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SMOOTH POTENTIALS WITH PRESCRIBED

BOUNDARY BEHAVIOUR

Stephen J. Gardiner and Anders Gustafsson

Abstract

This paper examines when it is possible to find a smooth poten-
tial on a C1 domain D with prescribed normal derivatives at the
boundary. It is shown that this is always possible when D is a
Liapunov-Dini domain, and this restriction on D is essential. An
application concerning C1 superharmonic extension is given.

1. Results

Let D be a C1 domain in Euclidean space R
n, where n ≥ 2. Thus D is

bounded, ∂D can be represented locally as the graph of a C1 function
of n− 1 variables, and there is a uniquely defined inward normal nz at
each point z of ∂D. We denote by C1(D) the collection of continuous
functions on D which possess a continuous gradient on D that extends
continuously to D.

This paper is concerned with whether it is possible to find a smooth
potential on D with prescribed normal derivatives on the boundary.
More precisely, given a continuous function g : ∂D → (0,+∞), we ask if
there is a function v ∈ C1(D) which is superharmonic on D and satisfies
the boundary conditions

(1) v(z) = 0 and
∂v

∂nz
= g(z) (z ∈ ∂D),

where ∂/∂nz denotes differentiation in the direction of the inward normal
at z. The answer will be given in Theorem 1 below.

By a Dini function we mean an increasing continuous function
ε : (0,+∞) → (0,+∞) such that ε(t)/tγ is decreasing on (0, 1) for some
γ ∈ (0, 1) and

(2)

∫ 1

0

ε(t)

t
dt < +∞.
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A C1 domain D is called a Liapunov-Dini domain (cf. [11]) if there
is a Dini function ε such that the angle between the normals ny and
nz at any two points y, z ∈ ∂D does not exceed ε(‖y − z‖). Examples
include the C1,α-domains (0 < α < 1), which correspond to the case
where ε(t) = tα.

Theorem 1. Let D be a Liapunov-Dini domain. Then, for each contin-
uous function g : ∂D → (0,+∞), there is a function v ∈ C1(D) which is
superharmonic on D and satisfies (1).

The function v of Theorem 1 is certainly not unique: as will be clear
from the proof it can be chosen to be harmonic on any predetermined
open subset U of D which satisfies U ⊂ D. We remark that Theorem 1 is
related to work of Wallin [10] on the extension, in the form of potentials,
of continuous functions from compact polar sets.

The example below shows the relevance of condition (2) to Theorem 1.

Example 1. Let ε : [0,+∞) → [0,+∞) be an increasing continuous
function such that ε(0) = 0 and (2) fails to hold. (For example, we could
choose ε(t) = {1 + log+(e/t)}−1.) Further, let D be a C1 domain such
that

D ∩ {‖x‖ < 1} =
{

(x′, xn) ∈ R
n−1 × R : xn > −ψ(‖x′‖)

}

∩ {‖x‖ < 1}

where ψ(t) =
∫ t

0
ε(s) ds. Then the only function v in C(D) which is

superharmonic on D, valued 0 on ∂D and has a finite normal derivative
at 0, is the zero function.

We give below an application of Theorem 1 to superharmonic exten-
sion.

Corollary 1. Let D be a Liapunov-Dini domain (with Dini function ε)
such that R

n\D is connected. Suppose that u ∈ C1(D), where u
∣

∣

D
is

superharmonic and, for each z ∈ ∂D, there is a linear polynomial Lz

such that

(3) |u(x) − Lz(x)| ≤ ε(‖x− z‖) ‖x− z‖ (x ∈ ∂D).

Then there is a superharmonic function u ∈ C1(Rn) such that u = u
on D.

Corollary 1 is related to a question raised by Verdera, Mel’nikov and
Paramonov [9] concerning C1 extension of superharmonic functions. We
do not know if condition (3) can be omitted.

We will establish Theorem 1, Example 1 and Corollary 1 in Sec-
tions 3–5 respectively, following some preliminary material in Section 2.
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2. Preliminaries

We write Ca for a positive constant, depending at most on a, not
necessarily the same on any two occurrences, and assume, without loss
of generality, that 0 ∈ D. We write δ(x) for the distance of a point x
from ∂D, denote the Green function for D by GD(·, ·), and define

M(z, y) = lim
x→z, x∈D

GD(x, y)

GD(x, 0)
(z ∈ ∂D; y ∈ D).

(This is the “Martin kernel” for D; see [2, Chapter 8].)

Lemma A. Let D be a Liapunov-Dini domain. Then:

(i) GD(x, 0) ≤ CDδ(x) ‖x‖
1−n

(x ∈ D);

(ii) GD(·, y) ∈ C1(D\{y}) (y ∈ D);

(iii) for each y ∈ D the function z 7→
∂

∂nz
GD(·, y) is positive and

continuous on ∂D;

(iv) M(x∗, x) ≥ CD{δ(x)}1−n (x ∈ D), where x∗ is any point of ∂D
satisfying ‖x− x∗‖ = δ(x).

When n ≥ 3 assertions (i)–(iii) above may be found in Theorems 2.3–
2.5 of [11], and (iv) follows from an estimate on p. 28 of that paper.
In two dimensions the lemma can be verified using a conformal map-
ping argument, even under somewhat weaker hypotheses on D (cf. [7,
Theorem 3.5] for the case where D is simply connected).

The next result is a special case of Theorem 1 of [1]. As usual, B(x, r)
denotes the open ball of centre x and radius r in R

n.

Lemma B (Boundary Harnack Principle). There are constants R > 0,
a0 > 1 and c0 > 1, depending only on D, with the following property:
if z ∈ ∂D and 0 < r < R, and h1, h2 are positive harmonic functions
on D ∩ B(z, a0r) that vanish continuously on ∂D ∩ B(z, a0r), then

h1(x)

h2(x)
≤ c0

h1(y)

h2(y)
(x, y ∈ D ∩ B(z, r)).

3. Proof of Theorem 1

For each y ∈ D let By = B(y, δ(y)/2), and let

D(r) = {x ∈ D : δ(x) < r} (r > 0).
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We note that

(4) ‖x− y‖ ≥
δ(x)

3
(x ∈ D\By),

for otherwise there exists x ∈ D\By such that

‖z − x‖ − ‖z − y‖ <
δ(x)

3
(z ∈ R

n),

whence

‖z − y‖ >
2δ(x)

3
(z ∈ ∂D)

and we obtain the contradictory conclusion that

δ(y) ≥
2δ(x)

3
> 2 ‖x− y‖ .

Now let R, a0 and c0 be as in Lemma B (we choose R small enough
so that 2a0R < δ(0)), and let y ∈ D(R/2). We claim that

(5)
GD(x, y)

GD(x, 0)
≤ CDM(x∗, y) (x ∈ D(R)\By),

where x∗ denotes any point of ∂D satisfying ‖x− x∗‖ = δ(x). To see
this we define

ρ = min

{

δ(x),
‖x∗ − y‖

a0

}

,

whence ρ < R. The choice of ρ and R ensure that the functions GD(·, y)
and GD(·, 0) are harmonic on D∩B(x∗, a0ρ), so we can apply the bound-
ary Harnack principle to see that

(6)
GD(z, y)

GD(z, 0)
≤ c0M(x∗, y) (z ∈ D ∩ B (x∗, ρ)).

If δ(x) ≤ ‖x∗ − y‖ /a0, then ρ = δ(x) and the inequality in (5) clearly
holds. It remains to consider the case of (5) where δ(x) > ‖x∗ − y‖ /a0,
and so

(7) ‖x− y‖ >
‖x∗ − y‖

3a0

=
ρ

3
,

by (4). Let

z1 ∈ D ∩B(x∗, ρ) and z2 ∈ D ∩ ∂B (y, ρ/3) .

Then

‖z1 − z2‖ ≤ ‖z1 − x∗‖ + ‖x∗ − y‖ + ‖y − z2‖ ≤ (a0 + 4/3)ρ

and

‖z1 − y‖ ≥ ‖y − x∗‖ − ‖z1 − x∗‖ > (a0 − 1)ρ,
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whence z1 /∈ B(y, ρ/3) provided we arrange that a0 > 4/3. We note that
δ(z1), δ(z2) ∈ (0, ρ(a0 + 1/3)], so z1, z2 /∈ B(0, R) in view of our choice
of R. Since D is C1, we can join z1 to z2 by a curve γ in D\ [B(y, ρ/3)∪
B(0, R)], of length at most CDρ. Further, we can choose c1 > 0, de-
pending only on D, such that, for each z ∈ γ, either

B(z, 2c1ρ) ⊂ D\{0, y}

or

B(z, c1ρ) ⊂ B(z∗, 3c1ρ) and 0, y /∈ B(z∗, 3a0c1ρ).

Thus (6), together with repeated use of Harnack’s inequalities and the
boundary Harnack principle as appropriate, yields

GD(z2, y)

GD(z2, 0)
≤ CDM(x∗, y) (z2 ∈ D ∩ ∂B(y, ρ/3)),

and it follows from the minimum principle that

CDM(x∗, y)GD(·, 0) −GD(·, y) > 0 on D\B(y, ρ/3).

The claim (5) now holds in view of (7).
Using (4) and a well known consequence of Harnack’s inequalities

(see [2, Corollary 1.4.2]), we observe that

(8) ‖∇xGD(x, y)‖ ≤
3n

δ(x)
GD(x, y) (x ∈ D\By),

and hence

(9) ‖∇xGD(x, y)‖ ≤ CD
GD(x, y)

GD(x, 0)
(x ∈ D(R)\By),

by Lemma A(i). Now let vy denote the (Green) potential onD of normal-
ized Lebesgue measure on By. By the mean value property of harmonic
functions, (9) and then (5) we see that

(10) ‖∇xvy(x)‖ = ‖∇xGD(x, y)‖ ≤ CDM(x∗, y) (x ∈ D(R)\By).

Further, if we define vy = 0 on ∂D, then it follows from Lemma A(ii)

(and [2, Theorem 4.5.3]) that vy ∈ C1(D), and

‖∇xvy(x)‖ ≤ Cn{δ(y)}
1−n (x ∈ ∂By)

in view of (8). Since ∆vy = −Cn{δ(y)}
−n on By, the components

of ∇xvy are harmonic there, and so

‖∇xvy(x)‖ ≤ Cn{δ(y)}
1−n (x ∈ By).

From Lemma A(iv) and Harnack’s inequalities we see that

‖∇xvy(x)‖ ≤ CDM(x∗, x) ≤ CDM(x∗, y) (x ∈ By).
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Combining this with (10) we obtain

(11) ‖∇xvy(x)‖ ≤ CDM(x∗, y) (x ∈ D(R)),

whence

(12) vy(x) ≤ CDδ(x)M(x∗, y) (x ∈ D(R)).

Now let g : ∂D → (0,+∞) be continuous. By Lemma A(iii) and a
special case of Theorem 3 in [6] (cf. [3, Theorem 10]), there are se-
quences (yk) in D(R/2) and (ak) in [0,+∞) such that

(13)
g(z)

∂
∂nz

GD(·, 0)
=

∞
∑

k=1

akM(z, yk) (z ∈ ∂D),

and the convergence is uniform on ∂D in view of Dini’s theorem. It fol-
lows from (12) that the series

∑

akvyk
converges (uniformly) on D(R),

and hence on D by the maximum principle (each vyk
is harmonic

on D\D(R)). We denote the sum of this series by v. By (11) the
series

∑

ak ‖∇vyk
‖ also converges uniformly on D. It follows that v ∈

C1(D) and that

∂v

∂nz
=

∑

ak
∂

∂nz
vyk

=
∑

ak
∂

∂nz
GD(·, yk)

=
{

∑

akM(z, yk)
} ∂

∂nz
GD(·, 0)

= g(z) when z ∈ ∂D,

by (13). Thus (1) holds, since clearly v = 0 on ∂D in view of (12).
Finally, each vyk

is superharmonic on D, so the same is true of v. The-
orem 1 is now proved.

4. Details of Example 1

Let D be as stated in Example 1 and let zt = (0, . . . , 0, t). The failure
of (2) to hold implies that

(14)
GD(zt, z1/2)

t
→ +∞ (t→ 0+)

(see [4, Corollary 4.3]; cf. [8, p. 377] when n = 2). Now suppose that
v ∈ C(D) and that v is superharmonic on D and valued 0 on ∂D. By
the Riesz decomposition theorem v is of the form v(x) =

∫

GD(x, ·) dµ
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on D for some measure µ. If µ 6= 0, then Harnack’s inequalities, applied
to GD(x, ·), show that there are positive constants a, c such that

v(zt) ≥ cGD(zt, z1/2) (0 < t < a),

and it follows from (14) that v does not have a finite normal derivative
at 0.

5. Proof of Corollary 1

Let D and u be as in the statement of Corollary 1, and let Ω = R
n\D.

By hypothesis Ω is connected. In view of condition (3) and [11, Theo-
rem 2.4], the solution w to the Dirichlet problem in Ω, with boundary
data u on ∂D and 0 at ∞, satisfies w ∈ C1(Ω), where w = u on ∂D.

If n ≥ 3, then we define h0 to be the harmonic measure of {∞} in Ω;
if n = 2, then we define h0 to be the Green function for Ω∪{∞} with pole
at ∞. In either case we define h0 = 0 on ∂D and note from Lemma A
and the Kelvin transform that h0 ∈ C1(Ω) and −∂h0/∂nz is a positive
continuous function of z in ∂D. (We always use nz to denote the inward
normal at z relative to D.)

We now choose a > 0 large enough so that the continuous function

(15) g(z) =
∂w

∂nz
−

∂u

∂nz
− a

∂h0

∂nz
(z ∈ ∂D)

is positive on ∂D. By Theorem 1 and inversion there is a function v ∈
C1(Ω) such that v

∣

∣

Ω
is superharmonic on Ω and

(16) v(z) = 0 and −
∂v

∂nz
= g(z) (z ∈ ∂D).

For each b ≥ a, let

ub(x) =

{

u(x) (x ∈ D)

w(x) + v(x) − bh0(x) (x ∈ Ω)
.

Since v−bh0 = 0 on ∂D, the functions ub are continuous on R
n. Further,

by (16) and then (15),

∂

∂nz
(w + v − ah0) =

∂w

∂nz
− g(z) − a

∂h0

∂nz
=

∂u

∂nz
(z ∈ ∂D),

so ua ∈ C1(Rn). It remains to establish the superharmonicity of ua.
Clearly, it will be enough to check the superharmonicity of ub when b > a,
and then let b → a+. Further, since we know that ub is superharmonic
both on D and on Ω, we need only verify the superharmonic mean value
inequality at points of ∂D.
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We will do this using an argument of Carroll [5], which we include
here for the sake of completeness. Let z ∈ ∂D and r > 0, and let h
be the harmonic extension of ub from ∂B(z, r) to B(z, r). Further, let c

denote the minimum value of ub−h on B(z, r), and suppose, for the sake
of contradiction, that c < 0. Then the value c is attained by ub − h at
some point y ∈ B(z, r). The minimum principle, applied on B(z, r)\∂D,
shows that y ∈ ∂D∩B(z, r). By considering ub −h separately on D and
on Ω, we obtain

∂

∂ny
(ua − h) ≥ 0 ≥

∂

∂ny
(ua − h) − (b− a)

∂h0

∂ny
,

which contradicts the fact that ∂h0/∂ny < 0. Thus c = 0, and ub ≥ h
on B(z, r), whence ub(z)≥h(z), as required. Corollary 1 is now estab-
lished.
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