a single clonal evaluation trial during the 2013-144 

2014 field season across three-locations (Ibadan, Ikenne, and Mokwa). For the C1 clonal 145 

trial, planting material was only available for one plot of five stands per clone, so each 146 

clone was only planted in one of the three locations (Table S2). Clones were assigned to 147 

each location so as to equally represent each family in every environment.  148 

For both datasets, we analyzed three traits: MCMDS, DM and RTWT. MCMDS was 149 

scored on a scale of 1 (no symptoms) to 5 (severe symptoms). We note that the 150 

distribution of MCMDS is skewed towards low disease severity (Figure S2). Most GG 151 

trials measured dry matter (DM) by the oven drying method although some trials used the 152 

specific gravity method. Dry matter content (DM) is expressed as a percentage of the 153 

fresh weight of roots. Fresh root weight (RTWT) is measured in kilograms per plot and is 154 

natural-log transformed to achieve normally distributed, homoscedastic residuals in all 155 

presented analyses. Trait distributions are presented in Figure S2.  156 

 157 

Genotype data 158 
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We used genotyping-by-sequencing (GBS) to obtain genome-wide SNP marker data 159 

(Elshire et al. 2011). We used the ApeKI restriction enzyme as recommended by 160 

(Hamblin and Rabbi 2014). SNPs were called using the TASSEL V4 GBS pipeline 161 

(Glaubitz et al. 2014) and aligned to the cassava reference genome, version 5, which is 162 

available on Phytozome (http://phytozome.jgi.doe.gov) and described by the International 163 

Cassava Genetic Map Consortium (ICGMC, 2015). We removed individuals with >80% 164 

missing and markers with >60% missing genotype calls. Also, markers with extreme 165 

deviation from Hardy-Weinberg equilibrium (Chi-square > 20) were removed. If there 166 

were not at least two reads at a given locus for a given clone, the genotype was set to 167 

missing and imputed. SNP marker data was converted to the dosage format (-1 for 168 

reference-allele homozygotes, 0 for heterozygotes and +1 for alternative-allele 169 

homozygotes) and missing data were imputed with the glmnet algorithm in R 170 

(http://cran.r-project.org/web/packages/glmnet/index.html). Similar to the approach of 171 

Wong et al. (2014), for each marker to be imputed, we pre-selected the 60 markers on the 172 

same chromosome in highest LD. We then used these pre-selected markers to predict 173 

missing values using the LASSO (default, q=1 in glmnet), with the tuning parameter 174 

lambda selected by five-fold cross-validation. We used 114,922 markers that passed these 175 

filters with a minor allele frequency greater than 1% to construct genomic relationship 176 

matrices as described below. 177 

 178 

Genomic Relationship Matrices 179 

In order to capture additive effects variance, we constructed the genomic relationship 180 

matrix (G) using the formula of VanRaden (2008), method one:  ! = !!�
! !!!!!

. Here Z is a 181 
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mean-centered matrix of dimension n individuals by m SNP markers. To obtain Z, we 182 

subtract 2(pi – 0.5) from the marker dosages, where the dosages are coded -1 for aa, 0 for 183 

Aa, +1 for AA, pi is the frequency of the second allele (A) at the ith locus and qi = 1-pi. 184 

The a (or 0) allele refers to the reference genome allele. The G matrix was calculated 185 

using the A.mat function in the rrBLUP package (Endelman 2011). 186 

We constructed a matrix to capture dominance relationships using the formulation 187 

originally proposed by Su et al. (2012). The dominance relationship matrix we will call, 188 

D* (see below) is !∗ = !!�
!!!!!(!!!!!!!)!

. Where H is a mean-centered dominance 189 

deviation matrix with the same dimensions as Z. To obtain H, we score heterozygotes as 190 

1 and homozygotes as 0, and subtract the mean (2piqi) from the scores. We made a 191 

custom modification (available at ftp://ftp.cassavabase.org/manuscripts/) to the A.mat 192 

function to produce the D* matrix.  193 

The D* dominance matrix was shown by Vitezica et al. (2013) to produce a partition 194 

of genetic variance appropriate for studying genetic architecture because it isolates 195 

additive effect variance from dominance effects. However, this partition is not correct for 196 

breeding purposes because the additive variance produced is not equivalent to the 197 

variation in breeding value. Vitezica et al. (2013) subsequently derived the matrix, D 198 

defined as ! = !!!

(!!!!!)!!
, where W is a marker matrix with markers coded 0 for aa, 2pi 199 

for Aa, and 4pi – 2 for AA and then centered on the mean, 2pi
2. Although our focus in the 200 

present study is not on the prediction of breeding value, the matrix D has been shown by 201 

Zhu et al. (2015) to have the advantage of being uncorrelated (under Hardy-Weinberg 202 

equilibrium) with the matrix G. For this reason, we tested the D and D* matrices and 203 
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provide comparison of their results. Except where explicitly comparing matrices, we use 204 

D to indicate the dominance matrix D* as in Su et al. (2012). 205 

Finally, we constructed relationship matrices that capture epistasis by taking the 206 

Hadamard product (element-by-element multiplication; denoted #) of matrices 207 

(Henderson 1985). For simplicity, we only explored additive-by-additive (A#A) and 208 

additive-by-dominance (A#D) relationships in this study.  209 

 210 

Variance component and heritability models 211 

Single-step, Multi-environment: We used several approaches to estimate the relative 212 

importance of additive and non-additive effects in the Genetic Gain and Cycle 1 datasets. 213 

In the first analysis, we analyzed the multi-year, multi-location GG data with a single-214 

step mixed-effects model. Since the entire historical phenotype dataset is large (24,373 215 

observations) and was relatively unbalanced in sample size across years and locations, we 216 

only analyzed data from trials with >400 individuals. This filter resulted in a dataset of 217 

7745 observations from three locations (Ibadan, Ubiaja, Mokwa) and eight years (2006-218 

2014, except 2012). All 694 genotyped GG clones were represented in this dataset (Table 219 

S2). 220 

The models we fit were similar to those described in Ly et al. (2013). The full model 221 

was specified as follows: ! =  !!+ !!"#.!"#$!+  !!"#!+ !!""!+ !!"#!+ !!"#!+  !. 222 

Here, y represents raw phenotypic observations. In our data, the only fixed effect (!) was 223 

an intercept for all traits except RTWT, which contained a covariate accounting for 224 

variation in the number of plants harvested per plot. The random effects terms for 225 

experimental design terms included a unique intercept for each trial (i.e. location-year 226 
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combination), !~N !, !!!! , where I is the identity matrix and !!! is the associated 227 

variance component as well as a replication effect, nested in location-year combination, 228 

!~N !, !!!! .  229 

The genetic variance component terms included !~N !,!!!! , where G is the 230 

additive genetic relationship matrix and !!! is the additive genetic variance component. 231 

Similarly, !~N !,!!!! , is the dominance effect with covariance D equal to the 232 

dominance relationship matrix and !!! equal to the dominance variance. The epistatic 233 

term !~N !,!!!!  where the covariance matrix E took the form either of the A#A matrix 234 

(additive-by-additive) or the A#D matrix (additive-by-dominance) and the epistatic 235 

variance !!! was correspondingly either !!#!!  or !!#!! . The final term,�is the residual 236 

variance, assumed to be random and distributed N(!, !!!!). The terms X, Zloc.year, Zrep, 237 

Zadd, Zdom and Zepi are incidence matrices relating observations to the levels of each 238 

factor. We list the different models fit in Table 1, each of which are variations on the full 239 

model described above. 240 

The formulation described above was used to fit the subset of the GG historical data 241 

described above in a single model. For the C1 progenies only a single season was 242 

available and therefore we fit all data together in a single model. Since the C1 trials were 243 

conducted across three locations but with no replications we fit the same model for C1 as 244 

GG excluding the replication term. The models described above were fit using the 245 

regress package in R (Clifford and McCullagh 2006). The regress function finds REML 246 

solutions to mixed models using the Newton-Raphson algorithm. 247 

For each trait, in both the C1 and GG we identified a “best fit” model among the 248 

models listed in Table 1, based on the lowest Akaike Information Criterion (AIC; 2*k – 249 
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2*ln(likelihood), where k = number parameters estimated). In addition, we calculated the 250 

Bayesian Information Criterion (BIC; -2*ln(likelihood) + k*ln(n), where n = number of 251 

observations and k = number of parameters estimated). We also examined the log-252 

likelihood of each model and the proportion of variance explained by genetic factors (H2). 253 

The precision of variance component estimates and the dependency among estimates was 254 

examined using the asymptotic variance-covariance matrix of estimated parameters, 255 

provided by regress (V). We report standard errors for each variance component, defined 256 

as the square root of the diagonal of V. We also converted V into a correlation matrix (F, 257 

as in Muñoz et al. 2014), where F is defined as L-1/2VL-1/2 and L is a diagonal matrix 258 

containing one over the square root of the diagonal of V. We use F to assess the 259 

dependency of variance components estimates, especially for comparing results among 260 

traits and datasets. 261 

Within-trial analyses: We used only a subset of the GG trials to estimate variance 262 

components in the single-step multi-environment model described above. In addition, we 263 

were able to analyze the entire historical GG data by testing each trial (N=47, unique 264 

location-year combinations) separately. This provided us with 47 estimates of additive, 265 

dominance and epistatic variance. We examine the distribution of variance components 266 

estimates. As in the multi-environment models, within-trial models were fit with regress 267 

in R. 268 

 269 

Genomic prediction and cross-validation 270 

 We assessed the influence that modeling non-additive genetic variance 271 

components have on genomic prediction using a cross-validation strategy. Because 272 
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single-step multi-environment models are computationally intensive, we used a two-step 273 

approach here. In the first step, we combined data from all available GG and C1 trials 274 

using the following mixed model: ! =  !!+  !!"#!+ !!"#$%!+  !. In this model, �  275 

included a fixed effect for the population mean, the location-year combination and for 276 

RTWT only, the number of plants harvested per plot. As in the single-step, multi-277 

environment model for GG, we included the random replication effect !~N !, !!!! . In 278 

contrast to the previous model, we did not at this stage include a genomic relationship 279 

matrix, instead we fit a random effect for clone, !~N !, !!!! , where the covariance 280 

structure was the identity matrix, I). The BLUP (ĝ) for the clone effect therefore 281 

represents an estimate of the total genetic value for each individual. The mixed model 282 

above was solved using the lmer function of the lme4 R package (Bates et al. 2014). 283 

 In our data, the number of observations per clone ranges from one to 131 with 284 

median of two and mean of 5.97 excluding the checks TMEB1 and I30572 which had 285 

941 and 902 observations, respectively. Pooling information from multiple years and 286 

locations, especially when there is so much variation in numbers of observations can 287 

introduce bias. Much theory, particularly in animal breeding has been developed to 288 

address this issue, and we followed the approach recommended by Garrick et al. (2009). 289 

Briefly, BLUPs (ĝ) for clone were deregressed according to ĝ!! where r2 is the reliability 290 

(1−  !"#!!! ) and PEV is the prediction error variances of the BLUP. In the second step of 291 

analysis, where deregressed BLUPs are used as response variables, weights are applied to 292 

the diagonal of the error variance-covariance matrix R. Weights are calculated as 293 
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!!!!

!.!! !!!
!

!! !!
, where h2 is the proportion of the total variance explained by the clonal 294 

variance component, !!! (Garrick et al. 2009). 295 

 We implemented a 5-fold cross-validation scheme replicated 25 times to test the 296 

accuracy of genomic prediction using the genomic relationship matrices and models 297 

described above (Table 1). In this scheme, for each replication, we randomly divided the 298 

dataset into five equally sized parts (i.e. folds). We used each fold in turn for validation 299 

by removing its phenotypes from the training population and then predicting them. We 300 

calculated accuracy as the Pearson correlation between the genomic prediction and the 301 

BLUP (ĝ, not-deregressed) from the first step. For each model, we calculated accuracy of 302 

the prediction for total genetic value, defined as the sum of the predictions from all 303 

available kernels (e.g. additive + dominance + epistasis). Genomic predictions were made 304 

using the EMMREML R package (Akdemir & Okeke 2015).  305 

 All raw genotype and phenotype data are available at 306 

ftp://ftp.cassavabase.org/manuscripts/ along with custom code used to make de-regressed 307 

BLUPs, conduct fold cross-validation, and calculate dominance-relationship matrices. 308 

 309 

RESULTS 310 

Partitioning the genetic variance: Single-step, multi-environment models 311 

We used several approaches to estimate genetic variance components in our 312 

dataset. The first was to fit single-step models to two datasets: the Genetic Gain (GG) and 313 

the Cycle 1 (C1). For each trait, in each dataset, we first identified the best fitting model 314 

of the five tested (Table 1) on the basis of lowest AIC. Model comparisons based on AIC 315 

and BIC are summarized in Table 2. Key results from the best models for both GG and 316 
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C1 are summarized in Table 3 with more detailed results from all models provided in 317 

Tables S4 and S5. 318 

The AIC-selected best model for MCMDS included additive-by-dominance 319 

epistasis (AxD) in both GG and C1. For RTWT, the model with additive-by-additive 320 

epistasis (AxA) fit best in the GG but a simpler dominance only (Dom) model was 321 

selected in the C1 dataset. Finally, for DM the additive only (Add) model was best in the 322 

GG but additive plus dominance (A+D) was selected in C1 dataset. The BIC criterion 323 

places a steeper penalty on increasing the number of parameters. Nevertheless, BIC 324 

selected the same model as AIC in all cases except for RTWT in the GG dataset, where 325 

the additive plus dominance model was preferred (Table 2, Tables S4 and S5). Based on 326 

the guidelines of Raftery (1995), the evidence that the best models for RTWT include 327 

dominance and models for MCMDS include non-additive effects, especially epistasis, is 328 

very strong (>10 AIC/BIC difference). 329 

We noted that for every trait, when comparing the model achieving the highest 330 

broad-sense heritability (H2), the H2 was higher in C1 compared to GG. This can be seen 331 

most easily in Figure 1, which shows how total explainable genetic variance (H2) is 332 

partitioned among variance components in the C1 and GG (also see Tables 3, S4 and S5). 333 

We also noted that the additive only model had the highest H2 for all traits in the GG 334 

dataset, but in C1 models with non-additive components always had at least slightly 335 

higher H2. 336 

On the basis of genetic variance captured, DM had H2 between 0.25-0.53 and had 337 

mostly additive inheritance across all models (Figure 1, Tables 3, S4 and S5). In contrast, 338 

non-additive components accounted for the majority of genetic variance for RTWT, with 339 
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H2 between 0.21-0.33. Dominance was significant in all models tested for RTWT in both 340 

datasets and epistasis was significant in the GG dataset. MCMDS had the highest H2 341 

compared to the other traits (0.66-0.89) and was similar to RTWT in that dominance 342 

and/or epistasis were always significant where included. While non-additive genetics 343 

were the majority of H2 in GG, they were much less important in C1 for MCMDS.  344 

We examined the asymptotic correlation matrices of parameter estimates (F) to 345 

ascertain the dependency of variance component estimation. The correlation between 346 

genetic variance components was always negative and was, in general, of greater 347 

magnitude in the GG compared to the C1 (Tables S6-S11). Correlations between additive 348 

and dominance components were greatest in the A+D models (range -0.81 to -0.83 in the 349 

GG and -0.5 to -0.61 in the C1). Correlations between additive and dominance 350 

components dropped in models with epistasis (range -0.42 to -0.63, GG and -0.26 351 

to -0.58, C1). Correlations between additive and AxA epistatic variances (range -0.09 352 

to -0.29) and AxD epistasis (range -0.07 to -0.22) were low. Correlations between 353 

dominance components and epistasis were higher, ranging from -0.28 to -0.64 with AxA 354 

epistasis and -0.36 to -0.69 with AxD epistasis. 355 

Comparison of the two alternative dominance matrices D* (results described 356 

above) and D revealed very similar results. In almost every case, AIC and BIC selected 357 

the same best-fit model for D and D*. The exception was RTWT in the C1 dataset where 358 

the A+D model was preferred over the dominance only model when using the D matrix 359 

instead of D* (Tables S4 and S5). The AIC and BIC are on the whole slightly lower for 360 

the models using the D matrix, indicating a better fit to the data. As expected, the 361 

correlation between additive and dominance parameter estimates is of smaller magnitude 362 
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for all analyses with D compared with D* (Tables S6-S11). However, the correlation 363 

between additive and epistatic as well as between dominance and epistatic variances is 364 

always of greater magnitude with D. Finally and as expected, models using the D matrix 365 

generally explain the same amount of genetic variance as those with D* but partition a 366 

smaller portion to dominance (Figure S3). We noted that for RTWT in the C1 dataset, 367 

models with D actually achieve a slightly higher broad-sense heritability. Because of the 368 

similarity of results, we focused the remainder of our analyses and discussion on the 369 

results from the D* matrix, henceforth referred to only as D. 370 

 371 

Partitioning the genetic variance: within-trial analyses 372 

We also examined variance partitioning within each of 47 GG trials for the 5 373 

models described in Table 1. This provided a means of testing the entire available dataset 374 

for non-additive variances, in contrast to the multi-environment models described above. 375 

The mean and variability of model parameters (variance components, heritability, etc.) 376 

across these trials are summarized in Table S12 and results for each individual trial-377 

model combination are given in Table S13. Figure 2 provides a visual summary of the 378 

proportion of phenotypic variability explained by each genetic variance component on 379 

average across the trials. We also compared the mean AIC across trials (Table 2, Table 380 

S10) and found them to agree overall with the results of the one-step multi-environment 381 

models (Table 3). Specifically, the models that fit best in the one-step models were best 382 

on average in the within trial analyses for DM (Add) and MCMDS (AxD). However, for 383 

RTWT the within trial AIC-best model was A+D compared to AxD in the one-step multi-384 

environment model. In contrast to the one-step multi-environment model, the BIC agreed 385 
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with AIC only for DM. For RTWT and MCMDS the simpler dominance only model was 386 

preferred by BIC on average (Table 2).  387 

 388 

Genomic Prediction of Additive and Total Genetic Value 389 

We used cross-validation to assess the prediction accuracy for total genetic value from 390 

the five models (Table 1) in both datasets. Compared to the single-kernel additive 391 

prediction using the additive relationship matrix, multi-kernel total genetic value 392 

predictions were an average of 7% better (maximum of 26% improvement; Figure 3, 393 

Tables S14-S15). By model, improvements in the correlation between total value and 394 

phenotype over the additive only model were 7%, 7% and 8% for A+D, AxA and AxD 395 

respectively. The additive only model predictions were on average 12% less accurate in 396 

the C1 than in the GG. Total genetic value predictions were less accurate by 12% in the 397 

C1 relative to GG. The models we fit for genomic prediction involved the estimation by 398 

EMMREML of weights, used to create a single kernel that is the weighted average of 399 

multiple original kernels and corresponding to the partitioning of genetic variance among 400 

the kernels. The average total weight given to non-additive components for both DM and 401 

MCMDS was 0.41 but was 0.92 for RTWT.  402 

 403 

 404 

DISCUSSION 405 

In clonally propagated crops, non-additive genetic effects can be effectively 406 

exploited by the identification of superior genetic individuals as varieties. For this reason, 407 

we quantified the amount and nature of non-additive genetic variation for key traits in a 408 
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genomic selection breeding population of cassava from sub-Saharan African. We then 409 

assessed the accuracy of genomic prediction of additive compared to total (additive plus 410 

non-additive) genetic value. Using several approaches and datasets based on genome-411 

wide marker data, we confirmed previous findings in cassava based on diallel 412 

populations: non-additive genetic variation is significant, especially for yield traits (Cach 413 

et al. 2005, 2006; Calle et al. 2005; Jaramillo et al. 2005; Pérez, Ceballos, Calle, et al. 414 

2005; Pérez, Ceballos, Jaramillo, et al. 2005; Zacarias and Labuschagne 2010; 415 

Kulembeka et al. 2012; Tumuhimbise et al. 2014; Ceballos et al. 2015; Chalwe et al. 416 

2015). A potential weakness of the marker system we used (GBS) is that it generates a 417 

high proportion of missing marker data and it may undercall heterozygotes when read 418 

depth is insufficient. The similarity of our findings to previous research, and the 419 

important difference in the observations on RTWT versus DM, however, suggest that this 420 

weakness did not strongly affect our results. Further, we found that multi-component 421 

models incorporating non-additive effects predict observed phenotypes more accurately 422 

than additive-only models for root yield but not for dry matter content, which is has 423 

primarily additive inheritance or for CMD resistance, which has high narrow-sense 424 

heritability. We address the implication of these results for cassava breeding and put our 425 

work in the context of previous results in cassava, other plant and animal species below. 426 

Our results indicate strong non-additive (mainly dominance) variance for root 427 

yields and mostly additive inheritance of root dry matter content. These findings confirm 428 

the conclusions of numerous diallelic studies conducted with both Latin American (Cach 429 

et al. 2005, 2006; Calle et al. 2005; Jaramillo et al. 2005; Pérez, Ceballos, Calle, et al. 430 

2005; Pérez, Ceballos, Jaramillo, et al. 2005) and African cassava (Zacarias and 431 
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Labuschagne 2010; Kulembeka et al. 2012; Tumuhimbise et al. 2014; Chalwe et al. 432 

2015) germplasm (see also Ceballos et al. 2015). In agreement with the findings of Ly et 433 

al. (2013), we found cassava mosaic disease severity (MCMDS) to be well predicted with 434 

an additive only model. However, we found significant dominance and epistatic 435 

components in both populations analyzed. This result is in line with previous diallelic 436 

studies indicating significant SCA (Tumuhimbise et al. 2014; Chalwe et al. 2015) and 437 

genetic mapping studies that identified a single major effect QTL with a dominant CMD 438 

resistance effect (Akano et al. 2002; Okogbenin et al. 2012; Rabbi et al. 2014). In 439 

addition, a recent genome-wide association and prediction study of MCMDS, using non-440 

additive genomic relationship matrices (GRMs) found that dominance and especially 441 

epistasis explain most of the variance in the region of a large-effect QTL, suggesting 442 

multiple interacting loci in the region (Wolfe et al. 2016). 443 

The importance of non-additive genetic variance in evolution by natural and 444 

artificial selection is controversial (Hill et al. 2008; Crow 2010; Hansen 2013). 445 

Nevertheless, numerous studies have found and exploited dominance and epistasis in 446 

animal breeding, including dairy (Ahlborn-Breier and Hohenboken 1991; Fuerst and 447 

Sölkner 1994; Varona et al. 1998; Van Tassell et al. 2000; Palucci et al. 2007) and beef 448 

(Rodriguezalmeida et al. 1995) cattle. Diallelic studies have indicated significant SCA 449 

for maize grain yield (Doerksen et al. 2003; Wardyn et al. 2007). Aside from cassava, 450 

breeding of other non-inbred, clonally propagated species also identify and make use of 451 

non-additive effects, including potato (Killick 1977), Eucalyptus (Costa E Silva et al. 452 

2004) and loblolly pine (Muñoz et al. 2014). More recently, marker-based and GRM-453 

based models have identified significant non-additive effects in pigs (Su et al. 2012; 454 
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Nishio and Satoh 2014), mice (Vitezica et al. 2013), beef cattle (Bolormaa et al. 2015), 455 

dairy cows (Morota et al. 2014), maize (Dudley and Johnson 2009), soy (Hu et al. 2011), 456 

loblolly pine (Muñoz et al. 2014) and apple (Kumar et al. 2015). Results from the present 457 

study suggest that accounting for non-additive in the variety development pipeline should 458 

increase the value of hybrids released by cassava breeding programs. 459 

One of the more interesting aspects of our study relative to previous ones is the 460 

comparison between a parental generation (the Genetic Gain) and their offspring (Cycle 461 

1), a collection of full- and half-sib families. From GG to C1, the H2 generally increased. 462 

For RTWT, this is largely attributable to increased non-additive variance in contrast to 463 

MCMDS where the increase is concomitant with a drop in non-additive variance. In 464 

contrast to our result, theory suggests that reduction (or fixation) of allele frequencies at 465 

some loci relative to others in populations undergoing bottlenecks (Goodnight 1988), 466 

inbreeding (Turelli and Barton 2006) or truncation selection (Hallander and Waldmann 467 

2007) should cause a conversion of non-additive (where present) to additive variance. 468 

These results have, however, been based on models with finite numbers of loci in linkage 469 

equilibrium. Based on the mean diagonal of the additive genetic relationship matrix, C1 470 

(0.66) does not appear notably more inbred than GG (0.64). We also calculated mean 471 

pairwise LD (GG = 0.27, C1 = 0.29) and mean LD block size (21.7 kb in GG and 23.1 kb 472 

in C1) using standard settings in PLINK (version 1.9, https://www.cog-473 

genomics.org/plink2) and found the two generations to be similar.  474 

Probably the strongest explanation for the difference in genetic variance 475 

components between GG and C1 is the family structure (135 full-sib families from 83 476 

outbred parents). In a population of full-sibs ¾ of the dominance variance is expressed 477 



 

 23 

within families and all of it for half-sib populations (Hallauer et al. 2010; Ceballos et al. 478 

2015). Indeed, increasing the number of full-sib relationships is known to increase the 479 

non-additive genetic variance detectable in a population (Varona et al. 1998; Van Tassel 480 

et al. 2010). 481 

It is also conceivable that maternal plant effects could increase apparent non-482 

additive effects in C1. The C1 clones in contrast to the GG clones are new, and were 483 

derived from stem cuttings of seedling plants germinated in the previous field season 484 

(2012-2013). The suggestion is therefore that the quality and vigor of the seedling plant, 485 

giving rise to the C1 clones may influence their performance in the 2013-2014 trial. We 486 

further caution that comparison of GG and C1 may be biased by the disproportionate 487 

amount of data from different locations and years available for the GG. 488 

In our study, when additive and non-additive kernels were used together, the 489 

variance explained by the additive component particularly for RTWT decreased. One 490 

interpretation of this result is that the additive component alone absorbs some non-491 

additive variance. Similar results have been obtained by other researchers, leading to 492 

similar conclusions (Lu et al. 1999; Su et al. 2012; Zuk et al. 2012; Muñoz et al. 2014). 493 

We note that this phenomenon occurs whether we use the D* matrix, which is correlated 494 

with the G matrix or the D matrix, which is theoretically orthogonal to G. We suggest 495 

therefore that prediction models that do not explicitly incorporate non-additive 496 

components may achieve gains in the short-term that break down over the long-term 497 

(Cockerham and Tachida 1988; Walsh 2005; Hansen 2013). Our prediction tests in this 498 

study were focused on total genetic values and used the D* matrix. However, we 499 

hypothesize that including non-additive GRMs, particularly the D matrix, when 500 
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estimating additive genetic (i.e. breeding) values would provide a less biased, more 501 

accurate selection of parents for crossing. 502 

Non-additive variation is prevalent in cassava, especially for low heritability traits. 503 

This has many important implications for cassava breeding. It explains, in part, why 504 

genetic gains have been slow (Ceballos et al. 2012). Inbreeding to convert dominance 505 

variance to additive and better control epistatic combinations, as in maize, has been 506 

suggested as a solution to non-additive genetics (Ceballos et al. 2015). Even for low h2 507 

traits and without inbred cassava, using the kinds of models presented in this paper, good 508 

parents can be selected based on additive predictions and total genetic value can be 509 

predicted for the identification of potential commercial varieties, all based on the 510 

combination of marker and preliminary field trial data (Heslot et al. 2015). This approach 511 

has been previously advocated for plant breeding (Oakey et al. 2007; Heslot et al. 2015) 512 

and has proven effective in animal breeding, e.g. (Ahlborn-Breier and Hohenboken 1991; 513 

Palucci et al. 2007; Su et al. 2012; Nishio and Satoh 2014). Non-additive models using 514 

genomic relationship matrices can thus improve the efficiency and productivity of variety 515 

selection pipelines that are the most labor and time intensive part of selecting good 516 

cassava clones after crossing. 517 
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Figure & Table Legends 716 
 717 
Table 1. Additive plus non-additive genetic models tested and their abbreviations. 718 
 719 
Table 2. Comparison of models by AIC and BIC. For each trait, five genetic models 720 
are compared based on Akaike’s Information Criterion (AIC) and the Bayesian 721 
Information Criterion (BIC). Comparisons are done based on single-step multi-722 
environmental models for the Genetic Gain (GG) and Cycle 1 (C1) datasets. In addition, 723 
the mean and standard error AIC/BIC from 47 GG trials, each analyzed separately are 724 
provided. For each dataset and each trait the lowest AIC and BIC are bolded and 725 
highlighted. 726 
 727 
Table 3. Best-fitting single-step multi-environment model results. Variance 728 
components (± standard errors), narrow-sense heritabilities (h2), proportion of the total 729 
phenotypic variance explained by dominance (d2), epistasis (i2

epi), and broad-sense 730 
heritability (H2) are provided. Model log-likelihoods are also given. The models shown 731 
were selected on the basis of having the lowest Akaike Information Criterion (AIC) 732 
relative to other tested models.  733 
 734 
Figure 1. Partitioning of broad-sense heritability for single-step multi-environment 735 
models in the Genetic Gain and Cycle 1 datasets. Results from each of five models are 736 
shown in each panel broken down by trait (rows) and population (columns). Models 737 
include additive only (Additive), dominance only (Dominance), Additive plus 738 
Dominance (Add + Dom), Additive plus dominance plus either AxA epistasis (AxA 739 
Epistasis) or AxD epistasis (AxD Epistasis).  740 
 741 
Figure 2. Distribution of genetic variance proportions across Genetic Gain trials. 742 
Three models were fitted for each trait in each of 47 Genetic Gain trials. Each panel 743 
contains boxplots showing the distribution of proportions of the phenotypic variability 744 
explained by a corresponding genetic factor, including the broad-sense heritability (H2). 745 
Red horizontal lines are the median narrow-sense heritability (h2) from the additive only 746 
model. Traits are on columns and three models are on the rows: additive plus dominance 747 
(Add + Dom), additive plus dominance plus AxA epistasis (AxA Epistasis) and additive 748 
plus dominance plus AxD epistasis (AxD Epistasis). 749 
 750 
Figure 3. Accuracy of total genetic value prediction in the Genetic Gain and Cycle 1 751 
datasets. Boxplots showing the distribution over 25 replicates of 5-fold cross-validation 752 
of the prediction accuracy of the total genetic value from five different models are shown 753 
in each panel. The accuracy within the Genetic Gain (red) and Cycle 1 (blue) are shown. 754 
Traits are in the columns. Accuracy is defined as the correlation between the sum of 755 
predictions from all genetic variance components in the model and the BLUP from the 756 
first stage of analysis where location, year and replicate variability were removed. 757 
Models included are: additive only (Additive), dominance only (Dominance), additive 758 
plus dominance (Add + Dom), additive plus dominance plus AxA epistasis (AxA Epi.) 759 
and additive plus dominance plus AxD epistasis (AxD Epi.). 760 
 761 
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Supplementary Figure 1. Genetic structure of the IITA Genetic Gain germplasm (red) 762 
and the Cycle 1 progenies (blue). Scatterplots represent the first four principle 763 
components of the additive genomic relationship matrix. 764 
 765 
Supplementary Figure 2. Distribution of raw (left) and BLUP (right) phenotypes. 766 
 767 
Supplementary Figure 3. Comparison between the partitioning of broad-sense 768 
heritability for models using two alternative dominance matrices, D and D* in the 769 
Genetic Gain and Cycle 1 datasets. Results from each of five models are shown in each 770 
panel broken down by trait (rows) and population (columns). Models include additive 771 
only (Add), dominance only (Dom), Additive plus Dominance (AplusD), Additive plus 772 
dominance plus either AxA epistasis (AxA_epi) or AxD epistasis (AxD_epi). Models 773 
with dominance terms that used the D matrix of Vitezica et al. 2013 are distinguished 774 
from models using the D* matrix of Su et al. 2012 using either “*” or else “(with D*)”. 775 
 776 
Supplementary Table 1. Pedigree and related information for the IITA: Genetic Gain 777 
germplasm analyzed in this study. 778 
 779 
Supplementary Table 2. Details on design of field trials analyzed. The sample size 780 
(Nobs), number of replications (Nreps), number of clones (Nclones) are indicated for two 781 
datasets analyzed in this study: the IITA Genetic Gain germplasm and a collection of 782 
their progeny, Cycle 1. Whether the trial was included in single-step multi-environment 783 
models that we fit in this study is also indicated.  784 
 785 
Supplementary Table 3. Pedigree information for the IITA: GS Cycle 1 germplasm 786 
analyzed in this study. The GS Cycle 1 are genomic selection germplasm descended from 787 
another dataset (IITA: Genetic Gain) also analyzed in this study. 788 
 789 
Supplementary Table 4. Results from fitting five different additive and non-additive 790 
genetic mixed-models for three key cassava traits in a single-step to data from 791 
multiple locations and years for the IITA Genetic Gain dataset. Variance components 792 
(± standard errors), narrow-sense heritabilities (h2), proportion of the total phenotypic 793 
variance explained by dominance (d2), additive-by-additive epistasis (i2

A#A), additive-by-794 
dominance epistasis (i2

A#D) and broad-sense heritability (H2) are provided. Sample size 795 
(N), model log-likelihoods, Akaike Information Criterion (AIC) and Bayesian 796 
Information Criterion (BIC) are also given. The best model for each trait (lowest AIC) is 797 
highlighted in grey. Results for analyses using the D* matrix of Su et al. 2012a (above) 798 
and the D matrix of Vitezica et al. 2013b (below) are presented. Mixed models fit with the 799 
R package regress. 800 
 801 
Supplementary Table 5. Results from fitting five different additive and non-additive 802 
genetic mixed-models for three key cassava traits in a single-step to data from 803 
multiple locations for the IITA Cycle 1 dataset. Variance components (± standard 804 
errors), narrow-sense heritabilities (h2), proportion of the total phenotypic variance 805 
explained by dominance (d2), additive-by-additive epistasis (i2

A#A), additive-by-806 
dominance epistasis (i2

A#D) and broad-sense heritability (H2) are provided. Sample size 807 
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(N), model log-likelihoods, Akaike Information Criterion (AIC) and Bayesian 808 
Information Criterion (BIC) are also given. The best model for each trait (lowest AIC) is 809 
highlighted in grey. Results for analyses using the D* matrix of Su et al. 2012a (above) 810 
and the D matrix of Vitezica et al. 2013b (below) are presented. Mixed models fit with the 811 
R package regress. 812 
 813 
Supplementary Table 6. The asymptotic correlation matrices of parameter estimates 814 
for each trait from an additive plus dominance genetic model fit in the IITA’s 815 
Genetic Gain dataset. Matrices presented here inform about the dependency of variance 816 
component estimates and are derived from asymptotic variance-covariance matrix of 817 
estimated parameters (V), provided by the regress R package, which was used to fit each 818 
mixed-model. Correlation matrix, F = L-1/2VL-1/2, where L is a diagonal matrix 819 
containing one over the square root of the diagonal of V. Correlations for models using 820 
the D* matrices of Su et al. 2012a (lower off-diagonals) and the D matrix of Vitezica et al. 821 
2013b (upper off-diagonals) are presented. 822 

 823 

Supplementary Table 7. The asymptotic correlation matrices of parameter estimates 824 
for each trait from an additive plus dominance plus additive-by-additive epistasis 825 
genetic model fit in the IITA’s Genetic Gain dataset. Matrices presented here inform 826 
about the dependency of variance component estimates and are derived from asymptotic 827 
variance-covariance matrix of estimated parameters (V), provided by the regress R 828 
package, which was used to fit each mixed-model. Correlation matrix, F = L-1/2VL-1/2, 829 
where L is a diagonal matrix containing one over the square root of the diagonal of V. 830 
Correlations for models using the D* matrices of Su et al. 2012a (lower off-diagonals) 831 
and the D matrix of Vitezica et al. 2013b (upper off-diagonals) are presented. 832 

 833 

Supplementary Table 8. The asymptotic correlation matrices of parameter estimates 834 
for each trait from an additive plus dominance plus additive-by-dominance epistasis 835 
genetic model fit in the IITA’s Genetic Gain dataset. Matrices presented here inform 836 
about the dependency of variance component estimates and are derived from asymptotic 837 
variance-covariance matrix of estimated parameters (V), provided by the regress R 838 
package, which was used to fit each mixed-model. Correlation matrix, F = L-1/2VL-1/2, 839 
where L is a diagonal matrix containing one over the square root of the diagonal of V. 840 
Correlations for models using the D* matrices of Su et al. 2012a (lower off-diagonals) 841 
and the D matrix of Vitezica et al. 2013b (upper off-diagonals) are presented. 842 

 843 

Supplementary Table 9. The asymptotic correlation matrices of parameter estimates 844 
for each trait from an additive plus dominance genetic model fit in the IITA’s Cycle 845 
1 dataset. Matrices presented here inform about the dependency of variance component 846 
estimates and are derived from asymptotic variance-covariance matrix of estimated 847 
parameters (V), provided by the regress R package, which was used to fit each mixed-848 
model. Correlation matrix, F = L-1/2VL-1/2, where L is a diagonal matrix containing one 849 
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over the square root of the diagonal of V. Correlations for models using the D* matrices 850 
of Su et al. 2012a (lower off-diagonals) and the D matrix of Vitezica et al. 2013b (upper 851 
off-diagonals) are presented. 852 

 853 

Supplementary Table 10. The asymptotic correlation matrices of parameter 854 
estimates for each trait from an additive plus dominance plus additive-by-additive 855 
epistasis genetic model fit in the IITA’s Cycle 1 dataset. Matrices presented here 856 
inform about the dependency of variance component estimates and are derived from 857 
asymptotic variance-covariance matrix of estimated parameters (V), provided by the 858 
regress R package, which was used to fit each mixed-model. Correlation matrix, F = L-859 
1/2VL-1/2, where L is a diagonal matrix containing one over the square root of the diagonal 860 
of V. Correlations for models using the D* matrices of Su et al. 2012a (lower off-861 
diagonals) and the D matrix of Vitezica et al. 2013b (upper off-diagonals) are presented. 862 

 863 

Supplementary Table 11. The asymptotic correlation matrices of parameter 864 
estimates for each trait from an additive plus dominance plus additive-by-865 
dominance epistasis genetic model fit in the IITA’s Cycle 1 dataset. Matrices 866 
presented here inform about the dependency of variance component estimates and are 867 
derived from asymptotic variance-covariance matrix of estimated parameters (V), 868 
provided by the regress R package, which was used to fit each mixed-model. Correlation 869 
matrix, F = L-1/2VL-1/2, where L is a diagonal matrix containing one over the square root 870 
of the diagonal of V. Correlations for models using the D* matrices of Su et al. 2012a 871 
(lower off-diagonals) and the D matrix of Vitezica et al. 2013b (upper off-diagonals) are 872 
presented. 873 

 874 
Supplementary Table 12. Summary of results from five additive and non-additive 875 
genetic mixed-models for three traits across 47 trials conducted on the IITA Genetic 876 
Gain germplasm.  The mean (± standard errors) across 47 trials for each trait and model 877 
fitted is given for the following model parameters: variance components, narrow-sense 878 
heritabilities (h2), proportion of the total phenotypic variance explained by dominance 879 
(d2), additive-by-additive epistasis (i2

A#A), additive-by-dominance epistasis (i2
A#D) and 880 

broad-sense heritability (H2), trial sample size (N), model log-likelihoods and Akaike 881 
Information Criterion (AIC) are also given. The best model for each trait (lowest AIC) is 882 
highlighted in grey. Models were fit with the R package regress. 883 
 884 
Supplementary Table 13. Results from five additive and non-additive genetic mixed-885 
models for three traits across 47 trials conducted on the IITA Genetic Gain 886 
germplasm. The following model parameters are given for each trial-trait-model 887 
combination tested: variance components, narrow-sense heritabilities (h2), proportion of 888 
the total phenotypic variance explained by dominance (d2), additive-by-additive epistasis 889 
(i2

A#A), additive-by-dominance epistasis (i2
A#D) and broad-sense heritability (H2), trial 890 

sample size (N), model log-likelihoods and Akaike Information Criterion (AIC) are also 891 
given. Models were fit with the R package regress. 892 
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 893 
Supplementary Table 14. Results from 25 replicates of 5-fold cross-validation in the 894 
Genetic Gain population for three traits and five additive and non-additive genetic mixed-895 
models. Mean (± standard errors) across the 25 replicates are given for prediction 896 
accuracy of each kernel plus total genetic value (sum across all kernels), variance 897 
components (Vg and Ve) and kernel weights. Models were fit with the R package 898 
EMMREML. 899 
 900 
Supplementary Table 15. Results from 25 replicates of 5-fold cross-validation in the 901 
Cycle 1 population for three traits and five additive and non-additive genetic mixed-902 
models. Mean (± standard errors) across the 25 replicates are given for prediction 903 
accuracy of each kernel plus total genetic value (sum across all kernels), variance 904 
components (Vg and Ve) and kernel weights. Models were fit with the R package 905 
EMMREML. 906 
 907 
  908 
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Table 1. Additive plus non-additive genetic models tested and their abbreviations. 909 
 
 
Model Relationship Matrices / Variance Components 
Add Additive 
Dom Dominance 
A+D Additive + Dominance 
AxA Additive + Dominance + A#A Epistasis 
AxD Additive + Dominance + A#D Epistasis 

 910 
 911 
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Table 2. Comparison of models by AIC and BIC. For each trait, five genetic models are compared based on Akaike’s Information 912 
Criterion (AIC) and the Bayesian Information Criterion (BIC). Comparisons are done based on single-step multi-environmental 913 
models for the Genetic Gain (GG) and Cycle 1 (C1) datasets. In addition, the mean and standard error AIC/BIC from 47 GG trials, 914 
each analyzed separately are provided. For each dataset and each trait the lowest AIC and BIC are bolded and highlighted. 915 

   

Genetic Gain 
(GG) 

 
Cycle 1 (C1) 

 
Genetic Gain (Within Trials) 

Trait Model   AIC BIC   AIC BIC   AIC BIC 
DM Add 

 
18921.9 18947.9 

 
7094.3 7110.8 

 
1335.9 ± 140.3 1355.2 ± 141.0 

 
Dom 

 
18947.7 18973.7 

 
7176.6 7193.2 

 
1338.6 ± 140.7 1357.8 ± 141.4 

 
A+D 

 
18922.4 18954.9 

 
7083.9 7106.0 

 
1337.4 ± 140.3 1360.2 ± 141.1 

 
AxA 

 
18923.0 18962.0 

 
7085.0 7112.6 

 
1339.0 ± 140.3 1365.2 ± 141.2 

 
AxD 

 
18922.6 18961.6 

 
7085.9 7113.5 

 
1339.0 ± 140.2 1365.3 ± 141.1 

          
 

    
       RTWT Add 

 
-4716.1 -4688.5 

 
-315.2 -298.0 

 
-310.7 ± 42.9 -287.1 ± 42.6 

 
Dom 

 
-4731.0 -4703.4 

 
-361.0 -343.8 

 
-311.9 ± 42.5 -288.3 ± 42.2 

 
A+D 

 
-4740.8 -4706.2 

 
-360.4 -337.4 

 
-311.9 ± 42.9 -284.3 ± 42.6 

 
AxA 

 
-4744.2 -4702.7 

 
-358.4 -329.7 

 
-311.0 ± 43.0 -279.4 ± 42.6 

 
AxD 

 
-4743.6 -4702.1 

 
-358.4 -329.7 

 
-311.1 ± 43.0 -279.5 ± 42.6 

          
 

    
       MCMDS Add   1255.7 1283.4 

 
2417.8 2435.3 

 
38.2 ± 47.1 62.1 ± 47.2 

 
Dom 

 
1207.6 1235.4 

 
2746.4 2763.8 

 
20.1 ± 47.3 44.1 ± 47.4 

 
A+D 

 
1202.1 1236.9 

 
2396.3 2419.5 

 
20.8 ± 47.3 48.8 ± 47.4 

 
AxA 

 
1180.7 1222.4 

 
2391.7 2420.8 

 
19.6 ± 47.0 51.7 ± 47.1 

 
AxD 

 
1173.0 1214.7 

 
2378.9 2408.0 

 
18.1 ± 47.0 50.2 ± 47.2 

 916 
 917 
 918 
 919 
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Table 3. Best-fitting single-step multi-environment model results. Variance 920 
components (± standard errors), narrow-sense heritabilities (h2), proportion of the total 921 
phenotypic variance explained by dominance (d2), epistasis (i2

epi), and broad-sense 922 
heritability (H2) are provided. Model log-likelihoods are also given. The models shown 923 
were selected on the basis of having the lowest Akaike Information Criterion (AIC) 924 
relative to other tested models. 925 
 926 

Dataset Genetic Gain (GG)   Cycle 1 (C1) 
Trait DM RTWT MCMDS 

 
DM RTWT MCMDS 

Best Model Add AxA AxD   A+D Dom AxD 

σ2
loc.year 

0.025 0.056 0.051 
 

8.38 0.006 0.054 
(4.8) (0.03) (0.02) 

 
(8.4) (0.007) (0.055) 

        
σ2

rep 6.16 0.014 0.000 
 

- - - 
(5.4) (0.01) (0) 

 
- - - 

        σ2
add 10.44 0.029 0.32 

 
17.3 - 1.780 

(1) (0.012) (0.1) 
 

(2.5) - (0.178) 
        

σ2
dom - 0.020 0.000 

 
3.4 0.116 0.172 

- (0.011) (0.08) 
 

(1.5) (0.018) (0.082) 
        σ2
epi 

- 0.033 0.556 
 

- - 0.514 
- (0.014) (0.09) 

 
- - (0.101) 

        
σ2

error 
15.36 0.17 0.34 

 
10.7 0.25 0.26 

(0.33) (0.003) (0.006)   (0.7) (0.011) (0.023) 

        h2 0.33 0.09 0.25 
 

0.43 - 0.64 

d2 - 0.06 0.00 
 

0.08 0.31 0.06 

i2 - 0.10 0.44 
 

- - 0.18 

H2 0.33 0.25 0.69 
 

0.52 0.31 0.89 
loglik -9457 2378.1 -581   -3538 184 -1184 

 927 

  928 
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Figure 1. Partitioning of broad-sense heritability for single-step multi-environment 929 
models in the Genetic Gain and Cycle 1 datasets. Results from each of five models are 930 
shown in each panel broken down by trait (rows) and population (columns). Models 931 
include additive only (Additive), dominance only (Dominance), Additive plus 932 
Dominance (Add + Dom), Additive plus dominance plus either AxA epistasis (AxA 933 
Epistasis) or AxD epistasis (AxD Epistasis).  934 

 935 
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Figure 2. Distribution of genetic variance proportions across Genetic Gain trials. 938 
Three models were fitted for each trait in each of 47 Genetic Gain trials. Each panel 939 
contains boxplots showing the distribution of proportions of the phenotypic variability 940 
explained by a corresponding genetic factor, including the broad-sense heritability (H2). 941 
Red horizontal lines are the median narrow-sense heritability (h2) from the additive only 942 
model. Traits are on columns and three models are on the rows: additive plus dominance 943 
(Add + Dom), additive plus dominance plus AxA epistasis (AxA Epistasis) and additive 944 
plus dominance plus AxD epistasis (AxD Epistasis). 945 
 946 
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Figure 3. Accuracy of total genetic value prediction in the Genetic Gain and Cycle 1 950 
datasets. Boxplots showing the distribution over 25 replicates of 5-fold cross-validation 951 
of the prediction accuracy of the total genetic value from five different models are shown 952 
in each panel. The accuracy within the Genetic Gain (red) and Cycle 1 (blue) are shown. 953 
Traits are in the columns. Accuracy is defined as the correlation between the sum of 954 
predictions from all genetic variance components in the model and the BLUP from the 955 
first stage of analysis where location, year and replicate variability were removed. 956 
Models included are: additive only (Additive), dominance only (Dominance), additive 957 
plus dominance (Add + Dom), additive plus dominance plus AxA epistasis (AxA Epi.) 958 
and additive plus dominance plus AxD epistasis (AxD Epi.). 959 
 960 
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