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A CLASS OF GENERALIZED SUPERSOLUBLE

GROUPS

Adolfo Ballester-Bolinches and Tatiana Pedraza

Abstract

This paper is devoted to the study of groups G in the universe cL̄

of all radical locally finite groups with min-p for all primes p such
that every δ-chief factor of G is either a cyclic group of prime order
or a quasicyclic group. We show that within the universe cL̄ this
class of groups behaves very much as the class of finite supersoluble
groups.

1. Introduction

A group G is said to be supersoluble if it has a finite normal series of
cyclic factors. A chief factor of a supersoluble group is cyclic of prime
order and a maximal subgroup has prime index. In fact these two prop-
erties characterize finite supersoluble groups. It is well known that in
the universe of all finite groups the class of supersoluble groups forms a
subgroup-closed saturated formation which is intermediate between the
classes of nilpotent groups and soluble groups. Several authors have in-
vestigated supersoluble groups, not necessarily finite, and generalizations
(hypercyclic groups and locally supersoluble groups) extending some re-
sults of finite supersoluble groups and establishing connections between
these classes of generalized supersoluble groups.

In this paper, we introduce a class of generalized supersoluble groups
in the universe cL̄ of all radical locally finite groups with min-p for all
primes p: the class U∗. It is intermediate between the classes of super-
soluble cL̄-groups and hypercyclic cL̄-groups and it plays a similar role
in the class cL̄ as supersoluble groups do in the class of all finite groups.
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2. Preliminaries

The main purpose of this section is to establish the notation, ter-
minology and some results which will be used throughout this paper.
Notation that is not specifically cited here is consistent with that used
in [7], [8] and [10].

An infinite group can have insufficient maximal subgroups or even
none at all. In order to avoid this situation, Tomkinson [11] introduces
the notion of major subgroup. We recall this definition. Let U be a
subgroup of a group G and consider the properly ascending chains

U = U0 < U1 < · · · < Uα = G

from U to G, then m(U) is the least upper bound of the types α of all
such chains. Clearly m(U) = 1 if and only if U is a maximal subgroup
of G.

A proper subgroup M of G is said to be a major subgroup of G
if m(U) = m(M) whenever M ≤ U < G. This is a nice extension of the
concept of maximal subgroup in the sense that every proper subgroup of
a group G is always contained in a major subgroup of G [11, (2.3)]. In
particular, the intersection of all major subgroups of a group G, denoted
by µ(G), is a proper subgroup of G with properties similar to those of
the Frattini subgroup of a finite group.

In the sequel, we tacitly assume that all groups belong to the class cL̄
of all radical locally finite groups with min-p for all primes p.

Let G be a group and let M be a major subgroup of G. Denote
MG = CoreG(M). Then G/MG is either a finite soluble primitive group,
if M is a maximal subgroup of G, or a semiprimitive group, if M is not
maximal in G (here, a group G is said to be semiprimitive if it is the split
extension, G = [D]M , of a faithful divisibly irreducible ZM -module D
by a finite soluble group M). This result, proved in [2], confirms the
importance of major subgroups in the study of the structure of groups
and motivates some definitions which are in some sense extensions of
well known ones in the finite universe.

Definition 1. Suppose that G is a group and let M be a major subgroup
of G. We define

DM/MG =

{

Soc(G/MG), if M is a maximal subgroup of G

(G/MG)
0
, if M is not a maximal subgroup of G.
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In both cases, DM/MG = F (G/MG), (DM/MG) ∩ (M/MG) = 1 and
CG/MG

(DM/MG) = DM/MG for every major subgroup M of G.

Let G be a group and consider two normal subgroups H and K of G
such that K is contained in H . Then H/K is called a δ-chief factor of G
if H/K is either a minimal normal subgroup of G/K or a divisibly irre-
ducible ZG-module, that is, H/K has no proper infinite G-invariant sub-
groups. Every δ-chief factor is either an elementary abelian finite p-group
for some prime p or a direct product of finitely many quasicyclic p-groups
for some prime p (see [7, (1.2.4)]).

Let G be a group. We say that G is a U∗-group if every δ-chief
factor of G is either a cyclic group of prime order or a quasicyclic group.
Obviously the class U∗ is a class of generalized supersoluble groups in
the universe cL̄ because every finite U∗-group is supersoluble and every
supersoluble cL̄-group is finite and so it is a U∗-group.

On the other hand, since every group contains minimal normal sub-
groups it follows that every U∗-group is hypercyclic (and hence locally
supersoluble [1]). Moreover the class U∗ is intermediate between the
classes of supersoluble groups and hypercyclic groups. On one hand,
every quasicyclic p-group, p a prime, is a non-supersoluble U∗-group.
On the other hand, let G be a cyclic group of order 22. Consider a
divisibly irreducible ZG-module A, faithful for G, such that A is a peri-
odic 2-group (A always exists and it is unique up to isomorphism by [9,
(3.5)]). Then, applying [9, (5.9)], A has rank 2. In particular, the
Chernikov group X = AG is not in the class U∗. Moreover, if K is a
normal subgroup of X such that X/K 6= 1 then X/K contains a min-
imal normal subgroup N/K. Since X/K is a 2-group then it is locally
nilpotent and then, by [7, (1.2.6)], N/K is a cyclic group of order 2. We
conclude that X is a hypercyclic group.

Let B be the class of all groups in which every proper subgroup has
a proper normal closure. The class B has been introduced and studied
in [3], [4]. The results of these papers show that this class is intermediate
between nilpotent and locally nilpotent groups, and that it is the natural
generalization of the class of finite nilpotent groups from the finite uni-
verse to the universe cL̄. We show that the largest normal B-subgroup
of a group is the Fitting subgroup and every δ-chief factor of a group G
in B is central in G. Consequently, every δ-chief factor of G has rank
one and G is a U∗-group. Therefore, we obtain in the universe cL̄ similar
inclusions to the finite universe for these classes of generalized nilpotent
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groups and generalized supersoluble groups:

{Abelian groups} ⊂ {Nilpotent groups} ⊂ B ⊂ U∗

and all these inclusions are proper.
Let p be a prime. We say that a group G is a Bp-group if G is

p-nilpotent and the Sylow p-subgroups of G are nilpotent. The class Bp

is a local version of the class B. The results of the paper [5] show
that Bp is a subgroup-closed formation which plays the same role in the
universe cL̄ as finite p-nilpotent groups do in the finite one. In partic-
ular, every group G has a unique largest normal Bp-subgroup denoted
by δp′p(G), for every prime p, which is the intersection of the centralizers
of all δ-chief factors of G which are p-groups and F (G) =

⋂

p δp′p(G).

Let G be a U∗-group and let p be a prime. If H/K is a δ-chief factor
of G which is a p-group then G/ CG(H/K) is a cyclic group of order
dividing p−1 if p 6= 2 or a cyclic group of order dividing 2 if p = 2 by [7,
(1.5.18), (1.5.19)]. Therefore G/δp′p(G) is in the class A(p − 1) if p 6= 2
or in the class A(2) if p = 2, where A(n) denotes the class of all abelian
groups with exponent dividing n. Moreover G/Op′p(G) ∈ A(p − 1) for
every prime p because Op′p(G) is the intersection of the centralizers of
all p-chief factors of G by [7, (6.2.4)].

3. The results

A finite group G is supersoluble if and only if for every prime p,
G/Op′p(G) is abelian of exponent dividing p − 1. If G is a cL̄-group,
that condition does not imply that G ∈ U∗ (consider for instance the
example of a 2-group in Section 2 which is not a U∗-group). Our first
result provides a necessary and sufficient condition for a group G to be
a U∗-group.

Theorem 1. A group G is a U∗-group if and only if for every prime p,
G/δp′p(G) is in the class A(p− 1) if p 6= 2 or in the class A(2) if p = 2,
where A(n) denotes the class of all abelian groups with exponent divid-
ing n.

Proof: Let G be a group such that for every prime p, G/δp′p(G) is in
the class A(p − 1) if p 6= 2 or in the class A(2) if p = 2. Consider H/K
a chief factor of G. In particular H/K is a p-group for some prime p.
Since G/ CG(H/K) is in the class A(p − 1) if p 6= 2 or in the class A(2)
if p = 2 it follows from [8, B, (9.8)] that H/K is a cyclic group of
order p. Suppose now that H/K is a divisibly irreducible ZG-module.
In particular H/K is a p-group for some prime p. Suppose that p 6= 2.
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Then L = G/ CG(H/K) is in the class A(p−1). Since H/K is a divisibly
irreducible ZL-module which is faithful for L it follows from [9, (3.1)]
that L is a cyclic group. Since |L| divides p− 1, it follows from [9, (3.4)]
that H/K has rank 1, that is, H/K is a quasicyclic p-group. Assume now
that p = 2. Then L = G/ CG(H/K) is in the class A(2). Applying [9,
(3.1)] we have that L is trivial or a cyclic group of order 2. Consequently
H/K has rank 1 by [9, (3.4)]. We conclude that G is a U∗-group.

Our next results analyze the behaviour of U∗ as a class of groups
and they are motivated by the well known fact that, in the finite uni-
verse, the class of all supersoluble groups is a subgroup-closed saturated
formation [8, VII, (2.19)].

Recall that a class F of groups is said to be a formation if it satisfies
the following properties:

1. If G ∈ F and N is a normal subgroup of G, then G/N ∈ F.
2. If {Ni}i∈I is a collection of normal subgroups of G such that

G/Ni ∈ F for every i ∈ I and
⋂

i∈I Ni = 1, then G ∈ F.

Theorem 2. The class U∗ is a subgroup-closed formation.

Proof: It is clear that U∗ is closed under taking epimorphic images, that
is, U∗ is Q-closed.

Let {Ni}i∈I be a collection of normal subgroups of a group G such
that G/Ni ∈ U∗ for every i ∈ I and

⋂

i∈I Ni = 1. Since G/Ni ∈ U∗

we have that G/Ni/(δp′p(G/Ni)) is in the class A(p − 1) if p 6= 2 or

in the class A(2) if p = 2, for all i ∈ I . Let us denote by GA(n)

the A(n)-residual of a group G. Suppose first that p 6= 2. Then

GA(p−1)Ni/Ni = (G/Ni)
A(p−1)

≤ δp′p(G/Ni) for all i ∈ I . In par-

ticular, GA(p−1)Ni/Ni is in the class Bp for all i ∈ I . Since Bp is

a formation by [5, Theorem 1] we obtain that GA(p−1) ∈ Bp. Con-
sequently G/δp′p(G) ∈ A(p − 1). Suppose now that p = 2. Then

GA(2)Ni/Ni = (G/Ni)
A(2) ≤ δ2′2(G/Ni) for all i ∈ I . In particular,

GA(2)Ni/Ni is in the class B2 for all i ∈ I . Therefore GA(2) ∈ B2

and hence G/δ2′2(G) ∈ A(2). It follows from Theorem 1 that G ∈ U∗.
Consequently U∗ is a formation.

We prove now that U∗ is subgroup-closed. Let G be a U∗-group and
let H be a subgroup of G. We have to prove that H is also a U∗-group.
We split the proof into three cases:

Case 1: G is a Chernikov group such that G0 (the radicable part of G) is
a quasicyclic p-group for some prime p. Since H0 is a divisible subgroup
of G0, then either H0 = 1 or H0 = G0. First we assume that H0 = G0.
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Let A/B be a δ-chief factor of H . Since the class U∗ is Q-closed, we may
assume that B = 1. If A is a divisibly irreducible ZH-module, then A is a
quasicyclic p-group. Suppose now that A is a minimal normal subgroup
of H . Then either A ≤ H0 or A ∩ H0 = 1. If A is contained in H0,
then A is a cyclic group of prime order p because it is an elementary
abelian. Assume that A ∩ H0 = 1. Since AH0/H0 is a minimal normal
subgroup of H/H0 and H/H0 is a finite supersoluble group, it follows
that AH0/H0 is a cyclic group of prime order and so is A. Suppose now
that H0 = 1, that is, H is finite. If A/B is a chief factor of G, then A/B
is a cyclic group of prime order. In particular (H ∩ A)/(H ∩ B) is
either trivial or a cyclic group of prime order. Hence a chief series of G
intersected with H will yield, after deleting redundant terms, a chief
series of H (of finite length) with cyclic factors. Therefore H ∈ U∗.

Case 2: G is a Chernikov group with Op′(G) = 1 for some prime p. Then
G = G0M , where M is a finite subgroup of G. We can certainly assume
that G0 6= 1, since otherwise G is a finite supersoluble group and so the
result follows. Therefore G0 is a divisible abelian p-group of finite rank.
By [12, (1.3)] there is a finite normal subgroup C of G contained in G0

such that G0/C is a direct product of divisibly irreducible ZG-modules,
say

G0/C = (G1/C) × (G2/C) × · · · × (Gn/C).

Since Gi/C is a δ-chief factor of G and G ∈ U∗, we have that Gi/C is a
quasicyclic p-group for all i ∈ {1, . . . , n}. Let us first assume that C = 1
and denote X1 = G2 ×G3×· · ·×Gn and Xi = G1 ×· · ·×Gi−1 ×Gi+1×
· · · × Gn for all i > 1. It is clear that Xi is normal in G for all i and
⋂

i≥1 Xi = 1. Moreover G/Xi
∼= GiM and (GiM)0 = Gi is a quasicyclic

p-group. Applying Case 1, we have that H/(H ∩ Xi) is a U∗-group for
every i. Since U∗ is a formation, we conclude that H ∈ U∗. Assume now
that C 6= 1. By the above argument, HC/C is a U∗-group. We prove
that HC ∈ U∗. Let A/B be a δ-chief factor of HC. There is no loss of
generality in assuming that B = 1. Suppose that A is a minimal normal
subgroup of HC. Then either A ∩ C = 1 or A ∩ C = A. If A ∩ C = 1,
it follows that AC/C is a minimal normal subgroup of HC/C ∈ U∗ and
so A is a cyclic group of prime order. Assume that A ≤ C. Let

1 = C0 C C1 C C2 C · · · C Cs = C

be part of a chief series of G passing through C, that is, Ci/Ci−1 is a
minimal normal subgroup of G/Ci−1 for all i ∈ {1, . . . , s}. Since G ∈ U∗,
we have that Ci/Ci−1 is a cyclic group of prime order for all i. On the
other hand, since 1 6= A ≤ C there exists j ∈ {1, . . . , s} such that
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A ≤ Cj and A � Cj−1. In particular, 1 6= ACj−1/Cj−1 ≤ Cj/Cj−1

and then A ∼= ACj−1/Cj−1 is a cyclic group of prime order. Suppose
now that A is a divisibly irreducible Z(HC)-module. Then A ∩ C is a
proper finite subgroup of A. This implies that A/(A ∩ C) ∼= AC/C is a
divisibly irreducible Z(HC/C)-module and so it is a quasicyclic group.
Consequently A is a quasicyclic group. We have proved that HC is a
U∗-group. Since U∗ is a formation and C is an abelian normal subgroup
of HC, it follows from [2, Lemma 2] that H ∈ U∗, which is our claim.

General case: By [7, (2.5.13)], G/Op′(G) is a Chernikov U∗-group for
every prime p. Applying Case 2, we have that H/(H ∩ Op′(G)) is a U∗-
group for every prime p. Since

⋂

p(H∩Op′ (G)) = 1 and U∗ is a formation,
we conclude that H belongs to U∗, which completes the proof.

Bearing in mind that the class of supersoluble groups in the finite
universe is saturated, one can wonder if U∗ could enjoy this property in
our universe. The answer is negative as the following example shows:

Example 1. Let X be the regular wreath product of a quasicyclic
p-group and a cyclic group of order p, where p is a prime number. Con-
sider G = X/ Z(X). Then G = G0M is a semiprimitive group such that
G0 is isomorphic to a direct product of p − 1 quasicyclic p-groups and
M is a cyclic group of order p. Moreover, the group G can be expressed
as G =

⋃

i≥1Gi, where Gi = Ωi(G
0)M , for each natural number i and

{Gi : i ≥ 1} is an ascending chain of subgroups of G. Notice that Gi

is a finite p-group and hence a supersoluble group for each i ≥ 1. How-
ever, if p 6= 2, G is not a U∗-group because G0 is a divisibly irreducible
ZG-module which is not quasicyclic. Applying [2, Theorem A], we have
that U∗ is not saturated.

Nevertheless, U∗ is closed under taking extensions by Tomkinson’s
Frattini-like subgroup as our next result shows.

Theorem 3. Let N be a normal subgroup of a group G such that N/µ(G)
is a U∗-group. Then N ∈ U∗.

Proof: Assume first that G is a Chernikov group. Then µ(G) is finite by
[12, (1.2)]. On the other hand, for every prime p, (N/µ(G))/Op′p(N/µ(G))
is abelian of exponent dividing p − 1 because N/µ(G) ∈ U∗. Moreover,
the arguments used in [11, (5.1)] allow us to show that Op′p(N/µ(G)) =
Op′p(N)/µ(G). Thus, for every prime p, N/Op′p(N) is abelian of expo-
nent dividing p − 1.

Let H/K be a δ-chief factor of N . Then either Hµ(G)/Kµ(G) is
N -isomorphic to H/K or Hµ(G) = Kµ(G) and H ∩ µ(G)/K ∩ µ(G) is
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N -isomorphic to H/K. Consequently, there is no loss of generality in
assuming that either K ≤ H ≤ µ(G) or µ(G) ≤ K ≤ H . In the first case,
we have that H/K is finite and therefore H/K is a p-chief factor of N
for some prime p. In particular, AutN (H/K) ∼= N/ CN (H/K) is finite
and abelian of exponent dividing p − 1. Applying [8, B, (9.8)], H/K is
a cyclic group of order p. Assume now that µ(G) ≤ K ≤ H . Then H/K
is isomorphic to a δ-chief factor of N/µ(G) ∈ U∗ and consequently H/K
is a cyclic group of prime order or a quasicyclic group. We conclude
that N ∈ U∗.

In the general case, applying [7, (2.5.13)], G/Op′(G) is a Cherni-
kov group for every prime p. Moreover, since N/µ(G) ∈ U∗ and
µ(G)Op′ (G)/Op′(G) ≤ µ(G/Op′(G)) it follows that NOp′(G)/Op′(G)
is a normal subgroup of G/Op′(G) satisfying the hypothesis of the the-
orem. By the above argument, we obtain that N/(N ∩ Op′(G)) is a
U∗-group, for every prime p. Since U∗ is a formation, we conclude that
N belongs to U∗, as required.

Corollary 1. Let G be a group. Then G/µ(G)∈U∗ if and only if G∈U∗.

If M is a major subgroup of a group G such that DM/MG is a cyclic
group of prime order or a quasicyclic group then G/MG is a U∗-group.
This fact motivates the following:

Definition 2. Let G be a group and let M be a major subgroup of G.
We define the extended index of M in G, denoted by qG(M), as the rank
of DM/MG.

Note that M is a major subgroup of G, then qG(M) 6= 1 if and only
if G/MG is not in U∗. Consequently the following result holds.

Corollary 2. Let G be a group. Then G ∈ U∗ if and only if the extended
index of M is 1 for every major subgroup M of G.

Note that the above result extends a well known result of Huppert [8,
VII, (2.2)]. Bathia [6] proved that the intersection of all maximal sub-
groups of a finite group of composite index is a supersoluble characteristic
subgroup of the group. Our aim now is to obtain a similar result in our
universe.

Definition 3. Let G be a group. We define

L(G) =
⋂

{M : M is a major subgroup of G such that qG(M) 6= 1}

=
⋂

{M : M is a major subgroup of G such that G/MG /∈ U∗}.

We stipulate that L(G) = G if the above set of major subgroups is
empty.
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Theorem 4. Let G be a group. Then L(G) is a characteristic U ∗-sub-
group of G.

Proof: It is clear that L(G) is a characteristic subgroup of G. We prove
now that L(G) belongs to U∗. If the above set of major subgroups is
empty then L(G) = G ∈ U∗ by Corollary 1. Then we may assume
that this set is non-empty. Assume first that µ(G) = 1. Let L(G)U

∗

be the U∗-residual of L(G), that is, the intersection of all normal sub-
groups N of L(G) such that L(G)/N ∈ U∗. By Theorem 1, we have that
L(G)/L(G)U

∗

is a U∗-group. We will show that L(G)U
∗

is a subgroup

of µ(G). Obviously L(G)U
∗

is contained in every major subgroup M of G
such that G/MG /∈ U∗. Suppose now that M is a major subgroup of G

such that G/MG ∈ U∗. Then, the U∗-residual of G, GU∗

, is contained

in MG. Since U∗ is subgroup-closed, it follows that L(G)U
∗

≤ GU∗

.
Consequently, L(G)U

∗

is a subgroup of M . This implies that L(G)U
∗

is

contained in every major subgroup of G and hence L(G)U
∗

≤ µ(G) = 1.
We conclude that L(G) ∈ U∗.

Suppose now that µ(G) 6= 1 and consider G/µ(G). By the above
argument we have that L(G/µ(G)) ∈ U∗. Moreover, L(G/µ(G)) =
L(G)/µ(G). Therefore it follows from Theorem 3 that L(G) is a
U∗-group.

It is well known that if G is a finite supersoluble group, then G has a
normal Sylow p′-subgroup [8, VII, (2.1)] for the smallest prime p dividing
the order of G. Moreover, the derived subgroup of G is nilpotent. The
corresponding versions in our universe for the class U∗ are the following:

Theorem 5. Let G be a U∗-group. Then:

a) G has a normal Sylow p′-subgroup for the smallest prime p dividing
the orders of the elements of G.

b) G′ ≤ F (G); in particular, G′ belongs to B.

Proof:

a) Let M be a major subgroup of G and denote MG = CoreG(M).
Suppose that the result is true for G/MG for every major sub-
group M of G. Let Q be a Sylow p′-subgroup of G. Since all p′-sub-
groups of G are conjugate and QMG/MG is a Sylow p′-subgroup
of G/MG by [7], it follows that G = (NG(Q))MG for every major
subgroup M of G. Since every proper subgroup of G is contained
in a major subgroup of G, it follows that G = NG(Q). That is,
G contains a normal Sylow p′-subgroup. Hence there is no loss of
generality in assuming that MG = 1 and then G is either a finite
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primitive soluble group or G is a semiprimitive group by [2, Theo-
rem 1]. In the first case, G is a finite supersoluble group and then
the result is true [8, VII, (2.1)]. Consequently we may assume
that G is a semiprimitive group. Then G = [G0]M , where G0

is a divisibly irreducible ZG-module, which is a q-group for some
prime q, such that CG(G0) = G0 and M is a finite soluble group.
Since G ∈ U∗, we have that G0 is a quasicyclic q-group. Therefore
G/ CG(G0) = G/G0 is a subgroup of a cyclic group of order q − 1
if q 6= 2 or a cyclic group of order 2 if q = 2. Consequently p
divides |M |. If q = 2 then G is a 2-group and hence the Sylow
2′-subgroup of G is trivial. Let assume that q 6= 2. In particular
p 6= q. Now M is cyclic and so M has a normal Sylow p′-subgroup,
R say. Then Q = G0R is a normal p′-subgroup of G, which is our
claim.

b) Let H/K be a δ-chief factor of G. In particular, H/K is a p-group
for some prime p. Since G ∈ U∗ it follows that G/ CG(H/K) is in
the class A(p − 1) if p 6= 2 or in the class A(2) if p = 2. There-
fore G′ ≤ CG(H/K) for every δ-chief factor H/K of G. Since the
Fitting subgroup F (G) of a group G is the intersection of the cen-
tralizers of all δ-chief factors of G by [3, Theorem 7], we conclude
that G′ ≤ F (G). In particular G′ belongs to B.
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