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A NOTE ON THE CONTINUOUS EXTENSIONS OF
INJECTIVE MORPHISMS BETWEEN FREE GROUPS

TO RELATIVELY FREE PROFINITE GROUPS

Thierry Coulbois, Mark Sapir and Pascal Weil

Abstract
Let V be a pseudovariety of finite groups such that free groups are
residually V, and let ϕ : F (A) → F (B) be an injective morphism
between finitely generated free groups. We characterize the situ-
ations where the continuous extension ϕ̂ of ϕ between the pro-V
completions of F (A) and F (B) is also injective. In particular, if V
is extension-closed, this is the case if and only if ϕ(F (A)) and its
pro-V closure in F (B) have the same rank. We examine a number
of situations where the injectivity of ϕ̂ can be asserted, or at least
decided, and we draw a few corollaries.

In this paper, we are interested in the pro-V topologies on finitely
generated free groups, where V is a pseudovariety of groups (a class
of finite groups closed under taking subgroups, quotients and finite di-
rect products). These topologies were introduced in the 1950s by Hall.
When V is the class of all finite groups, the finite index subgroups are
exactly the open subgroups, and Hall proved [6] that every finitely gen-
erated subgroup is closed. More recent papers (Ribes and Zalesskĭı [9],
Margolis, Sapir and Weil [7], Weil [12]) focused on the problem of ef-
fectively computing the pro-V closure ClV(H) of a given finitely gen-
erated subgroup H of a free group. It is known for instance that if V
is extension-closed, then ClV(H) has finite rank, at most equal to the
rank of H [9]. In general, a finite rank subgroup may have an infinite
rank closure (e.g. if V is the pseudovariety of finite abelian groups), or
it may be the case that if H is a finite rank subgroup, then its closure
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always has finite rank, possibly greater than the rank of H (e.g. if V is
the pseudovariety of finite nilpotent groups [7]). It is interesting to note
that deciding whether a given subgroup is pro-V-closed is equivalent
to deciding an extension property for a certain set of partial isomor-
phisms of a finite set [7]. If V consists of all finite p-groups, for some
fixed prime p, the closure of a given finite rank subgroup can be effec-
tively computed [9], in polynomial time [7]. On the other hand, it is
not known whether the pro-solvable closure of a finite rank subgroup is
effectively computable; a positive solution for this difficult open question
would have interesting consequences in finite monoid theory [7] and in
computational complexity (Straubing and Thérien [10]).

It is also known that finite rank closed subgroups are free factors
of clopen subgroups, and that the converse holds if V is extension-
closed [9]. Moreover, again in the extension-closed case, if H is a finite
rank pro-V-closed subgroup of a free group F , then the pro-V topology
of H coincides with the topology it inherits from F . The central re-
sult in this paper (Theorem 1.1) characterizes the situations where this
property of coincidence of topologies holds: it is equivalent to another
extension property, namely to the fact that a certain injective morphism
between two free groups F and F ′ admits an injective continuous exten-
sion between the pro-V completions of F and F ′. It turns out that in
the extension-closed case, this is equivalent to the fact that H and its
pro-V closure have equal rank.

After the proof of the main result, we list a number of immediate con-
sequences: for instance, it follows from our result that if V is extension-
closed, the continuous extension of an injective endomorphism of the
free group of rank 2 is always injective. In the last section, we illustrate
our result by considering a simple example of an injective morphism
ϕ : F → F ′ between finitely generated free groups whose continuous ex-
tension ϕ̂ to the pro-p completions is not injective, and we exhibit a
sequence (tn)n of elements of F whose limit points are non-trivial ele-
ments of ker ϕ̂.

1. Injective extendability

If A is an alphabet (that is, a finite non-empty set), then F (A) denotes
the free group on A. Let V be a pseudovariety of finite groups: the pro-V
topology on a group G is the least topology which makes every morphism
from G into an element of V continuous. A basis of neighborhoods of 1
in this topology is given by the finite-index normal subgroups K of G
such that G/K ∈ V.
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The pro-V topology on G is Hausdorff if and only if G is residually V.
In that case, the pro-V topology on G can be defined by an ultrametric
distance function. This situation arises in particular if G is a free group
and V is a non-trivial extension-closed pseudovariety. In the sequel, we
consider only pseudovarieties V such that free groups are residually V.

If G is a group, we denote by Ĝ the pro-V completion of G: it is
compact and totally disconnected. If G = F (A), we write F̂V(A) for Ĝ;
this is also the free pro-V group on A. If H ⊆ G, we write ClV(H) (or
simply Cl(H)) for the closure of H in G. If H ⊆ Ĝ, we write H for the
closure of H in Ĝ. In particular, if H ⊆ G, H = Cl(H) and, if G is
residually V, then Cl(H) = H ∩ G.

We note that every morphism ϕ : F → F ′ between free groups is uni-
formly continuous when both groups are equipped with their respective
pro-V topologies. In particular, ϕ admits a (uniquely defined) continu-
ous extension between the pro-V completions, written ϕ̂ : F̂ → F̂ ′.

For a justification of these assertions, we refer the readers, for instance,
to [7]. We now consider injective morphisms, and we state our main
result.

Theorem 1.1. Let ϕ : F (A) → F (B) be an injective morphism and let
H = ϕ(F (A)). Let V be a pseudovariety of groups such that free groups
are residually V. The following conditions are equivalent:

• The continuous extension of ϕ, ϕ̂ : F̂V(A) → F̂V(B) is one-to-one.

• The pro-V topology on H coincides with the topology on H induced
by the pro-V topology on F (B).

If, in addition, V is extension-closed, these properties are equivalent to:
• H and Cl(H) have the same rank.

The proof of Theorem 1.1 follows directly from Propositions 1.4, 1.6
and 1.8 below.

1.1. Comparing the pro-V topologies on a subgroup.

We will use the following elementary remark.

Lemma 1.2. Let ϕ : F (A) → F (B) be a morphism between finitely gen-
erated free groups, let H =ϕ(F (A)) be the range of ϕ and let ϕ̂ : F̂V(A) →
F̂V(B) be the continuous extension of ϕ between the pro-V completions
of F (A) and F (B). Then the range of ϕ̂ is H.

Proof: By continuity, we have ϕ̂(F̂V(A)) = ϕ̂(F (A)) ⊆ ϕ(F (A)) = H.
Of course, we also have H ⊆ ϕ̂(F̂V(A)). Finally, as F̂V(A) is compact
and ϕ̂ is continuous, the group ϕ̂(F̂V(A)) is closed, so ϕ̂(F̂V(A))=H.
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Next we consider the following property of a finitely generated sub-
group H of a free group F (B):

Property Coinc(V). The pro-V topology on H coincides with the
topology on H induced by the pro-V topology on F (B).

This property translates as follows.

Lemma 1.3. Let H be a finitely generated subgroup of a free group F (B),
let ı : H → F (B) be the natural injection of H into F (B), and let
ı̂ : Ĥ → F̂V(B) be the continuous extension of ı between the pro-V com-
pletions of H and F (B). Then H has Property Coinc(V) if and only if ı̂

is injective. In particular, H is homeomorphic to Ĥ.

Proof: This is immediate once we observe that ı̂ has range H (by Lem-
ma 1.2).

We are now ready to prove the first equivalence in Theorem 1.1.

Proposition 1.4. Let V be a pseudovariety of groups such that free
groups are residually V. Let ϕ, ϕ̂ and H be as in the statement of The-
orem 1.1. Then ϕ̂ is injective if and only if H has Property Coinc(V).

Proof: Let ψ : F (A) → H be the restriction of ϕ to an isomorphism be-
tween F (A) and H, and let ψ̂ : F̂V(A) → Ĥ be the continuous extension
of ψ. As ψ is an isomorphism, ψ̂ is a homeomorphism.

Let ı : H → F (B) and ı̂ : Ĥ → F̂V(B) be as in Lemma 1.3. We
observe that ϕ = ı ◦ ψ, so that ϕ̂ = ı̂ ◦ ψ̂. As ψ̂ is a homeomorphism, ϕ̂
is one-to-one if and only if ı̂ is. By Lemma 1.3, this is equivalent to H
having Property Coinc(V), as we wanted to prove.

1.2. The extension-closed case.

The following sufficient condition for a finitely generated subgroup to
have Property Coinc(V) was proved in [7, Proposition 2.17]:

Proposition 1.5. If V is extension-closed, then every finitely gener-
ated, closed subgroup of F (A) has Property Coinc(V).

We will see that this sufficient condition is not necessary (Propo-
sition 1.7 below). However, we can immediately use this property to
prove one half of the remaining equivalence.

Proposition 1.6. Let V be a non-trivial extension-closed pseudovariety
of groups. Let ϕ : F (A) → F (B) be a morphism between free groups, let
H = ϕ(F (A)), and let ϕ̂ be the continuous extension of ϕ between the
pro-V completions of F (A) and F (B). If ϕ and ϕ̂ are injective, then H
and Cl(H) have equal ranks.
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Proof: By Lemma 1.2, the range of ϕ̂ is H. Since ϕ̂ is injective between
two compact spaces, it is a homeomorphism onto its image, so H is
homeomorphic to the free pro-V group of rank |A| = rank(H).

On the other hand, we know from Proposition 1.5 that Cl(H) has
Property Coinc(V). Applying Lemma 1.3 to Cl(H), we find that Cl(H)
is homeomorphic to the free pro-V group of rank rank(Cl(H)).

But H = Cl(H), so we have proved that rank(H) = rank(Cl(H)).

Before we prove the reverse implication, we show the following result,
which does not require the hypothesis that V is extension-closed.

Proposition 1.7. Let H be a finitely generated subgroup of the free
group F (A). If H is dense in the pro-V topology of F (A) and if
rank(H) = rank(F (A)), then H has Property Coinc(V).

Proof: As H and F (A) have the same rank, we may consider an injective
endomorphism ψ of F (A) with range H. Let ψ̂ : F̂V(A) → F̂V(A) be the
continuous extension of ψ. By Lemma 1.2, ψ̂ is an onto endomorphism
of F̂V(A). But every onto continuous endomorphism of a finitely gener-
ated profinite group is injective [5, Proposition 15.3]. So ϕ̂ is injective:
by Proposition 1.4, this implies that H has Property Coinc(V).

We can now give the last element in the proof of Theorem 1.1.

Proposition 1.8. Let H be a finitely generated subgroup of the free
group F (A). If V is extension-closed and rank(H) = rank(Cl(H)), then
H has Property Coinc(V).

Proof: By Proposition 1.5, the pro-V topology on Cl(H) coincides with
the topology on Cl(H) induced by the pro-V topology on F (A). There-
fore H is dense in the pro-V topology on Cl(H). Now Proposition 1.7 im-
plies that the pro-V topology on H coincides with the topology on H in-
duced by the pro-V topology on Cl(H), and this concludes the proof.

2. Corollaries

The following collection of remarks is immediately deduced from The-
orem 1.1. Throughout this section, V denotes a pseudovariety of groups
such that free groups are residually V, ϕ : F (A) → F (B) is an injective
morphism between free groups, ϕ̂ : F̂V(A) → F̂V(B) is the continuous
extension of ϕ between the pro-V completions of F (A) and F (B), and
H = ϕ(F (A)).

Corollary 2.1. Whether ϕ̂ is injective depends only on H, not on ϕ.
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If V = G, the pseudovariety of all finite groups, the pro-V completion
of a group is called its profinite completion. It is well-known that for
the pro-G topology, every finitely generated subgroup of the free group
is closed [6]. As a result, we have:

Corollary 2.2. Every injective morphism between free groups of finite
rank admits an injective continuous extension to the profinite comple-
tions of these groups.

Let p be a prime number and let Gp be the pseudovariety of finite
p-groups. The pro-Gp completion of a group is called its pro-p comple-
tion. It is shown in [9] that if p is a prime number, one can effectively
compute the pro-p closure of a finitely generated subgroup of the free
group (see [7] for a polynomial time algorithm). It follows that:

Corollary 2.3. Given a prime number p, one can decide whether the
continuous extension of ϕ to the pro-p completions is injective.

Let Gsol be the pseudovariety of finite solvable groups; the pro-Gsol

completion of a group is called its pro-solvable completion. It is also
shown in [12] that one can compute the rank of the pro-solvable closure
of a finite index subgroup:

Corollary 2.4. If H has finite index, one can decide whether the con-
tinuous extension of ϕ to the pro-solvable completions is injective.

For the general case however, we do not know whether one can ef-
fectively compute the rank of the pro-solvable closure of a given finitely
generated subgroup (see the conclusion of [7] or [12] for a discussion).
In particular, we do not know whether the injectivity of the continuous
extension of ϕ to the pro-solvable completions is decidable.

In [7], the pro-V topology is considered also when V is the pseudovari-
ety Gnil of finite nilpotent groups, a pseudovariety which is not extension-
closed. An example is given of a finitely generated subgroup which is
closed in that topology yet does not have Property Coinc(V) [7, Exam-
ple 1.10]. This shows that the extension-closed assumption in Proposi-
tion 1.8 cannot be dispensed with. However, we also know [7] that the
pro-nilpotent completion of the free group (its pro-Gnil completion) is a
subdirect product of its pro-p completions (p prime). Therefore we have:

Corollary 2.5. The continuous extension of ϕ to the pro-nilpotent com-
pletions is injective if and only if, for each prime p, the continuous ex-
tension of ϕ to the pro-p completions is injective.
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In view of Theorem 1.1, deciding the injectivity of the pro-nilpotent
extension of ϕ is equivalent to deciding whether every p-closure of H
has the same rank as H. But there are only finitely many subgroups
of F (A) of the form Clp(H), and they are effectively computable [7],
[12]. It follows that:

Corollary 2.6. It is decidable whether the extension of ϕ to the pro-
nilpotent completions is injective.

Returning to extension-closed pseudovarieties, it is shown in [9] that
rank(Cl(H)) ≤ rank(H). As free groups and free pro-V groups of rank 1
are commutative, it follows that if H has rank 1 or 2, then rank(H) =
rank(Cl(H)). This translates into the following result.

Corollary 2.7. If V is extension-closed and ϕ is defined on the free
group of rank 1 or 2, then ϕ̂ is injective.

This last result leads to the following consequences. Let G be the
pseudovariety of all finite groups, B be a finite alphabet, and u ∈ F̂G(B).
We say that a finite group G satisfies the pseudo-identity u = 1 if, for
every continuous morphism ψ : F̂G(B) → G, we have ψ(u) = 1. The
class of finite groups which satisfy a given set of pseudo-identities is a
pseudovariety, and every pseudovariety can be defined in this fashion
(Reiterman’s theorem, see [1]).

Let A = {a, b}, B be a finite alphabet, ϕ : F (A) → F (B) be an
injective morphism (that is, ϕ(a)ϕ(b) �= ϕ(b)ϕ(a)) and ϕ̂ : F̂G(A) →
F̂G(B) be the continuous extension of ϕ to the free profinite groups
over A and B.

Corollary 2.8. Let V be a non-trivial extension-closed pseudovariety
and let (ui)i∈I be a collection of elements of F̂G(A). If V satisfies the
pseudo-identities ϕ̂(ui) = 1, then V satisfies the pseudo-identities ui =1.

To build from this result, let us observe that, if p is a prime number,
it is immediate that a finite group is a p-group if and only if every one
of its cyclic subgroup is a p-group. That is equivalent to saying that Gp

is defined by a set of one-variable pseudo-identities. In fact, it is even
the case that there exists a single element up ∈ F̂G(a) such that a finite
group is a p-group if and only if it satisfies the pseudo-identity up = 1
(up is the limit in the profinite topology of the sequence apn!

, denoted
up = apω

[2, Example 2.6(1)]).
It is also known that a finite group is nilpotent (resp. solvable) if and

only if each of its 2-generated subgroups is nilpotent (resp. solvable),
so that the pseudovarieties Gnil and Gsol are both defined by a set of



484 T. Coulbois, M. Sapir, P. Weil

2-variable pseudo-identities. In the nilpotent case, this is a result of
Neumann and Taylor [8] and in the solvable case, it was proved by
Thompson [11], see also Flavell [4]. In fact, it is known that there
exists an element unil(a, b) (resp. usol(a, b)) of F̂G(A) such that the single
2-variable pseudo-identity unil(a, b) = 1 defines exactly Gnil, Almeida [2,
Example 2.7(1)] (resp. usol(a, b) = 1 defines exactly Gsol, Bandman et
al. [3]).

Thus, Corollary 2.8 implies the following.

Corollary 2.9. Let B be a finite alphabet, and let x, y ∈ F (B) such that
xy �= yx. Let V be an extension-closed pseudovariety of groups.

• If V satisfies the pseudo-identity xpω

= 1, then V = Gp.

• If V satisfies the pseudo-identity unil(x, y) = 1, then V = Gp for
some prime p.

• If V satisfies the pseudo-identity usol(x, y) = 1, then V = Gsol.

This can be rewritten in the, perhaps more readable, following form
(without actually using the subtle results of the existence of a single
pseudo-identity defining Gp, Gnil or Gsol).

Corollary 2.10. Let B be a finite alphabet, and let x, y ∈ F (B) such
that xy �= yx. Let V be an extension-closed pseudovariety of groups.

• If for every morphism ψ : F (B) → G into an element G ∈ V, ψ(x)
has exponent a power of p (for some fixed prime p), then V = Gp.

• If for every morphism ψ : F (B) → G into an element G ∈ V, ψ(x)
and ψ(y) generate a nilpotent subgroup of G, then V = Gp for
some prime p.

• If for every morphism ψ : F (B) → G into an element G ∈ V, ψ(x)
and ψ(y) generate a solvable subgroup of G, then V = Gsol.

3. An example

We now give an explicit example of an injective morphism ϕ between
finitely generated free groups whose continuous extension ϕ̂ between
the corresponding free pro-p groups is not injective, and we exhibit a
sequence of words (tn)n such that limϕ(tn) = 1, yet 1 is not a limit
point of (tn)n: thus the limit points of (tn)n are non-trivial elements
of ker ϕ̂. Put differently, this means that p-groups ultimately satisfy
ϕ(tn) = 1, yet there exists a p-group that does not satisfy any of the
identities tn = 1.
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Let q be a fixed odd prime, let B = {x, y}, and let H be the kernel
of the morphism from F (B) into the additive group Z/qZ which maps
letters x and y to 1. Then H has rank q + 1 and if A = {a0, a1, . . . , aq},
then H is the range of the injective morphism ϕ : F (A) → F (B) given
by

ϕ(ai) = xiyx−(i+1), i = 0, . . . , q − 2

ϕ(aq−1) = xq−1y

ϕ(aq) = xq.

As F (B)/H is a q-group, H is closed in the pro-q topology: by Theo-
rem 1.1, the continuous extension of ϕ to the pro-q completions of F (A)
and F (B) is injective. On the other hand, one can show that for every
other prime number p, H is dense in the pro-p topology (see [7, Sec-
tion 3.1]), and by Theorem 1.1 again, the continuous extension of ϕ to
the pro-p completions is not injective.

Let u0 = x, v0 = y, and for each n ≥ 0, un+1 = unvn and vn+1 =
vnun. We now fix a prime number p �= q. It is well-known that the
identities un = vn are ultimately verified by every finite p-group (Engel
identities, [8]). This means that the sequence (unv−1

n )n converges to 1
in the pro-p topology. It is also easily verified that, for each n ≥ 0, the
word unv−1

n is reduced and lies in H. Thus there exists a (unique) word
tn ∈ F (A) such that ϕ(tn) = unv−1

n for each n ≥ 0.
Let S be the q-dimensional vector space over the p-element field Fp

with basis e0, . . . , eq−1. Let π be the projection of F (A) onto S defined
by π(ai) = ei for i = 0, . . . , q − 1 and π(aq) = 0. We prove that π(tn)
is never 0 in S, so that the additive group S (an abelian p-group) does
not satisfy tn = 1.

We consider the morphism π ◦ ϕ−1 from H to S. For each n ≥ 0, let
sn = π(tn) = π ◦ ϕ−1(unv−1

n ). Then

sn+1 = π ◦ ϕ−1(un+1v
−1
n+1) = π ◦ ϕ−1(unvnu−1

n v−1
n ).

Since H is normal, unvnu−1
n u−1

n ∈ H and we have

sn+1 =π◦ϕ−1(unvnu−1
n u−1

n )+π◦ϕ−1(unv−1
n )=sn−π◦ϕ−1(ununv−1

n u−1
n ).

Let σ be the linear isomorphism of S given by σ(ei) = ei+1 where the
indices i and i+1 are taken modulo q. We leave it to the reader to verify
that, for each i = 0, . . . , q − 1, we have

π ◦ ϕ−1(xϕ(ai)x−1) = π ◦ ϕ−1(yϕ(ai)y−1) = σ ◦ π(ai).
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It follows that for each g ∈ F (A), we have

π ◦ ϕ−1(xϕ(g)x−1) = π ◦ ϕ−1(yϕ(g)y−1) = σ ◦ π(g).

Now un is a positive word in x and y of length 2n, so we have

sn+1 = sn − σ2n

(sn) = (id−σ2n

)(sn).

We observe that the linear transformation σ of V has order q and a
one-dimensional eigenspace associated to the eigenvalue 1 (generated by
w = e0 + · · · + eq−1) and the supplementary hyperplane W of equation
x0 + · · ·+ xq−1 = 0 is stable under σ. Now we use the fact that σq = id
and q is odd: for each integer n ≥ 0, σ is equal to a power of σ2n

. As 1
is not an eigenvalue of the restriction σ|W , it cannot be an eigenvalue of
any 2n-th power of σ|W . It follows that the linear transformation id−σ2n

of W is invertible for all n ≥ 0. As s0 �= 0, we find that sn = π(tn) �= 0
for each n, as announced.
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Université Paris-7
2 place Jussieu
75251 Paris Cedex 05
France

and

Al-Quds University
Occupied Palestinian Territories
E-mail address: coulbois@logique.jussieu.fr

Mark Sapir:
Department of Mathematics
Vanderbilt University
Nashville, TN 37240-0001
U.S.A.
E-mail address: msapir@math.vanderbilt.edu

http://www.math.vanderbilt.edu/~msapir

Pascal Weil:
LaBRI, CNRS
351 cours de la Libération
33405 Talence Cedex
France
E-mail address: pascal.weil@labri.fr

http://www.labri.fr/Perso/~weil
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