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CENTRE-BY-METABELIAN GROUPS WITH A
CONDITION ON INFINITE SUBSETS

Nadir Trabelsi

Abstract
In this note, we consider some combinatorial conditions on infi-
nite subsets of groups and we obtain in terms of these conditions
some characterizations of the classes L(Nk)F and FL(Nk) for
the finitely generated centre-by-metabelian groups, where L(Nk)
(respectively, F) denotes the class of groups in which the normal
closure of each element is nilpotent of class at most k (respectively,
finite groups).

1. Introduction and results

Following a question of Erdös, B. H. Neumann proved in [13] that
a group is centre-by-finite if, and only if, every infinite subset contains
a commuting pair of distinct elements. Since this result, problems of
similar nature have been the object of many papers (for example [1],
[2], [3], [4], [5], [9], [11], [10], [16], [17]). We present here some further
results of the same type.

Let k be a fixed positive integer. Denote by E∗
k the class of groups

such that for every infinite subset X there exist two distinct elements x, y
in X, and integers t0, t1, . . . , tk depending on x, y, and satisfying[
zt0
0 , zt1

1 , . . . , ztk

k

]
= 1, where zi ∈ {x, y} for every i ∈ {0, 1, . . . , k} and

z0 �= z1. Denote also by E#
k the class of groups G ∈ E∗

k for which the
integers t0, . . . , tk belong to {−1, 1}. In [3], it is proved that if G is a
finitely generated soluble group in the class E∗

k (respectively E#
k ), then

there is an integer c, depending only on k, such that G is in NcF (respec-
tively FNc); where Nc and F denote respectively the class of nilpotent
groups of class at most c and the class of finite groups. In [3], it is also
proved that a finitely generated metabelian group G is in E∗

k (respec-
tively E#

k ) if, and only if, G belongs to NkF (respectively FNk); and it is
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observed that these results are not true if the derived length of G is ≥ 3.
Among the examples cited, which are due to Newman [14] (see also [2]),
there is a finitely generated torsion-free nilpotent group G of class 4, of
derived length 3, and whose 2-generated subgroups are nilpotent of class
at most 3. So G is a finitely generated centre-by-metabelian group which
belongs to E∗

3 (respectively E#
3 ) and such that G /∈ N3F (respectively

G /∈ FN3). Note that if a group belongs to Nk, then it is in L(Nk−1),
where L(Nk−1) denotes the class of groups in which the normal closure
of each element is nilpotent of class at most k − 1. Considering this
weaker condition we are able to prove the following results:

Theorem 1.1. A finitely generated centre-by-metabelian group G is in
E∗

k+1 if, and only if, G belongs to L(Nk)F .

Theorem 1.2. A finitely generated centre-by-metabelian group G is in
E#

k+1 if, and only if, G belongs to FL(Nk). In particular, a torsion-
free centre-by-metabelian group G is in E#

k+1 if, and only if, G belongs
to L(Nk).

In [7], it is proved that a metabelian group G is (k + 1)-Engel if, and
only if, G belongs to L(Nk). Morse [12] extended this result to a certain
class of soluble groups of derived length ≤ 5 which contains the centre-
by-metabelian groups. So our theorems improve Morse’s result for the
centre-by-metabelian groups.

Denote by B∗
k the class of groups such that every infinite subset con-

tains an element x such that 〈x〉 is subnormal of defect k. It is proved
in [8, Corollary 2.5] that a metabelian non-torsion group is a k-Baer
group (that is every cyclic subgroup of G is subnormal of defect k) if,
and only if, G is a k-Engel group. Here, using Theorem 1.2, we shall
improve this result with the following:

Theorem 1.3. Let G be a finitely generated centre-by-metabelian group.
If G is in B∗

k, then G is finite-by-(k-Engel). In particular, a torsion-free
centre-by-metabelian group G belongs to B∗

k if, and only if, G is k-Engel.

2. Proof of the results

Lemma 2.1. Let G be a finitely generated torsion-free nilpotent group
of class at most k + 1. If G belongs to E∗

k , then G is a k-Engel group.
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Proof: Let G be a group in E∗
k and assume that G is not k-Engel. There-

fore there exist x, y in G such that [x, ky] �= 1. The group G, being
a finitely generated torsion-free nilpotent group, is a residually finite
p-group for every prime p. So G has a normal subgroup N such that
[x, ky] /∈ N and |G/N | = pr for some positive integer r. Considering the
infinite subset

{
xpr+i

y : i integer
}

, there are integers n, m, t0, t1, . . . , tk

such that
[
zt0
0 , zt1

1 , . . . , ztk

k

]
= 1, where zi ∈

{
xpr+n

y, xpr+m

y
}

, n �= m

and z0 �= z1. Since G is nilpotent of class at most k + 1, the com-
mutator

[
zt0
0 , zt1

1 , . . . , ztk

k

]
is linear in each argument [1, Lemma 1], so

we get that [z0, z1, . . . , zk]t0t1...tk = 1, and therefore [z0, z1, . . . , zk] = 1
since G is torsion-free. Put z0 = xpr+s0

y and z1 = xpr+s1
y, where

s0 �= s1 ∈ {m, n}. So

1 = [z0, z1, . . . , zk] =
[[

xpr+s0
y, xpr+s1

y
]
, z2, . . . , zk

]

=
[[

x(pr+s0−pr+s1 ), y
]z1

, z2, . . . , zk

]
=

[
x(pr+s0−pr+s1 ), y, z2, . . . , zk

]z1

.

Hence

1 =
[
x(pr+s0−pr+s1 ), y, z2, . . . , zk

]
= [x, y, z2, . . . , zk](p

r+s0−pr+s1 )
.

Thus [x, y, z2, . . . , zk] = 1 as G is torsion-free and s0 �= s1. Conse-
quently [x, y, z2, . . . , zk]N = N . Now xpr+n

, xpr+m ∈ N , so ziN = yN .
It follows that [x, ky]N = N ; this means that [x, ky] ∈ N , a contradiction
which completes the proof.

It is proved in [12, Theorem 1] that if G is nilpotent of class at
most k+2, then G is (k+1)-Engel if and only if G ∈ L(Nk). So combining
this result and Lemma 2.1, we have the following consequence:

Lemma 2.2. Let G be a finitely generated nilpotent group of class at
most k + 2. If G is in E∗

k+1, then G belongs to FL(Nk). In particular,
a torsion-free nilpotent group G of class at most k +2 is in E∗

k+1 if, and
only if, G belongs to L(Nk).

Proof: Let G be a finitely generated nilpotent group of class at most k+2
and suppose that G is in E∗

k+1. Then T , the torsion subgroup of G, is
finite and G/T is a finitely generated torsion-free group of nilpotency
class at most k + 2 which belongs to E∗

k+1. It follows, from Lemma 2.1,
that G/T is a (k+1)-Engel group, and by [12, Theorem 1], G/T belongs
to L(Nk). Hence, G is in FL(Nk); as claimed.
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Now, we suppose that G is a torsion-free group of nilpotency class at
most k + 2 which belongs to E∗

k+1 and let x, y1, . . . , yk+1 ∈ G. Then
H = 〈x, y1, . . . , yk+1〉 is a finitely generated group of nilpotency class at
most k + 2 which belongs to E∗

k+1. It follows, from the first part of the
proof, that H is in FL(Nk). So H is in L(Nk) since it is torsion-free.
Hence, [xy1 , . . . , xyk+1 ] = 1, and this means that G belongs to L(Nk).

Clearly, any group in L(Nk) is (k+1)-Engel, so it belongs to E∗
k+1.

Proof of Theorem 1.1: Let G be a finitely generated centre-by-met-
abelian group in E∗

k+1. So G/Z(G) is a finitely generated metabelian
group in E∗

k+1. Therefore, by [3, Theorem 1.3], G/Z(G) is in Nk+1F .
Hence, G belongs to Nk+2F . Since finitely generated nilpotent groups
are (torsion-free)-by-finite [15, 5.4.15(i)], G has a normal subgroup H,
of finite index such that H is a torsion-free nilpotent group of class at
most k + 2 which belongs to E∗

k+1. It follows, by Lemma 2.2, that H is
in L(Nk); so G belongs to L(Nk)F .

Conversely, suppose that G is in L(Nk)F . Therefore there is a positive
integer n and a normal subgroup H such that H ∈ L(Nk) and |G/H| =
n. So H is a (k + 1)-Engel group and xn, yn ∈ H for any x, y in G.
Hence, [xn, k+1y

n] = 1 and consequently G belongs to E∗
k+1.

Proof of Theorem 1.2: Let G be a finitely generated centre-by-met-
abelian group in E#

k+1. So G/Z(G) is a finitely generated metabelian
group which belongs to E#

k+1. Therefore, by [3, Theorem 1.6],
G/Z(G)

Zk+1(G/Z(G)) is finite; so G/Zk+2(G) is finite. It follows, by [6, The-
orem 1], that G is in the class FNk+2. Let H be a finite normal sub-
group such that G/H is nilpotent of class at most k + 2. If T/H is the
torsion subgroup of G/H, then T/H is finite; so T is finite and G/T is
a torsion-free finitely generated nilpotent group of class at most k + 2
which belongs to E#

k+1. It follows, by Lemma 2.2, that G/T is in L(Nk);
so G belongs to FL(Nk); as required.

Conversely, suppose that G is in the class FL(Nk). Therefore there is
a finite normal subgroup H such that G/H is (k + 1)-Engel. Since G is
a finitely generated soluble group, G/H is therefore nilpotent. It follows
that G is finite-by-nilpotent, so G is residually finite. Consequently,
there is a normal subgroup N of finite index such that H ∩N = 1. Since
G/N is finite, if X is an infinite subset of G, then there are x, y ∈ X such
that x �= y and xN = yN . We have [x, k+1y] ∈ H and 〈x,y〉N

N is cyclic,
since G/H is (k + 1)-Engel and xN = yN . Thus, [x, k+1y] ∈ H ∩ N . It
follows that [x, k+1y] = 1 and, therefore, G belongs to E#

k+1.
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Now we suppose that G is a torsion-free centre-by-metabelian group in
the class E#

k+1 and let x, y1, . . . , yk+1 ∈ G. Then H = 〈x, y1, . . . , yk+1〉 is
a torsion-free finitely generated centre-by-metabelian group. It follows,
from the first part of the proof, that H belongs to FL(Nk), and conse-
quently H ∈ L(Nk) since it is torsion-free. Hence, [xy1 , . . . , xyk+1 ] = 1
and, therefore, G belongs to L(Nk).

For the proof of Theorem 1.3, we need further lemmas. Note that it
is proved in [8, Theorem 2.3] that every non-torsion k-Baer group is a
k-Engel group. But the converse is shown only in the metabelian case.
As a consequence of Morse’s result [12], we will extend this result with
the following lemma:

Lemma 2.3. Let G be a non-torsion centre-by-metabelian group. Then,
G is a k-Baer group if, and only if, G is a k-Engel group.

Proof: Let G be a non-torsion centre-by-metabelian group, and suppose
that G is a k-Engel group. From [12, Theorem 2], G is in L(Nk−1).
Let x in G; then xG, the normal closure of x in G, is in Nk−1. Now, it is
well known that subgroups of a group of nilpotency class at most k − 1
are subnormal of defect k − 1. Thus, 〈x〉 is (k − 1)-subnormal in xG, so
〈x〉 is k-subnormal in G. It follows that G is a k-Baer group.

Lemma 2.4. Let G be a torsion-free group in L(Nk). If G belongs to
B∗

k, then G is a k-Engel group.

Proof: Let x, y in G; since G is torsion-free, the subset
{
xi : i positive

integer
}

is infinite. Therefore there is a positive integer i such that
〈
xi

〉
is

k-subnormal in G. Thus,
[
xi,

[
y, k−1x

i
]]

∈
〈
xi

〉
, so

[
xi,

[
y, k−1x

i
]]

= xr

for some integer r. Since G belongs to L(Nk), we have that G is a (k +
1)-Engel group. Hence, 1 =

[
xi, k+1

[
y, k−1x

i
]]

= xrk+1
; and this gives

that r = 0 as G is torsion-free. It follows that
[
xi,

[
y, k−1x

i
]]

= 1, so[
y, kxi

]
= 1. Now, because xG is in Nk, we have that every commutator

in xG of length k is multilinear. Thus 1 =
[
y, kxi

]
=

[[
y, xi

]
, k−1x

i
]

=

[y, kx]i
k

. Once again, as G is torsion-free, we obtain that [y, kx] = 1;
this means that G is a k-Engel group.

Proof of Theorem 1.3: Let G be a finitely generated centre-by-met-
abelian group in the class B∗

k. So every infinite subset of G contains
an element x such that 〈x〉 is k-subnormal in G. Hence, for any y in G

we have [y, k+1x] = 1. Thus, G belongs to E#
k+1. It follows, from [11,

Theorem 1], that G is finite-by-nilpotent. Therefore there is a finite nor-
mal subgroup T such that G/T is a torsion-free centre-by-metabelian
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group which belongs to E#
k+1. It follows from Theorem 1.2 that G/T is

in L(Nk), and by Lemma 2.4, we obtain that G/T is a k-Engel group.
Therefore, G is finite-by-(k-Engel); as claimed.

Now, assume that G is a torsion-free centre-by-metabelian group in B∗
k

and let x, y in G. Then, from the first part of the proof, H = 〈x, y〉 is
finite-by-(k-Engel). Since G is torsion-free we deduce that H is k-Engel.
Hence, [y, kx] = 1, so G is a k-Engel group.

Conversely, suppose that G is a torsion-free centre-by-metabelian and
a k-Engel group. From Lemma 2.3 we get that G is a k-Baer group, so G
is in B∗

k.
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Primera versió rebuda el 25 de setembre de 2002,

darrera versió rebuda el 19 de març de 2003.


