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Nuclear magnetic resonance (NMR) microimaging nondestruc-
tively detects water in tissues, and creates anatomical images of 
the tissue.1,2 Arabidopsis thaliana is one of the best candidates for 
systematic analysis of root water relations, and we recently dem-
onstrated a system for NMR microimaging of plant growth.3 
The water dynamics of Arabidopsis roots were altered by diurnal 
oscillation under 12 h light, 12 h dark conditions. Moreover, an 
autonomous rhythm of water dynamics was observed in contin-
uous light or dark. Our observations suggested that the change 
in water dynamics of the root is caused by circadian clock modu-
lation. The water dynamics of the root should be closely related 
to water dynamics of the shoot. Here, we demonstrate that diur-
nal changes in water content of the Arabidopsis shoot are phased 
with hypocotyl elongation and are different from root water 
content.

The Water Dynamics of the Shoot are Synchronized 
with Hypocotyl Elongation, and Display a Different 

Phase from Root Water Dynamics

NMR images were acquired as described in our previous report.3 
Images at various times of seedling growth are shown in Figure 
1A. Our technique allowed visualization of the water distri-
bution, which depends on differences in the 1H signal among 
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regions in the shoot, such as the shoot apex, the hypocotyl and 
the root-shoot junction. The relative 1H signal intensity from 
the whole shoot per pixel oscillated rhythmically under LD 
conditions (light: dark = 12 h: 12 h) and generally increased 
with hypocotyl elongation (Fig. 1B). Water content in the shoot 
increased more during periods of light than dark, and contin-
ued through the early stage of seedling growth (100–113 h). In 
the late stage of seedling growth (140–156 h), the change in 
the water content decreased. When the water content increased, 
elongation or movement, such as circumnutation, occurs in the 
hypocotyl, and these events are synchronized. On the other 
hand, water content in the root decreases during light periods 
and increases in the dark.3 Therefore, the water dynamics of the 
shoot are synchronized with hypocotyl elongation, and display 
an opposite phase with the root water dynamics. Two alterna-
tives can explain the water dynamics of the shoot: the influence 
of hypocotyl elongation and the influence of transpiration from 
the leaves.

Hypocotyl growth occurs by cell elongation with almost no 
contribution from cell division.4 The growth of the hypocotyl 
is modulated by environmental stimuli such as light,5,6 tem-
perature7 and nutrition,8,9 and by internal growth factors.10 A 
large quantity of water is used for elongation of the hypocotyl,11 
and our technique enables observation of the dynamics of water 
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the light period.3 These observations suggest that the supply of 
water from the root to the shoot is promoted during this period.

Shoot water dynamics are also influenced by transpiration. 
Transpiration and the velocity of water absorption and trans-
port fluctuate diurnally; active water transport in the daytime 
is mostly driven by the pressure difference between root and 
leaves, which is generated by transpiration.12 However, the influ-
ence of transpiration on water transport from the root might be 
minimal under the conditions we used, because the seedlings in 
our previous study were grown in a sealed tube with the relative 
humidity maintained close to 100%.3 Rather than transpira-
tion, therefore, water may enter cells due to a change in their 
osmotic pressure in response to some signal. In the daytime, 
some metabolic product might accumulate in cells and raise 
osmotic pressure, thus accelerating water uptake. An increase 
in the velocity of water flow in the root might also explain the 
decrease in 1H signal intensity in the root.3,13,14 These assump-
tions are consistent with the hypocotyl elongation occurring 
during the light periods (Fig. 1B), and can explain the water 
movement through the root and the shoot in the absence of 
transpiration.

We have developed a technique for visualization of intact 
Arabidopsis seedlings by NMR imaging and demonstrated the 
water balance in supply and demand of both shoots and roots. 
Our technique may enable noninvasive study of cell expansion, 
such as measurements of water flow to the vacuoles.
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in the intact plant. When the hypocotyl elongates, the 1H sig-
nal intensity in the shoot increases in parallel. Thus, the signal 
intensity may reflect the inflow of water necessary for the volume 
increase of the cells undergoing elongation in the hypocotyl. On 
the other hand, the signal intensity of the root decreases during 

Figure 1. Diurnal oscillation of water content in the shoot during 
diurnal light oscillation. (A) Water distribution in the Arabidopsis shoot 
96, 130 and 156 h after germination as determined by nMr imaging. 
More intense white indicates a region containing a large amount of 
water. Bar = 1 mm. (B) the change in water content in a shoot during 
LD conditions (light: dark = 12 h: 12 h). Solid line indicates shoot water 
dynamics; dotted line indicates hypocotyl length (in mm). White and 
black boxes indicate light and dark periods, respectively.
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