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CHARACTERIZATION OF THE INESSENTIAL
ENDOMORPHISMS IN THE CATEGORY OF ABELIAN

GROUPS

S. Abdelalim and H. Essannouni∗

Abstract
An endomorphism f of an Abelian group A is said to be inessen-
tial (in the category of Abelian groups) if it can be extended to
an endomorphism of any Abelian group which contains A as a
subgroup. In this paper we show that f is as above if and only
if (f − v idA)(A) is contained in the maximal divisible subgroup
of A for some v ∈ Z.

1. Introduction

Throughout this paper, we will follow the terminology of [2]. Let M
be an object of a category C and f ∈ End(M), f is called inessential
(in C) if for any monomorphism σ : M → N there exists f̃ ∈ End(N)
such that f̃σ = σf , in other words the following diagram

M
σ−−−−→ N

f

� �f̃

M
σ−−−−→ N

commutes.
Ines(M) denotes all the inessential endomorphisms of M . M is called

rigid if End(M) = Ines(M). For a concrete category C, the character-
ization of the inessential endomorphisms is one of the problems raised
in [2]. In this paper, we take C = Ab the category of the Abelian groups
and we show for an Abelian group A, and an endomorphism f of A,
that f is inessential (in Ab) if and only if there exists v ∈ Z such that

2000 Mathematics Subject Classification. 20K30.
Key words. Category, inessential, monomorphism, rigid, divisible, extension.
∗The second author is partially supported by the Ministeŕıo de Cienćıa y Tecnoloǵıa.
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(f − v idA)(A) ⊆ D, where D is the maximal divisible subgroup of A. In
particular if A is reduced then Ines(A) = Z idA. The proof of this result
uses the properties of the endomorphisms of some extensions of certain
direct sums of torsion cyclic groups.

From now on, the word group means Abelian group and we adopt the
notations of [3].

2. Some constructions

Construction 1. Let (αn)n≥0 be a sequence of natural numbers such
that αn < αn+1 and 2αn+1 − αn + n + 3 ≤ αn+2, ∀n ∈ N. If we put
θn = αn − αn−1 − n for n ≥ 1 then we have θn − θn−1 ≥ n, n ≥ 2. Let
p ∈ N

∗ and (tn,m)n≥m be a set of nonzero natural numbers, relatively
prime with p such that ti,jtj,k = ti,k if i ≥ j ≥ k.

We consider the direct product
∏

n≥1

〈xn〉 with o(xn) = pαn and denote

by ϕk :
∏

n≥1

〈xn〉 → 〈xk〉 the canonical projection. For m ≥ 1, we define

the element gm of
∏

n≥1

〈xn〉 by

ϕn(gm) =

{
0 if n < m

pαn−αmxn if n ≥ m.

We directly check that o(gm) = pαm , xm = gm − pαm+1−αmgm+1 and
〈{gm/m ≥ 1}〉 =

⊕
m≥1

〈gm〉.

Let m ∈ N
∗ and ξ a function from N into {0, 1}, we define the ele-

ment S(m, ξ) of
∏

n≥1

〈xn〉 by

ϕn(S(m, ξ)) =

{
0 if n < m

ξ(n)tn,mpn−m+αn−1xn if n ≥ m.

We have

S(m, ξ) =

(
r∑

n=m

ξ(n)tn,mpn−m+αn−1xn

)
+ tr+1,mpr+1−mS(r + 1, ξ)

if r ≥ m.
Let K1 be the subgroup of

∏
n≥1

〈xn〉 generated by

{gm/m ≥ 1} ∪ {S(m, ξ)/m ≥ 1, ξ ∈ {0, 1}N}.
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Lemma 2.1. The direct sum
⊕
n≥1

〈xn〉 is a subgroup of K1 and for all

λ ∈ End(K1) there exist s, N ∈ N and v ∈ Z such that ts,1p
αn−nλ(xn) =

pαn−nvxn, ∀n ≥ N .

Proof: Let λ ∈ End(K1). Let us show at first that there exists N0 ≥ 1
such that if n > m ≥ N0 then ϕn(pαm−mλ(xm)) = 0.

If not, we can find a sequence (mk)k≥1 such that for all k ≥ 1, there
exists nk > mk with ϕnk

(pαmk
−mkλ(xmk

)) 
= 0 and αnk
≤ mk+1. Let

ζ : N → {0, 1} be the function defined by ζ(n) = 1 if n ∈ {mk/k ≥ 1}
and ζ(n) = 0 otherwise. We can write:

λ(S(1, ζ)) =
a∑

i=1

cigi +
b∑

j=1

djS(m, ξj).

If we put t = αa, then ptλ(S(1, ζ)) = pt
b∑

j=1

djS(m, ξj). For any k, we

have

pθmk
+1S(1, ζ) = pθmk

+1

×
[(

mk+1−1∑
n=1

ζ(n)tn,1p
n−1+αn−1xn

)
+tmk+1,1p

mk+1S(mk+1, ζ)

]
∈pαnk K1

because θmk
+ 1 + n − 1 + αn−1 ≥ αn if mk ≥ n ≥ 1, ζ(n) = 0 if

mk+1 > n > mk and θmk
+ 1 + mk+1 ≥ αnk

. If k is large enough, then

ϕnk
(pθmk

+1λ(S(1, ζ))) = ϕnk


pθmk

+1
b∑

j=1

djS(m, ξj)


 = 0

therefore pθnk
−θmk divides v(nk), where v(n) =

b∑
j=1

djξj(n). Since the

set {v(n)/n ∈ N} is finite and θnk
− θmk

≥ nk, then there exists k1 ≥ 1
such that v(nk) = 0, ∀ k ≥ k1. On the other hand

pθmk
−mk+1S(1, ζ) − tmk,1p

αmk
−mkxmk

∈ pαnk K1,

therefore

ϕnk


pθmk

−mk+1
b∑

j=1

djS(m, ξj)


 
= 0

for k large enough. Therefore it exists k2≥1 such that v(nk) 
=0, ∀ k≥k2,
which is absurd. Thus there exists N0 ∈ N such that: pαn−nλ(xn) =
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pαn−nrnxn, ∀n ≥ N0, where rn ∈ Z. Since T (K1) =
⊕

m≥1

〈gm〉 and

αk ≤ αn − n for k < n, therefore pαn−nλ(gn) ∈ pαn−n(
⊕
k≥n

〈vgk〉). Let

m ≥ N0 and put for n ≥ m, un = l if pαn−mλ(gn) = pαn−m
l∑

k=n

tkgk

with (pαn−mtlgl 
= 0 and l > n) and un = 0 if pαn−mλ(gn) ∈ pαn−m〈gn〉.
Since xn = gn−pαn+1−αngn+1, it is easy to see that the sequence (un)n≥m

is decreasing. Since for un 
= 0 we have un > n, then there exists
Mm ≥ m such that un = 0, ∀n ≥ Mm. Therefore pαn−mλ(gn) ∈
pαn−m〈gn〉, ∀n ≥ Mm. Let ξ0(n) = 1, ∀n ∈ N. We can write:

pk
′
λ(S(1, ξ0)) = pk

′ k∑
j=1

mjS(s, ξj), where k
′
, k, s ∈ N, m1, . . . , mk ∈ Z

and ξ1, . . . , ξk ∈ {0, 1}N.
We have pθn−n+1S(1, ξ0) − tn,1p

αn−nxn ∈ pαnK1 thus for n large

enough tn,1p
αn−nϕn(λ(xn)) = pθn−n+1ϕn(

k∑
j=1

mjS(s, ξj)) =⇒ pn+s−1

divides ts,1p
s−1rn − w(n) where w(n) =

k∑
j=1

mjξj(n). Accordingly, if

d ∈ Z such that the set {n ∈ N/w(n+1)−w(n) = d} is infinite, then pm

divides d, ∀m ≥ N0, therefore d = 0. Since the set {w(n+1)−w(n)/n ∈
N} is finite, then there exist v0 ∈ Z and N1 ∈ N such that w(n) = v0,
∀n ≥ N1. It is clear that ps−1 divides v0. Finally if we put v0 = ps−1v,
we can find N ∈ N such that ts,1p

αn−nλ(xn) = pαn−nvxn, ∀n ≥ N .

Construction 2. Let (αn)n≥0 be as in Construction 1, and let p and
q be two natural numbers different from zero and relatively prime, we
consider the two direct products

∏
n≥1

〈xn〉 and
∏
n≥1

〈yn〉 with o(xn) = pαn and o(yn) = qαn , ∀n ≥ 1.

The elements hm of
∏

n≥1

〈yn〉 are defined in the same way as the gm

of
∏

n≥1

〈xn〉 (see Construction 1). The elements S1(m, ξ) (respectively

S2(m, ξ)) of
∏

n≥1

〈xn〉 (respectively
∏

n≥1

〈yn〉) are defined like S(m, ξ) of

Construction 1 with tn,m = qn−m (respectively tn,m = pn−m).
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We put R(m, ξ) = S1(m, ξ) + S2(m, ξ) ∈ (
∏

n≥1

〈xn〉) ⊕ (
∏

n≥1

〈yn〉), then

we have,

R(m, ξ)=

(
r∑

n=m

ξ(n)(pq)n−m(pαn−1xn+qαn−1yn)

)
+(pq)r+1−mR(r+1, ξ)

if r ≥ m.
Let K2 be the subgroup of (

∏
n≥1

〈xn〉) ⊕ (
∏

n≥1

〈yn〉) generated by

{gm/m ≥ 1} ∪ {hm/m ≥ 1} ∪ {R(m, ξ)/m ≥ 1, ξ ∈ {0, 1}N}.

Lemma 2.2. The direct sum (
⊕
n≥1

〈xn〉) ⊕ (
⊕
n≥1

〈yn〉) is a subgroup of

K2 and for all λ ∈ End(K2), there exist v ∈ Z, N ∈ N such that
pαn−nλ(xn) = pαn−nvxn and qαn−nλ(yn) = qαn−nvyn, ∀n ≥ N .

Proof: Let µ : (
∏

n≥1

〈xn〉) ⊕ (
∏

n≥1

〈yn〉) → ∏
n≥1

〈xn〉 be the canonical pro-

jection. Then µ(K2) is the group K1 of Construction 1 (with tn,m =
qn−m). Let λ ∈ End(K2). There exists λ1 ∈ End(µ(K2)) such that
λ1(µ(X)) = µ(λ(X)), ∀X ∈ K2. By Lemma 2.1 there exist s1, N1 ∈ N

and v1 ∈ Z such that qs1pαn−nλ1(xn) = pαn−nv1xn, ∀n ≥ N1, there-
fore qs1pαn−nλ(xn) = pαn−nv1xn, ∀n ≥ N1. In the same way there are
s2, N2 ∈ N and v2 ∈ Z such that ps2qαn−nλ(yn) = qαn−nv2yn, ∀n ≥ N2.
We can take s1 = s2 = s and N1 = N2 = N . Let ξ0(n) = 1, ∀n ∈ N, we

can write: (pq)lλ(R(1, ξ0)) = (pq)l
k∑

j=1

mjR(m, ξj) where l, k, m ∈ N
∗,

m1, . . . , mk ∈ Z and ξ1, . . . , ξk ∈ {0, 1}N. We can take m ≥ 1 + s. By
applying µ to this equality, we obtain:

plλ(S(1, ξ0)) = pl
k∑

j=1

mjS(m, ξj).

Then for n large enough pn+m−1 divides qm−1−spm−1v1 − v(n) where

v(n) =
k∑

j=1

mjξj(n) (see the proof of Lemma 2.1). Let d ∈ Z such that

the set {n ∈ N/v(n) = d} is infinite, then d = qm−1−spm−1v1 in the
same way d = pm−1−sqm−1v2. If we put v1 = qsv and v2 = psv, then we
can find N ∈ N such that

pαn−nλ(xn)=pαn−nvxn and qαn−nλ(yn)=qαn−nvyn, ∀n ≥ N.
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Construction 3. Let (αn)n≥0 be as in Construction 1 and (βn)n≥1 be
a sequence of nonzero natural numbers. Let p, q1, . . . , qn, . . . be nonzero
relatively prime natural numbers. Let us consider the group (

∏
n≥1

〈xn〉)⊕

(
∏

n≥1

〈zn〉) with o(xn) = pαn and o(zn) = qβn
n , ∀n ≥ 1, the elements gm

and S(m, ξ) of
∏

n≥1

〈xn〉 are defined as in Construction 1 with

tn,m =




1 if n = m

q1 · · · qm if n = m + 1

(q1 · · · qm)n−m

(
n−m−1∏

j=1

qn−m−j
m+j

)
if n ≥ m + 2,

the element R(m, ξ) of
∏

n≥1

〈zn〉 is defined as follows

ϕn(R(m, ξ)) =




0 if n < m

ξ(n)pn−mtn,mzn if n ≥ m

where ϕk :
∏

n≥1

〈zn〉 → 〈zk〉 is the canonical projection. If we put

T (m, ξ) = S(m, ξ) + R(m, ξ) ∈


∏

n≥1

〈xn〉) ⊕ (
∏
n≥1

〈zn〉


 ,

we have

T (m, ξ)=

(
r∑

n=m

ξ(n)tn,mpn−m(pαn−1xn+zn)

)
+tr+1,mpr+1−mT (r+1, ξ),

if r ≥ m.
Let K3 be the subgroup of (

∏
n≥1

〈xn〉)⊕(
∏

n≥1

〈zn〉) generated by {gn/n ≥

1} ∪ {zn/n ≥ 1} ∪ {T (m, , ξ)/m ≥ 1, ξ ∈ {0, 1}N}.
Lemma 2.3. The direct sum (

⊕
n≥1

〈xn〉)⊕ (
⊕
n≥1

〈zn〉) is a subgroup of K3

and for all λ ∈ End(K3), there exist v ∈ Z and N, s ∈ N such that
ts,1p

αn−nλ(xn) = pαn−nvxn and ts,1λ(zn) = vzn, ∀n ≥ N .

Proof: Let µ : (
∏

n≥1

〈xn〉) ⊕ (
∏

n≥1

〈zn〉) → ∏
n≥1

〈xn〉 be the canonical pro-

jection. Then µ(K3) = K1 is the group of Construction 1. Let λ ∈
End(K3), the endomorphism λ1 of K1 defined by λ1(µ(X)) = µ(λ(X)),
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∀X ∈ K3, is well defined. According to Lemma 2.1 there exist s, N0 ∈ N

and v ∈ Z such that ts,1p
αn−nλ1(xn) = pαn−nvxn, ∀n ≥ N0. It is

clear that λ(zn) ∈ 〈zn〉, ∀n ≥ 1. Putting λ(zn) = knzn, ∀n ≥ 1,
we consider ξ0 : N → {0, 1} with ξ0(n) = 1, ∀n ∈ N we can write:

plrλ(T (1, ξ0)) = plr
k∑

j=1

djT (m, ξj) where r and p are relatively prime

and m ≥ s. By applying µ to this equality, we obtain:

plλ1(S(1, ξ0)) = pl
k∑

j=1

djS(m, ξj).

Following the same steps as in Lemmas 2.1 and 2.2, we can find N1 ∈ N

such that pn+m−1 divides tm,sp
m−1v − v(n), ∀n ≥ N1, with v(n) =

k∑
j=1

djξj(n). Then there exists N2 such that v(n) = tm,sp
m−1v, ∀n ≥ N2.

If n ≥ m, then qβn
n divides tm,1p

m−1kn−v(n). Finally there exists N ∈ N

such that ts,1p
αn−nλ(xn) = vpαn−nxn and ts,1λ(zn) = vzn, ∀n ≥ N .

3. Characterization of the inessential endomorphisms in
the category of the Abelian groups

In the following, we suppose that A is a group, and f an endomor-
phism of A satisfying the following property.

(E) : For any exact sequence 0 → A
σ→ B there exists f̃ ∈ End(B) such

that the following diagram

0 −−−−→ A
σ−−−−→ B

f

� �f̃

0 −−−−→ A
σ−−−−→ B

is commutative.
Let (αn)n≥0 be a sequence as in Construction 1.

Lemma 3.1. For all a ∈ A and any q ∈ N
∗, there exists v ∈ Z such

that (f(a) − va) ∈ ⋂
n≥0

qnA.

Proof: Let us consider the free group L =
⊕
n≥1

〈en〉. We put G = A ⊕ L,

G0 = 〈{a−qαnen/n ≥ 1}〉 and G = G/G0. The homomorphism σ : A →
G defined by σ(b) = b + G0 is a monomorphism, and if xn = en + σ(A)
(en = en + G0) then G/σ(A) =

⊕
n≥1

〈xn〉 and o(xn) = qαn , ∀n ≥ 1. Let
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K1 be a subgroup of
∏

n≥1

〈xn〉 defined in Construction 1 (with tn,m = 1,

∀n ≥ m). There exists a commutative diagram, whose rows are exact,
and which has the following form:

0 −−−−→ A −−−−→ G
π−−−−→ G/σ(A) −−−−→ 0� � �

0 −−−−→ A
σ−−−−→ B

µ−−−−→ K1 −−−−→ 0

(see [3, 24.6]). We can find f̃ ∈ End(B) and λ ∈ End(K1) such that
f̃σ = σf and λµ = µf̃ . By Lemma 2.1, there are v ∈ Z and N ∈ N such
that qαn−nλ(xn) = vqαn−nxn, ∀n ≥ N . For n ≥ N , µ[qαn−n(f̃(en) −
ven)] = 0, therefore (f(a) − va) ∈ qnA, so (f(a) − va) ∈ ⋂

n≥0

qnA.

Corollary 3.2. If A1 = 0, then for all a ∈ T (A) there exists va ∈ Z

such that f(a) = vaa where T (A) is the torsion part of A.

Proof: Let us put q = o(a) and let v ∈ Z such that (f(a)−va) ∈ ⋂
n≥0

qnA.

Let p be a prime number, if p divides q then (f(a) − va) ∈ ⋂
n≥0

pnA and

if p and q are relatively prime, we also have (f(a)− va) ∈ ⋂
n≥0

pnA, thus

f(a) = va.

Lemma 3.3. If A1 = 0, then there exists v ∈ Z such that f(a) = va,
∀ a ∈ T (A).

Proof: We suppose that T (A) is bounded, then there exists x0 ∈ T (A)
such that 〈x0〉 is a direct summand of T (A) and o(x0).T (A) = 0. If
f(x0) = vx0, then ∀ a ∈ T (A), f(a) = va. We now suppose that T (A) is
not bounded. If p is prime number, we denote by Tp the p-component
of T (A).

1st case: There exists a prime number p such that Tp is not bounded.
Let S be a basic subgroup of Tp, we can write

S =


⊕

n≥1

〈an〉


 ⊕ S0 with o(an) = prn and 1 ≤ rn < rn+1, ∀n ≥ 1.
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For each n ≥ 1, we consider an as an element of the group 〈Xn〉 with
pαnXn = an. There exists a group G such that:

A ≤ G,
⊕

n≥1

〈Xn〉


 ≤ G,

A +


⊕

n≥1

〈Xn〉


 = G

and

A ∩


⊕

n≥1

〈Xn〉


 =

⊕
n≥1

〈an〉.

We put xn = Xn + A, then G/A =
⊕
n≥1

〈xn〉 and o(xn) = pαn , ∀n ≥ 1.

By [3, Proposition 24.6], there exists a commutative diagram, whose
rows are exact, and has the following form:

0 −−−−→ A −−−−→ G
π−−−−→ G/A −−−−→ 0� � �

0 −−−−→ A
σ−−−−→ B

µ−−−−→ K1 −−−−→ 0

.

K1 is the group of Construction 1 (with tn,m = 1, ∀n ≥ m). There are
f̃ ∈ End(B) and λ ∈ End(K1) such that f̃σ = σf and λµ = µf̃ . There
exist v ∈ Z and N ∈ N such that pαn−nλ(xn) = vpαn−nxn, ∀n ≥ N

(Lemma 2.1). We have for each n ≥ N , µ[pαn−n(f̃(Xn)− vXn)] = 0, so
that (f(an) − van) ∈ pnA.

Let us put f(an) = knan (Corollary 3.2), then we have pn divides
kn − v, ∀n ≥ N . By using again Corollary 3.2, we can establish easily
that f(an) = van, ∀n ≥ 1. Let b ∈ Tq with q 
= p, and put o(b) = qs.
Let us consider the free group L =

⊕
n≥0

〈en〉. Let L0 be the subgroup of L

generated by {qse0} ∪ {qαnen − e0/n ≥ 1}.
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We consider b as an element of L = L/L0 by identifying b with e0 =
e0 + L0. There exists a group G1 such that A ≤ G1,

⊕
n≥1

〈Xn〉


 ⊕ L ≤ G1,

A +





⊕

n≥1

〈Xn〉


 ⊕ L


 = G1

and

A ∩





⊕

n≥1

〈Xn〉


 ⊕ L


 =


⊕

n≥1

〈an〉


 ⊕ 〈b〉.

We put x
′
n = Xn + A and yn = en + A, then o(x

′
n) = pαn , o(yn) = qαn .

∀n ≥ 1, and G1/A = (
⊕
n≥1

〈xn〉) ⊕ (
⊕
n≥1

〈yn〉).

Let K2 be the group of Construction 2, there exists a commutative
diagram, whose rows are exact, and has the following form:

0 −−−−→ A −−−−→ G1 −−−−→ G1/A −−−−→ 0� � �
0 −−−−→ A

σ1−−−−→ B1
µ1−−−−→ K2 −−−−→ 0

.

There exist f̃1 ∈ End(B1) and λ1 ∈ End(K2) such that f̃1σ1 = σ1f and
λ1µ1 = µ1f̃1. By Lemma 2.2, there exist k ∈ Z and M ∈ N such that
pαn−nλ1(x

′
n) = kpαn−nx

′
n and qαn−nλ1(yn) = kqαn−nyn, ∀n ≥ M . For

n ≥ M , pαn−nµ1(f̃(Xn) − kXn) = 0 and qαn−nµ1(f̃(en) − ken) = 0
and so (f(an) − kan) ∈ pnA and (f(b) − kb) ∈ qnA. Then k = v and
f(b) = vb. Therefore it is easy to deduce that f(a) = va, ∀ a ∈ T (A).

2nd case: Tp is bounded for any prime number p. We can write T (A) =⊕
n≥1

Tpn and let for each n ≥ 1, bn ∈ Tpn such that 〈bn〉 is a direct

summand of Tpn and o(bn)Tpn = 0.
We put o(bn) = pβn

n and we consider bn as an element of the group 〈Zn〉
with pβn

n Zn = bn. We take m ≥ 1, there exists a group H such that
A ≤ H, (

⊕
n≥m

〈Zn〉) ≤ H, H = A + (
⊕

n≥m

〈Zn〉) and A ∩ (
⊕

n≥m

〈Zn〉) =⊕
n≥m

〈bn〉. If zn = Zn + A, then H/A =
⊕

n≥m

〈zn〉. By using Lemma 2.3

and [3, Proposition 24.6], as before, we can find r1 ∈ N
∗ whose only
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prime factors are pm, . . . , pm′ , m
′ ≥ m and (v1, N1) ∈ Z × N such that

r1f(bn) = v1bn, ∀n ≥ N1. in the same way there exists r2 ∈ N whose
only prime factors are pm′+1, . . . , pm′′ (in particular r2 ∧ r1 = 1) and
(v2, N2) ∈ Z×N such that r2f(bn) = v2bn, ∀n ≥ N2. If v = γ1v1 + γ2v2

(where γ1r1 + γ2r2 = 1) then for N = sup(N1, N2) we have f(bn) = vbn,
∀n ≥ N .

We now suppose n1 < N and put p = pn1 , β = βn1 . Let L =
⊕
n≥0

〈en〉

be the free group and L = L/L1 where L1 = 〈{pβe0} ∪ {pαnen − e0/n ≥
1}〉 there exists a group H1 such that A ≤ H1, L ⊕ (

⊕
n≥N

〈Zn〉) ≤ H1,

A+(L⊕(
⊕

n≥N

〈Zn〉)) = H1 and A∩(L⊕(
⊕

n≥N

〈Zn〉)) = 〈bn1〉⊕(
⊕

n≥N

〈bn〉).

Now put xn = en + A (en = en + L1) and zn = Zn + A, then
o(xn) = pαn , o(zn) = pβn

n and

H1/A =


⊕

n≥1

〈xn〉


 ⊕


⊕

n≥1

〈yn〉


 .

By applying again Lemma 2.3 and [3, Proposition 24.6] we show that
f(an1) = van1 . Thus f(an) = van, ∀n ≥ 1 and thereafter f(a) = va,
∀ a ∈ T (A).

Lemma 3.4. If A1 = 0 and T (A) = 0, then there exists v ∈ Z such that
f = v idA.

Proof: Let a ∈ A with a 
= 0. There exists a prime number p such
that a /∈ ⋂

n≥0

pnA. According to Lemma 3.1 there exists v ∈ Z such

that (f(a) − va) ∈ ⋂
n≥0

pnA. Let q ∈ N
∗, there exists vq ∈ Z such that

(f(a) − vqa) ∈ ⋂
n≥0

(pq)nA.

We have (v − vq)a ∈ ⋂
n≥0

pnA, this implies vq = v, and thereafter

f(a) = va. Since A is torsion-free, it is easy to establish that f(b) = vb,
∀ b ∈ A.

Lemma 3.5. If A1 = 0, then there exists v ∈ Z such that f = v idA.

Proof: By Lemma 3.3, there exists v ∈ Z such that f(x) = vx, ∀x ∈
T (A).

Let a ∈ A, we will show that f(a) ∈ 〈a〉. We Suppose that (f(a) −
va) 
= 0, then there exists a prime number p such that (f(a) − va) /∈
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⋂
n≥0

pnA. By Lemma 3.1, there exists r ∈ Z such that (f(a) − ra) ∈⋂
n≥0

pnA, there also exists for all q ∈ N
∗ an rq ∈ Z such that (f(a)−rqa) ∈⋂

n≥0

(pq)nA. Assume rq 
= r for some number q.

Since (r − rq)a ∈ ⋂
n≥0

pnA, then there exists s ∈ N such that psa ∈⋂
n≥0

pnA. Therefore ∀n ∈ N, there exists an ∈ A such that ps(a−pnan) =

0, it follows that f(a−pnan) = v(a−pnan) and hence (f(a)−va) ∈ pnA,
which is absurd. Thus rq = r, ∀ q ∈ N

∗ and thereafter f(a) = ra.
Now, we will distinguish two cases:

1st case: T (A) is not bounded. Let a ∈ A with o(a) = ∞ and put
f(a) = ra. ∀x ∈ T (A), f(a + x) = r

′
(a + x) = ra + vx which implies

that r = r
′
and (v − r

′
)x = 0, since T (A) is not bounded so r = v.

2nd case: T (A) is bounded, let m ∈ N
∗ such that mT (A) = 0.

We consider the exact sequence 0 → T (A) → A → mA → 0. By
[3, Proposition 24.6] it is easy to see that the endomorphism g of mA
defined by g(ma) = mf(a) satisfies the property (E), since T (mA) = 0
and (mA)1 = 0 then according to Lemma 3.4 there exists r ∈ Z such
that mf(a) = rma, ∀ a ∈ A.

We suppose T (A) 
= A. Let a ∈ A with o(a) = ∞ and f(a) = raa,
therefore m(ra − a)a = 0 and hence ra = r.

Let x ∈ T (A), then f(a + x) = r(a + x) = ra + vx which implies that
(r − v)x = 0, thus f(x) = rx.

Finally ∀ b ∈ A, f(b) = rb.

Theorem 3.6. If A is reduced, then there exists v ∈ Z such that f =
v idA.

Proof: Let x ∈ A such that 〈x〉 is a direct summand of A.
We can write A = 〈x〉 ⊕ A0. Let S be a divisible group such that

x ∈ S.
Let σ : A → S ⊕ A0, σ(nx + a0) = nx + a0. Then there exists f̃ ∈

End(S ⊕A0) such that f̃σ = σf . If we put f(x) = mx + a0 with m ∈ Z

and a0 ∈ A0, we get a0 = f̃(x) − mx ∈ S ∩ A0 = 0 which implies that
a0 = 0 and thereafter f(x) = mx. Therefore if 〈x〉 is a direct summand
of A, then f(x) ∈ 〈x〉.

By Lemma 3.5 there exists v ∈ Z such that (f − v id)(A) ⊆ A1. We
put ρ = f − v idA.
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Show first that ρ(T (A)) = 0. Let B be p-basic subgroup of T (A) (p is
a prime number), B =

⊕
i∈I

〈xi〉 and ∀ i ∈ I, 〈xi〉 is a direct summand

of A. We put for i ∈ I, f(xi) = mixi. We have (mi − v)xi ∈ A1 which
implies that mixi = vxi = f(xi).

Then ρ(B) = 0 and thereafter ρ(T (A)) is p divisible. Therefore,
ρ(T (A)) is divisible and so ρ(T (A))=0. Let us put A/T (A)=(D/T (A))⊕
(R/T (A)) with D/T (A) divisible, R/T (A) reduced, T (A) ≤ D and
A1 ≤ D.

The homomorphism ρ : A/T (A) → A where ρ(a + T (A)) = ρ(a) is
well defined and ρ(D/T (A)) = ρ(D) = 0 because D/T (A) is divisible
and A is reduced. There exists a torsion-free divisible group C such
that A/D ≤ C. By [3, Proposition 24.6], there exists a commutative
diagram, whose rows are exact, and has the following form:

0 −−−−→ D −−−−→ A −−−−→ A/D −−−−→ 0� � �
0 −−−−→ D −−−−→ A1

µ−−−−→ C −−−−→ 0

.

Let D1 be the maximal divisible subgroup of A1, D ∩ D1 is then
divisible.

In fact if x ∈ D ∩ D1 and n ∈ N
∗, we can write x = ny with y ∈ D1

and µ(x) = nµ(y) = 0 so µ(y) = 0 because C is torsion-free, therefore
y ∈ D. Since A is reduced, then D ∩ D1 = 0. there exists f1 ∈ End(A1)
such that f1(a) = f(a), ∀ a ∈ A.

If we put ρ1 = f1 − v idA1 , we have ρ1(A) = ρ(A) ⊆ A1 ⊆ D, from
an other side the homomorphism ρ1 : A1/D → A1 such that ρ1(a1 +
D) = ρ1(a1), for a1 ∈ A1, is well defined. Thus ρ1(A1) is divisible and
thereafter ρ1(A1) ⊆ D1. We then conclude that ρ(A) ⊆ D ∩ D1 = 0
which implies that ρ = 0.

Corollary 3.7. Let A be a group and f be an endomorphism of A, f
satisfies (E) if and only if there exists v ∈ Z such that (f−v idA)(A) ⊆ D,
where D is maximal divisible subgroup of A.

Proof: According to [3, Proposition 24.6], the endomorphism f of A =
A/D, (f(a) = f(a)) satisfies (E). By Theorem 3.6, there exists v ∈ Z

such that (f − v idA)(A) ⊆ D.
The second assertion is easy to establish.

We end this paper by the following remarks:
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1. Let C be a reduced group. C is rigid (according to the terminology
of [2]) if and only if C is torsion cyclic or C is torsion-free and
End(C) ∼= Z.

2. A group A is rigid if and only if A = D⊕C with D divisible and C
reduced rigid.

3. For any cardinal m there exists a rigid group of cardinality m ([1],
[4] and [5]).
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