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COMPARISON OF HAUSDORFF MEASURES WITH
RESPECT TO THE EUCLIDEAN AND THE

HEISENBERG METRIC

Zoltán M. Balogh, Matthieu Rickly and
Francesco Serra Cassano∗

Abstract
We compare the Hausdorff measures and dimensions with respect
to the Euclidean and Heisenberg metrics on the first Heisenberg
group. The result is a dimension jump described by two inequali-
ties. The sharpness of our estimates is shown by examples. More-
over a comparison between Euclidean and H-rectifiability is given.

1. Introduction

In this paper we consider the Heisenberg group H = H
1 = (R3, ∗)

as a homogeneous group endowed with the left invariant, homogeneous
Heisenberg distance dH defined as follows. The group multiplication
∗ : H × H → H is given by

(x, y, t) ∗ (x′, y′, t′) := (x + x′, y + y′, t + t′ + 2(x′y − y′x)).(1.1)

H is endowed with the homogeneous norm

‖p‖H := ((x2 + y2)2 + t2)
1
4(1.2)

if p = (x, y, t) ∈ H, which induces the Heisenberg distance

dH(p, p′) := ‖p−1 ∗ p′‖H .(1.3)

It is well-known that the topological dimension of H is 3, since H

coincides with R
3 as a smooth manifold (see Lemma 2.1). On the other

hand, the Hausdorff measures and dimensions of subsets of H ≡ R
3 with

respect to either dH or the Euclidean metric dE can be very different. For

2000 Mathematics Subject Classification. 28A78, 43A80.
Key words. Hausdorff measures, Hausdorff dimension, Heisenberg metric.
∗F.S.C. is supported by GNAMPA of INDAM, project “Analysis in metric spaces
and subelliptic equations”, by MURST, Italy, and University of Trento, Italy. Part
of the work was done while F.S.C. was a visitor at the University of Bern. He wishes
to thank the Institute of Mathematics for its hospitality.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13268499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


238 Z. M. Balogh, M. Rickly, F. Serra Cassano

instance, the Hausdorff dimension of (R3, dH) is 4, while the dimension
of a regular surface in (R3, dH) is 3. However, if we consider a regular
curve in (R3, dH), then it may have Hausdorff dimension both 1 and 2
(see [Gro] and also [Str]).

The purpose of this paper is to describe in details this dimension
jump phenomenon between the Heisenberg and the Euclidean Hausdorff
dimensions on subsets of R

3. Indeed we perform a comparison between
the α-dimensional Hausdorff measures induced on R

3 by dH and dE ,
which we respectively denote with Hα

H and Hα
E . More precisely our first

result reads as follows:

Theorem 1.1 (Dimension jump theorem). Let α ≥ 0. Then
(i)

Hmin{2α,α+1}
H � Hα

E ,(1.4)

i.e. Hmin{2α,α+1}
H is absolutely continuous with respect to Hα

E.
(ii)

Hmin{α,1+ α
2 }

E � Hα
H ,(1.5)

i.e. Hmin{α,1+ α
2 }

E is absolutely continuous with respect to Hα
H .

Our second result shows that the estimates of Theorem 1.1 are sharp:

Theorem 1.2 (Sharpness of the dimension jump).
(i) Given 0 < α ≤ 3, there is a compact subset Aα of H satisfying

Hα
E(Aα) < ∞ and Hmin{2α,α+1}

H (Aα) > 0.

(ii) For 0 < α < 2 and α = 4, there is a compact subset Aα of H

satisfying

Hα
H(Aα) < ∞ and Hmin{α,1+ α

2 }
E (Aα) > 0.

For 2 ≤ α < 4 and 0 < δ < 1, there is a compact subset Aα,δ of H

satisfying

Hα
H(Aα,δ) = 0 and Hmin{α,1+ α

2 }−δ

E (Aα,δ) = H1+ α
2 −δ

E (Aα,δ) > 0.

Remark 1.1. We conjecture that given 2 ≤ α < 4, there is a compact
subset Aα of H such that

Hmin{α,1+ α
2 }

E (Aα) = H1+ α
2

E (Aα) > 0 and Hα
H(Aα) < ∞.

However, we have not yet been able to construct such sets.
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The technique involved in the proof of Theorem 1.1 is based on an op-
timal covering of Heisenberg balls by smaller Euclidean balls and vicev-
ersa. This kind of mutual coverings have already been proposed in [Gro].
The proof of Theorem 1.2 relies on some more delicate arguments involv-
ing recent results on the size of Cantor-type and characteristic sets of
regular surfaces in the metric spaces (R3, dH) and (R3, dE) (see [Ba1],
[Ba2]).

Another striking feature of the Heisenberg group is the lack of m-rec-
tifiable subsets in the metric space (H, dH) according to the classical
notion of rectifiability in a metric space due to Federer [Fe]. Indeed, it
has been proved that (H, dH) is purely m-unrectifiable for m = 2, 3, 4
(see [AK, Theorem 7.2]). This has led to a more intrinsic definition
of rectifiability in (H, dH), the 3-dimensional H-rectifiability, introduced
in [FSSC1]. We will use our results from Theorem 1.2 to compare the
classical notion of 2-Euclidean rectifiability in (R3, dE) to the notion of
3-dimensional H-rectifiability (see Theorem 5.1).

The paper is organized as follows: in Section 2 we recall some basic
facts about the Heisenberg group and the Hausdorff measures defined
on it. In Section 3 we prove our first theorem. The second theorem is
proved in Section 4. In the last section we apply our results to compare
2-rectifiable subsets of (H, dE) and 3-dimensional H-rectifiable subsets
of (H, dH).

Acknowledgements. We thank Pertti Mattila for useful discussions
on the subject.

2. Basic definitions and preliminary results

In this section, we briefly restate the basic definitions and results
needed in the rest of the article.

We use the model of the first Heisenberg group H = H
1 with underly-

ing space R
3 and group operation given by (1.1). Notice that p−1 = −p

and that 0 = (0, 0, 0) is the unit element of the group H. The dilation
by r is the automorphism δr : H → H given by

δr(x, y, t) := (rx, ry, r2t).(2.1)

For p ∈ H the left translation by p is the automorphism lp : H → H

defined by

lp(p′) := p ∗ p′.
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The 3-dimensional Lebesgue measure L3 in R
3 ≡ H is a bi-invariant

Haar measure for the group and satisfies L3(δr(A)) = r4L3(A) whenever
A ⊆ H and r > 0 (see [FoSt, Proposition 1.2 (c)]).

The Lie algebra of H is spanned by the left invariant vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

The Lie algebra structure of H is determined by the only non-trivial
commutator relation [X, Y ] = −4T .

The vector fields X and Y span a vector bundle, the so-called horizon-
tal bundle HH, where HHp := span{X(p), Y (p)} for all p ∈ H, which can
be canonically identified with a vector subbundle of the tangent vector
bundle TH ≡ TR

3.

The following relationship between the distances dE and dH in R
3 can

be easily verified.

Lemma 2.1. Let A be a bounded subset of (R3, dE) and let b ≥ 1 be a
bound for A with respect to dE. Then there is a positive constant c = c(b)
such that for p, p′ ∈ A we have

1
c
dE(p, p′) ≤ dH(p, p′) ≤ c(dE(p, p′))

1
2 .(2.2)

In particular the identity map Id : (R3, dE) → (R3, dH) is a homeomor-
phism.

In the sequel, BE(p, r) and BH(p, r) will denote the closed ball of
radius r > 0 centered at p in (H, dE) and (H, dH) respectively. ‖ · ‖ will
denote the Euclidean norm on R

n for n = 2, 3.

Let us now recall the definition of Hausdorff and spherical measures
on a metric space (X, d). Given a subset A of X, the diameter of A is

diamd(A) := sup{d(a, a′) | a, a′ ∈ A}.

We write diam instead of diamd when there is no risk of confusion, and
we let diamE := diamdE

and diamH := diamdH
. Observe that for p ∈ H

and r > 0 we have

diamH(BH(x, r)) = 2r.(2.3)
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For 0 ≤ s < ∞, 0 < δ ≤ ∞ and A ⊆ X, we let

Hs
d,δ(A) :=inf

{ ∞∑
n=1

(diam(En))s | En ⊆ X, diam(En) ≤ δ, A ⊆
⋃
n∈N

En

}

and

Ss
d,δ(A) := inf

{ ∞∑
n=1

diam(B(xn, rn))s | diam(B(xn, rn)) ≤ δ,

A ⊆
⋃
n∈N

B(xn, rn)

}
,

where B(x, r) denotes the closed ball of radius r centered at x. Since 0 <
δ1 ≤ δ2 clearly implies Hs

d,δ2
(A) ≤ Hs

d,δ1
(A) and Ss

d,δ2
(A) ≤ Ss

d,δ1
(A), we

may define the s-dimensional Hausdorff measure Hs
d on (X, d) and the

s-dimensional spherical measure Ss
d on (X, d) by

Hs
d(A) := lim

δ↓0
Hs

d,δ(A)

and

Ss
d(A) := lim

δ↓0
Ss

d,δ(A)

respectively.
We will write Hs

E , Ss
E instead of Hs

dE
, Ss

dE
and Hs

H , Ss
H instead of

Hs
dH

, Ss
dH

and we will generally consider these measures on R
3. By

abuse of notation we shall also write Hs
E for the s-dimensional Hausdorff

measure on (Rm, dE) for m = 1, 2.

The Hausdorff dimension of a set A ⊆ (X, d) is

H− dimd(A) := inf{s ≥ 0 | Hs
d(A) = 0}.

In the following proposition we collect some general properties of
Hausdorff measures that will be needed below.

Proposition 2.2.

(i) Let (X, d) be a metric space. Then Hs
d and Ss

d are regular Borel
(outer) measures and

Hs
d(A) ≤ Ss

d(A) ≤ 2sHs
d(A)

for all A ⊆ X, s ≥ 0.
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(ii) Let (Xi, di) (i = 1, 2) be two metric spaces and let f : (X1, d1) →
(X2, d2) be a L-Lipschitz continuous map, i.e.

d2(f(x), f(y)) ≤ L · d1(x, y) (∀ x, y ∈ X1).

Then
Hs

d2
(f(A)) ≤ Ls · Hs

d1
(A)

for all A ⊆ X1, s ≥ 0.
(iii) Let (X, d) be a metric space and let dt(x, y) := (d(x, y))t for x, y ∈

X and t ∈ (0, 1). Then dt is a distance on X and

Hs
d(A) = H

s
t

dt
(A)

for all A ⊆ X, s ≥ 0 and t ∈ (0, 1).
(iv) Let (X, d) be a metric space and let Y ⊆ X. Denote by dY the

metric on Y induced by d. Then

Hs
d(A) = Hs

dY
(A)

for all A ⊆ Y , s ≥ 0.
(v) Properties (ii) and (iii) hold if we replace the Hausdorff mea-

sure Hs
d by the spherical measure Ss

d.

Proof: All these statements are classical and can be found in [Fa], [Fe]
or [Ma].

Remark 2.1. Using (ii) of the above proposition, one easily sees that if d1

and d2 are two bi-Lipschitz equivalent metrics on X, then Hs
d1

and Hs
d2

are mutually absolutely continuous measures. In particular, if A ⊆ X
then H− dimd1(A) = H− dimd2(A).

Using the homogeneity and left invariance of dH , one has

Hs
H(lp(A)) = Hs

H(A) and Hs
H(δr(A)) = rsHs

H(A)

for any A ⊆ H, p ∈ H, s ≥ 0 and r > 0. Moreover it is easy to see that
H4

H = cL3 for a suitable positive constant c.

In Subsection 4.1 we will make use of the following criterion giving a
lower bound on the Hausdorff dimension of a set in a metric space.

Lemma 2.3. Let (X, d) be a separable metric space, let A ⊆ X and let
s > 0. Suppose there is a measure µ on X with the following properties:

(i) µ(A) > 0.

(ii) µ(B(x, r) ∩ A) ≤ cµrs for all x ∈ X and 0 < r ≤ R, where cµ,
R > 0 are fixed constants.

Then Hs
d(A) > 0.

The proof is a simple exercise.
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3. Proof of the dimension jump theorem

In the following we prove the absolute continuity of H2α
H and Hα+1

H

with respect to Hα
E (Propositions 3.2 (i) and 3.6 (i) below) and the

absolute continuity of Hα
E and H1+ α

2
E with respect to Hα

H (Propo-
sitions 3.2 (ii) and 3.6 (ii) below). Indeed, notice that from Propo-
sition 2.2 (i) we can indifferently estimate the Hausdorff or spherical
measures. We start with a technical lemma:

Lemma 3.1. A subset A of H is bounded with respect to dE if and only
if it is bounded with respect to dH . More precisely, if bE ≥ 1 is a bound
for A with respect to dE, then 2

1
4 bE is a bound for A with respect to dH ,

and if bH ≥ 1 is a bound for A with respect to dH , then 2
1
2 b2

H is a bound
for A with respect to dE.

The proof is left to the reader.

Proposition 3.2. The Hausdorff measures satisfy the following absolute
continuity properties (α ≥ 0 arbitrary):

(i) Hα
H � H

α
2
E .

(ii) Hα
E � Hα

H .

Proof: (i) Suppose that H
α
2
E (A) = 0 and denote by

√
dE : R

3 × R
3 →

[0, +∞) the distance
√

dE(p, p′) := (dE(p, p′))
1
2 if p, p′ ∈ R

3. Then by
Proposition 2.2 (iii) with t = 1

2 we also get 0 = H
α
2
E (A) = Hα√

dE
(A).

Let An := A ∩ BE(0, n). Applying Lemma 2.1 with A = An, there is a
positive constant cn depending only on n, such that for all p, p′ ∈ An we
have

1
cn

dE(p, p′) ≤ dH(p, p′) ≤ cn

√
dE(p, p′).(3.1)

Let d
(n)
H and

√
d
(n)
E denote the restrictions of the distances dH and√

dE to An. By the right inequality in (3.1) and Proposition 2.2 (ii) with

X1 = X2 = An, f = Id, d1 =
√

d
(n)
E , d2 = d

(n)
H and L = cn

Hα

d
(n)
H

(An) ≤ cα
nHα√

d
(n)
E

(An).

On the other hand from Proposition 2.2 (iv)

Hα
H(An) = Hα

d
(n)
H

(An) ≤ cα
nHα√

d
(n)
E

(An) = Hα√
dE

(An) = 0.

Then, by passing to the limit when n → ∞, we get Hα
H(A) = 0.
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The statement (ii) can be proved by similar arguments using the left
inequality in (3.1).

In the following we shall prove Sα+1
H � Sα

E and S1+ α
2

E �Sα
H , cf. Propo-

sition 3.6 below. This is considerably more complicated than Proposi-
tion 3.2. The proof is based on more involved covering lemmas relating
the Euclidean and Heisenberg balls. The statements of these covering
lemmas can be found in [Gro, 0.6.C].

Before going into details we need one more technical lemma in order
to control the distortion of the shape of Euclidean balls under group
translation.

Lemma 3.3. Let A be a bounded subset of (R3, dE) with bound b ≥ 0.
For r > 0, p = (x, y, t) ∈ R

3 and p′ = (x′, y′, t′) ∈ A we have

lp′(BE(p, r)) ⊆ BE(lp′(p), (2b + 1)r).

Moreover if lp′(p) + (x′′, y′′, t′′) ∈ lp′(BE(p, r)) then ‖(x′′, y′′)‖ ≤ r.

Proof: Let (x + x′′′, y + y′′′, t + t′′′) ∈ BE(p, r).

lp′(x + x′′′, y + y′′′, t + t′′′)

= (x′ + x + x′′′, y′ + y + y′′′, t′ + t + t′′′ + 2((x + x′′′)y′−x′(y+y′′′)))

= lp′(p) + (x′′′, y′′′, t′′′ + 2(x′′′y′ − x′y′′′)).

Now ‖(x′′, y′′)‖ = ‖(x′′′, y′′′)‖ ≤ r and

‖(x′′′, y′′′, t′′′ + 2(x′′′y′ − x′y′′′))‖2

= x′′′2 + y′′′2 + |t′′′ + 2(x′′′y′ − x′y′′′)|2

≤ x′′′2 + y′′′2 + (|t′′′| + 2‖p′‖ · ‖(x′′′, y′′′, t′′′)‖)2

≤ ‖(x′′′, y′′′, t′′′)‖2 + 4b‖(x′′′, y′′′, t′′′)‖ · |t′′′| + 4b2‖(x′′′, y′′′, t′′′)‖2

≤ r2 + 4br2 + 4b2r2 = (2b + 1)2r2.

The claim follows.

The following statement exhibits a close-to-optimal covering of a
Euclidean ball by Heisenberg balls.
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Proposition 3.4. Let A be a bounded subset of (R3, dE) with bound b ≥
0. Then there exists N = N(b) ∈ N such that for any Euclidean
ball BE(p, r) with p ∈ A and 0 < r < 1 we can find Heisenberg balls
BH(p1, r), . . . , BH(pk, r) satisfying:

(i) BE(p, r) ⊆ ⋃k
i=1 BH(pi, r).

(ii) k ≤ N
r .

Remark 3.1. Notice that (ii) yields a sharp control on the number k
of Heisenberg balls needed to cover the Euclidean ball in terms of its
radius r.

Proof: It is clearly enough to show that, given a bounded subset A of
(R3, dE) with bound b ≥ 0, there is N = N(b) ∈ N such that for p ∈ A
and 0 < r < 1 we can find BH(p1, r), . . . , BH(pk, r) satisfying:

BE(p, r/2) ⊆
k⋃

i=1

BH(pi, r) and k ≤ N

r
.

The idea is to use a group translation to move the Euclidean ball to
the origin and to perform the covering there with balls centered on the
vertical axis Ot. For p = (0, 0, t) ∈ Ot and r > 0, let us denote by
BH,∞(p, r) the set of points p′ = (x′, y′, t′) ∈ H satisfying ‖(x′, y′)‖ ≤ r
and |t′ − t| ≤ r2. Hence BH,∞(p, r) is a flat box of height 2r2 centered
at p ∈ H and its orthogonal projection along the vertical axis is a disk
of radius r. Now let p ∈ A, 0 < r < 1 and let k := [4b+2

r ] + 1. By
Lemma 3.3 we can cover lp−1(BE(p, r

2 )) with k boxes BH,∞(pi,
r
2 ), where

i ∈ {1, . . . , k} and (pi)i∈{1,...,k} are suitable points on the vertical axis.
The reader can easily see that BH,∞(pi,

r
2 ) ⊆ BH(pi, r) for 1 ≤ i ≤ k,

thus

BE(p, r/2) ⊆ lp

(
k⋃

i=1

BH(pi, r)

)
=

k⋃
i=1

lp(BH(pi, r)) =
k⋃

i=1

(BH(p∗pi, r)).

Finally, kr < 4b+3
r r = 4b + 3 and the claim is proved with N := [4b +

3] + 1.

The following statement is in some sense the counterpart of Proposi-
tion 3.4. It presents a close-to-optimal covering of a Heisenberg ball by
Euclidean balls.
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Proposition 3.5. Given a bounded subset A of (R3, dE) with bound b ≥
0, there is N = N(b) ∈ N such that for any Heisenberg ball BH(p, r) with
p ∈ A and 0 < r < 1 we can find BE(p1, r

2), . . . , BE(pk, r2) satisfying:

(i) BH(p, r) ⊆ ⋃k
i=1 BE(pi, r

2).

(ii) k ≤ N
r2 .

Remark 3.2. Once again (ii) gives a sharp bound on the number k of
Euclidean balls needed to cover the Heisenberg ball in terms of its ra-
dius r.

Proof: First we consider Heisenberg balls centered at the origin. We will
prove the following: There is K ∈ N such that given 0 < r < 1 we can
find BE(p1, r

2), . . . , BE(pl, r
2) satisfying:

BH(0, r) ⊆
l⋃

i=1

BE(pi, 3
1
2 r2) and l ≤ K

r2
.

Indeed, it is easy to verify that BH(0, r) ⊆ BH,∞(0, r) (where BH,∞(0, r)
is the box introduced in the proof of Proposition 3.4), and BH,∞(0, r)
is contained in a number ([1r ] + 1)2 of cubes of side length 2r2, each of
which is contained in a Euclidean ball of radius 3

1
2 r2. Hence, the claim is

proved with K := 4, since ([ 1r ]+1) < 2
r . Now given p ∈ A and 0 < r < 1,

we can find BE(p1, 3
1
2 r2), . . . , BE(pl, 3

1
2 r2) covering lp−1(BH(p, r)) =

BH(0, r) so that lr2 ≤ K. Clearly there is a constant C = C(b) and balls
BE(p1,

r2

2b+1 ), . . . , BE(pk, r2

2b+1 ) covering BH(0, r) so that kr2 ≤ K · C.
We let N := K · C, and with the help of Lemma 3.3 we compute:

BH(p, r) = lp(lp−1(BH(p, r))) ⊆ lp

(
k⋃

i=1

BE(pi, r
2/(2b + 1))

)

=
k⋃

i=1

lp(BE(pi, r
2/(2b + 1))) ⊆

k⋃
i=1

BE(lp(pi), r2).

Proposition 3.6. The spherical measures satisfy the following absolute
continuity properties (α ≥ 0 arbitrary):

(i) Sα+1
H � Sα

E.

(ii) S1+ α
2

E � Sα
H .

Proof: The proof is based on the covering statements formulated in
Propositions 3.4 and 3.5. Let α ≥ 0 and A ⊆ H.
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(i) Suppose that Sα
E(A) = 0. Let An := A ∩ BE(0, n) for all n ∈ N.

Given n ∈ N, 0 < δ < 1 and ε > 0 arbitrary, there is a covering of An

with Euclidean balls (BE(pi, ri))i∈N such that ri ≤ δ
2 , pi ∈ BE(0, n + 1)

for i ∈ N and
∞∑

i=1

(2ri)α ≤ ε

2N(n + 1)
,

where N(n + 1) is from Proposition 3.4. By Proposition 3.4, each
BE(pi, ri) can be covered with Heisenberg balls BH(pi,j , ri), where
j ∈ {1, . . . , k(i)} and k(i)ri ≤ N(n + 1). The resulting collection
(BH(pi,j , ri))i∈N, j∈{1,...,k(i)} forms a covering of An. Now, for m ∈ N,

m∑
i=1

k(i)∑
j=1

(2ri)α+1 =
m∑

i=1

(2ri)α2
k(i)∑
j=1

ri ≤ 2N(n + 1)
m∑

i=1

(2ri)α ≤ ε.

Consequently, by (2.3) we obtain Sα+1
H,δ (An) ≤ ε. Since 0 < δ < 1 and

ε > 0 are arbitrary, we get Sα+1
H (An) = 0. Finally,

Sα+1
H (A) = Sα+1

H

( ⋃
n∈N

An

)
≤ lim

n→∞
Sα+1

H (An) = 0.

(ii) Suppose that Sα
H(A) = 0. Let An := A ∩ BH(0, n) for all n ∈ N.

Given n ∈ N, 0 < δ < 1 and ε > 0 arbitrary, there is a covering of An with
Heisenberg balls (BH(pi, ri))i∈N such that ri ≤ δ

2 , pi ∈ BH(0, n + 1) ⊆
BE(0, 2

1
2 (n + 1)2) for i ∈ N (see Lemma 3.1) and

∞∑
i=1

(2ri)α ≤ ε

21−α
2 N(2

1
2 (n + 1)2)

,

where N(2
1
2 (n + 1)2) is from Proposition 3.5. By Proposition 3.5,

each BH(pi, ri) can be covered with balls BE(pi,j , r
2
i ), where

j ∈ {1, . . . , k(i)} and k(i)r2
i ≤ N(2

1
2 (n + 1)2). The resulting collection

(BE(pi,j , r
2
i ))i∈N, j∈{1,...,k(i)} forms a covering of An. Now, for m ∈ N,

m∑
i=1

k(i)∑
j=1

(2r2
i )1+

α
2 =

m∑
i=1

21+ α
2 rα

i

k(i)∑
j=1

r2
i = 21−α

2

m∑
i=1

(2ri)α

k(i)∑
j=1

r2
i

and

21−α
2

m∑
i=1

(2ri)α

k(i)∑
j=1

r2
i ≤ 21−α

2 N(2
1
2 (n + 1)2)

m∑
i=1

(2ri)α ≤ ε.
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Consequently, S1+ α
2

E,δ (An) ≤ ε. Since 0 < δ < 1 and ε > 0 are arbitrary,

we get S1+ α
2

E (An) = 0. Finally,

S1+ α
2

E (A) = S1+ α
2

E

( ⋃
n∈N

An

)
≤ lim

n→∞
S1+ α

2
E (An) = 0.

It is clear that Propositions 3.2 and 3.6 together with Proposi-
tion 2.2 (i) imply Theorem 1.1.

4. Proof of the sharpness of the dimension jump

Let us start by presenting the intuitive background behind the proof
of Theorem 1.2. Observe first that a Heisenberg ball BH(p, r) for small
r > 0 has the following crucial property: in the directions of the horizon-
tal space HpH, the size of BH(p, r) is the same as for a Euclidean ball.
In the complementary direction however, the size of BH(p, r) is much
smaller: it is comparable to r2. For the first statement of Theorem 1.2
we have to construct a set whose Heisenberg Hausdorff dimension and
measure is as large as possible in comparison to its Euclidean Hausdorff
dimension and measure. For this reason, the sets we construct will be
in some sense distributed along the direction in which the Heisenberg
balls are small: i.e. transversal to the horizontal plane distribution. For
the second statement of Theorem 1.2 we have to do the opposite: we
have to construct sets with possibly small Heisenberg-Hausdorff dimen-
sion and measure as related to the Euclidean Hausdorff dimension and
measure. This sets will be in some sense tangent to the horizontal plane
distribution.

Some of the sets constructed are of product-type. Recent results about
the Hausdorff measure and dimension of such sets are due to Howroyd
(see [How]). However, the Heisenberg metric is not of product-type and
therefore we cannot simply take over the results in [How], but we have
to use many ad hoc arguments in our proofs instead.

One of the main building blocks needed in the construction of the
sets mentioned in Theorem 1.2 is the Cantor-set Cs ⊆ [0, 1] of Hausdorff
dimension s, where 0 < s < 1. The construction is standard, nevertheless
we shall recall it as we need its details in our proofs. Let us choose λ > 0
such that λs = 1

2 . Cs is obtained as the intersection Cs =
⋂

k∈N0
Ck

s ,

where for each k ∈ N0 Ck
s =

⋃2k

l=1 Ik,l is the union of 2k pairwise disjoint
intervals Ik,l of diameter diam(Ik,l) = λk constructed recursively in the
following way: we let I0,1 = [0, 1], and, given k ∈ N0, 1 ≤ l ≤ 2k
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and Ik,l = [ak,l, bk,l], we let Ik+1,2l−1 = [ak,l, ak,l + λk+1] and Ik+1,2l =
[bk,l − λk+1, bk,l].

We collect some standard facts (see [Fa] and [Ma, 4.10]) about Cs in
the following proposition:

Proposition 4.1.

(i) Cs is a compact subset of R without interior points.

(ii) 0 < Hs
E(Cs) < ∞.

4.1. Sharpness of Hmin{2α,α+1}
H � Hα

E.

We distinguish several cases depending on the magnitude of α > 0.

1. Case 0 < α ≤ 1. We let Aα := {(0, 0, t) | t ∈ Cα} for 0 <
α < 1, where Cα is the Cantor set of dimension α constructed above,
and A1 := {(0, 0, t) | t ∈ [0, 1]}. By Proposition 4.1, we know that
0 < Hα

E(Aα) < ∞. Let us observe that the restriction of dH to the
vertical axis Ot satisfies dH(p1, p2) = (dE(p1, p2))

1
2 for p1, p2 ∈ Ot. Since

Aα ⊆ Ot and Hα
E(Aα) > 0, H2α

H (Aα) > 0 follows immediately from
Proposition 2.2 (iii) and (iv).

2. Case 1 < α < 2. Aα is now a Cantor set of vertical segments given
by Aα = {(x, 0, t) | x ∈ Cα−1, t ∈ [0, 1]}.

First, we prove that Hα
E(Aα) < ∞. Since we are working with the

Cantor set Cα−1, we have λα−1 = 1
2 . Let δ > 0 arbitrary and let

k ∈ N such that 2
1
2 λk < δ. Consider the sets Jl,m := Ik,l × {0} ×

[mλk, (m+1)λk], where l = 1, . . . , 2k and m = 0, . . . , [λ−k +1]−1. Then
Aα ⊆ ⋃

l,m Jl,m, and

Hα
E,δ(Aα)≤

∑
l,m

(diamE(Jl,m))α =
∑
l,m

(2
1
2 λk)α =2

α
2 λαk2k[λ−k+1]<2

α+2
2 .

Hence Hα
E,δ(Aα) < 2

α+2
2 for all δ > 0, so Hα

E(Aα) ≤ 2
α+2

2 .

The idea for proving Hα+1
H (Aα) > 0 is to apply Lemma 2.3, i.e. to

find a measure µ on (H, dH) satisfying (i) and (ii).
Let µ = Hα

E be the α-dimensional Hausdorff measure on H ≡ R
3 with

respect to dE . We must show that µ has the required properties:
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(i) We have Hα−1
E (Cα−1) > 0 (by Proposition 4.1 (ii)) and H1

E({0}×
[0, 1]) = 1. Theorem 8.10 (1) of [Ma] gives

µ(Aα) = H(α−1)+1
E (Cα−1 × {0} × [0, 1]) > 0.

(ii) Let p ∈ H and 0 < r < 1
4 such that BH(p, r) ∩ (R × {0} ×

R) �= ∅. Let (x, 0, t), (x′, 0, t′) ∈ BH(p, r) ∩ (R × {0} × R). Then
dH((x, 0, t), (x′, 0, t′)) ≤ 2r. In particular |x′−x| ≤ 2r and |t′− t| ≤ 4r2.
Hence

BH(p, r) ∩ Aα ⊆ ([x − 2r, x + 2r] ∩ Cα−1) × {0} × [t − 4r2, t + 4r2].

Let k ∈ N be minimal with λk ≤ 4r. Then [x − 2r, x + 2r] intersects
at most 3 intervals Ik,l, otherwise [x− 2r, x + 2r] would have to contain
some Ik−1,l. Thus [x− 2r, x + 2r] intersects at most 3 · 2k intervals I2k,l.
This gives

Hα
E(([x − 2r, x + 2r] ∩ Cα−1) × {0} × [t − 4r2, t + 4r2])

≤ 3 · 2k([8r2λ−2k] + 1)(diamE(Ik,l × {0} × J))α,

where J is a subinterval of [t − 4r2, t + 4r2] of diameter λ2k. Now

3 · 2k([8r2λ−2k] + 1)(diamE(Ik,l × {0} × J))α

≤ 9 · 2k8r2λ−2k(2
1
2 λ2k)α = 9 · 2k8r2λ−2k2

α
2 (λ2k)α−1λ2k

= K12k8r2(λk)α−1(λk)α−1 = K28r2(λk)α−1 ≤ K3r
α+1

with K1, K2, K3 > 0 not depending on r. We have used 1 ≤ 2 · 8r2λ−2k,
λα−1 = 1

2 and λk ≤ 4r. Summing up we get

µ(BH(p, r) ∩ Aα) ≤ cµrα+1

with a positive constant cµ not depending on r.

3. Case α = 2. In this case, the argument is based on Pansu’s isoperi-
metric inequality (see [Pa2]), which says that if Ω ⊆ H is a bounded
domain with piecewise C2 smooth boundary ∂Ω, then

H3
H(∂Ω) ≥ c(L3(Ω))

3
4(4.1)

with some absolute constant c > 0. Now, setting A2 := ∂BE(0, 1) and
using (4.1), we obtain H3

H(A2) > 0 as required.
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4. Case 2 < α < 3. The set Aα in this case is a Cantor-set of spheres:

Aα :=
⋃

r∈Cα−2

SH(0, r),

where SH(0, r) = {p ∈ H | ‖p‖H = r} is the sphere of radius r centered
at 0 with respect to dH and Cα−2 is the Cantor-set of Hausdorff dimen-
sion α − 2. The estimate Hα

E(Aα) < ∞ follows from the product type
structure of Aα. Aα is not directly a product set, but it is the image of
a product-type set under a Lipchitz mapping. The proof is then similar
to the proof in Case 2. The details can be found in [Ri]. The set Aα

appeared already in [Ba1] in connection with quasiconformal mappings
of the Heisenberg group. Using Pansu’s isoperimetric inequality, it was
shown (see Lemma 5.2 and the subsequent remark) that Hα+1

H,∞(Aα) > 0.

5. Case α = 3. Simply take A3 := BH(0, 1). Then 0 < H3
E(A3) < ∞

and 0 < H4
H(A3) < ∞.

4.2. Sharpness of Hmin{α,1+ α
2 }

E � Hα
H .

Let us remember that in order to show the sharpness of Hmin{α,1+ α
2 }

E �
Hα

H , we have to construct sets which are in some sense tangent to the
horizontal distribution. For small dimensions α this is fairly easy: we
just consider subsets of horizontal curves. For higher dimensions things
become more complicated and we have to use some recent results ob-
tained in [Ba2] about the so-called characteristic sets.

1. Case 0 < α ≤ 1. The choice of the set Aα in the case 0 < α ≤ 1
is based on the fact that the restriction of dH to horizontal curves is
bi-Lipschitz equivalent to dE . Observe that the Ox axis is a horizontal
curve. In fact, the restrictions of dH and dE to Ox coincide. Hence, if
we let Aα := {(x, 0, 0) | x ∈ Cα} when 0 < α < 1 and A1 := {(x, 0, 0) |
x ∈ [0, 1]}, then 0 < Hα

E(Aα) = Hα
H(Aα) < ∞ by Propositions 2.2 (iv)

and 4.1 (ii).

The construction of the sets Aα, respectively Aα,δ, in the remaining
cases is more involved. We start with a definition:

Definition 4.1. Let S⊆R
3 be a C1 smooth, regular surface. A point p∈

S is a characteristic point for S if TpS = HpH, that is if the tangent
space of S and the horizontal plane coincide at p. The characteristic
set C(S) of S is the set of characteristic points for S.
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Remark 4.1. Assume that the surface S is given as the graph of a C1

function f : U → R over a domain U ⊆ R
2, i.e. S = {(x, y, f(x, y)) |

(x, y) ∈ U}. Then p = (x, y, t) ∈ S is a characteristic point if and only if
∂f

∂x
(x, y) = 2y and

∂f

∂y
(x, y) = −2x.

In what follows we consider characteristic sets C(S) on such graphs.
We collect the results from [Ba2] needed in the sequel in the following
theorem:

Theorem 4.2. Given 1 < α < 2, there exists a compact subset Qα of
Q := [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ] and a C1,1 smooth map f : Q → R, such that:

(i) 0 < Hα
E(Qα) < ∞.

(ii) {(x, y, f(x, y)) | (x, y) ∈ Qα} ⊆ C(S), where S = {(x, y, f(x, y)) |
(x, y) ∈ Q}.

(iii) For any s ≥ 0, there is a constant c = c(s) such that Hs
H(A) ≤

cHs
E(A) whenever A ⊆ C(S).

Remark 4.2. (i) and (ii) are shown in the proof of Theorem 1.4 in [Ba2].
(iii) is essentially Case 2 of Theorem 1.1 in [Ba2] where Ht

H,∞ (respec-
tively Ht

E,∞) has been replaced by Ht
H (respectively Ht

E). The proof
given there only needs very minor changes in our case. The computa-
tions can be found in [Ri].

2. Case 1 < α < 2. Our set Aα is obtained from the characteristic
set of a surface in the following way: Let Qα and f : Q → R be as in
Theorem 4.2. Consider the mapping F : Q → R

3 given by F (x, y) =
(x, y, f(x, y)) and set Aα := F (Qα). Observe that F : (Qα, dE) →
(Aα, dE) is a bi-Lipschitz mapping and therefore

1
k
Hα

E(Qα) ≤ Hα
E(Aα) ≤ kHα

E(Qα)

for some k > 0. This shows in particular that Hα
E(Aα) > 0. We apply

Theorem 4.2 to estimate Hα
H(Aα). Since Aα ⊆ C(S), it follows that

Hα
H(Aα) ≤ cHα

E(Aα) ≤ ckHα
E(Qα).

3. Case α = 2. Given 0 < δ < 2 arbitrary, consider the set Q2−δ and
the map F from the Case 2 above. Then for Aα,δ := F (Q2−δ), we have
H2−δ

E (Aα,δ) > 0 and H2
H(Aα,δ) = 0 by Theorem 4.2.
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4. Case 2 < α < 4. Given 0 < δ < 1 arbitrary, consider the map F
and the set F (Q2−δ) from 2. above. Our set Aα,δ will be a product of
F (Q2−δ) with the Cantor set Cα−2

2
lying in the vertical axis:

Aα,δ := {(x, y, f(x, y) + t) | (x, y) ∈ Q2−δ, t ∈ Cα−2
2

}.

The estimate H1+ α
2 −δ

E (Aα,δ) > 0 is again a consequence of the Euclidean
product structure of Aα,δ. To see this, consider the map

g : Q2−δ × Cα−2
2

→ Aα,δ; g(x, y, t) := F (x, y) + (0, 0, t).

g is a bijection, and the inverse is

g−1 : Aα,δ → Q2−δ × Cα−2
2

; g−1(x, y, t) := (x, y, t) − (0, 0, f(x, y)).

It is easy to see that g : (Q2−δ ×Cα−2
2

, dE) → (Aα,δ, dE) is bi-Lipschitz.
Hence, it is enough to show that

H1+ α
2 −δ

E (Q2−δ × Cα−2
2

) > 0.

But H2−δ
E (Q2−δ) > 0 and H

α−2
2

E (Cα−2
2

) > 0, by Proposition 4.1 (ii) and
Theorem 4.2, so

H1+ α
2 −δ

E (Q2−δ × Cα−2
2

) = H(2−δ)+( α−2
2 )

E (Q2−δ × Cα−2
2

) > 0

by [Ma, Theorem 8.10 (1)].
Next, we prove that Hα

H,∞(Aα,δ) = 0. This is a more difficult task
since we have to consider coverings with Heisenberg balls. In our argu-
ment it is crucial that the shape of Heisenberg balls remains unchanged
under vertical translations. Now remember that 0 < λ < 1 is related
to Cα−2

2
by the equation λ

α−2
2 = 1

2 and let c := (1 + λ− 1
2 )22α−2.

Given 0 < ε < cλ2, using the compactness of F (Q2−δ) and the fact
that H2

H(F (Q2−δ)) = 0, we can cover F (Q2−δ) with Heisenberg balls
(BH(pn, rn))n∈{1,...,N} in such a way that

∑N
n=1(2rn)2 < ε/c.

For each n ∈ {1, . . . , N}, let kn ∈ N such that λ
kn+1

2 ≤ 2rn < λ
kn
2

(2rn < (ε/c)
1
2 < λ for n = 1, . . . , N by construction). For n = 1, . . . , N

and ln = 1, . . . , 2kn , let

Bn,ln := {(x, y, t + t′) | (x, y, t) ∈ BH(pn, rn), t′ ∈ Ikn,ln},

where Ikn,ln are the intervals appearing in the construction of the Cantor
set Cα−2

2
. Notice that Aα,δ ⊆ ⋃

n,ln
Bn,ln . In what follows we estimate
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the Heisenberg diameter of Bn,ln : Let (x, y, t), (x′, y′, t′) ∈ BH(pn, rn)
and let t1, t2 ∈ Ikn,ln . Then

dH((x, y, t + t1), (x′, y′, t′ + t2))

= ‖(x′ − x, y′ − y, (t′ − t) + (t2 − t1) − 2x′y + 2xy′)‖H

= ‖(x′ − x, y′ − y, (t′ − t) − 2x′y + 2xy′) ∗ (0, 0, t2 − t1)‖H

≤ dH((x, y, t), (x′, y′, t′)) + |t2 − t1|
1
2

≤ 2rn + λ
kn
2 .

This computation gives diamH(Bn,ln) ≤ 2rn + λ
kn
2 . Now:

∑
n,ln

(diamH(Bn,ln))α

=
∑
n,ln

(diamH(Bn,ln))2(diamH(Bn,ln))α−2

≤
∑
n,ln

(2rn + λ
kn
2 )2(2rn + λ

kn
2 )α−2 ≤

∑
n,ln

((1 + λ− 1
2 )2rn)2(2λ

kn
2 )α−2

=
∑
n,ln

(1 + λ− 1
2 )2(2rn)22α−2

(
1
2

)kn

=
∑

n

(1 + λ− 1
2 )2(2rn)22α−2

= (1 + λ− 1
2 )22α−2

∑
n

(2rn)2 = c
∑

n

(2rn)2 < c
ε

c
= ε.

Hence, for an arbitrary 0 < ε < cλ2, there exists a covering (Bn,ln)n,ln

(n=1, . . . , N , ln =1, . . . , 2kn) of Aα,δ such that
∑

n,ln
(diamH(Bn,ln))α <

ε.

5. Case α = 4. This, again, is trivial. Take A4 := BE(0, 1). Then
0 < H3

E(A4) < ∞ and 0 < H4
H(A4) < ∞.

5. An application to H-rectifiability

In this section we will compare the classical notion of 2-Euclidean
rectifiability and the notion of H-rectifiability introduced in [FSSC1].

Let us recall the classical notion of m-rectifiability in a general metric
space due to Federer ([Fe, 3.2.14]): Given a metric space (X, d) and a
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positive integer m, we say that a Borel set E ⊆ X is m-rectifiable if there
exists a countable collection of Lipschitz maps fi : Ai ⊆ (Rm, dE) →
(X, d) such that

Hm
d

(
E \

∞⋃
i=1

fi(Ai)

)
= 0.

An m-dimensional Euclidean rectifiable set is an m-rectifiable subset of
(Rn, dE).

Remark 5.1. It is well known that m-dimensional Euclidean rectifiability
is equivalent to the requirement that Hm

dE
-almost all of the set can be

covered by a sequence of C1 m-graphs of R
n (see [AFP, Chapter 2,

Section 2.9]).

It turned out however that this notion of rectifiability is not appro-
priate in the setting of the Heisenberg group endowed with the Heisen-
berg metric. Indeed, Ambrosio and Kirchheim (see [AK, Theorem 7.2])
proved that the Heisenberg group (H, dH) is purely m-unrectifiable for
m = 2, 3, 4, i.e. that for any Lipschitz map

f : A ⊆ (Rm, dE) → (H, dH)

one has Hm
H(f(A)) = 0. This lack of rectifiable sets in the classical sense

suggests that more intrinsic definitions of rectifiability could be useful
instead. To this aim, in [FSSC1], an intrinsic definition of rectifiability
in the Heisenberg group was introduced in the codimension one case.
This was successfully used to study the structure of the sets of intrinsic
finite perimeter (see [FSSC1], [FSSC2], [FSSC3]).

The idea in [FSSC1] was to replace the images of Lipschitz mappings
in Federer’s definition by surfaces given as level sets of H-differentiable
functions. This led to the following definition:

Definition 5.1. We shall say that S ⊆ H is 3-dimensional H-rectifiable
if there exists a sequence of H-regular hypersurfaces (Si)i∈N such that

H3
H

(
S \

⋃
i∈N

Si

)
= 0.

In the above definition the notion of H-regular hypersurface appears.
Here S ⊆ R

3 ≡ H is called an H-regular hypersurface if it is locally the
level set of an H-regular function f : H → R. H-regularity of f means
that the horizontal gradient

∇Hf := (Xf, Y f) : H → R
2
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of f exists, is continuous and non-vanishing on S. In particular, if S is
a Euclidean C1 regular surface without characteristic points, then S is
H-regular.

It was proved in [FSSC1] that the essential boundary of a set E of
locally finite H-perimeter in H is 3-dimensional H-rectifiable.

The following comparison result between 2-dimensional Euclidean rec-
tifiability and 3-dimensional H-rectifiability is in order:

Theorem 5.1.

(i) Each 2-dimensional Euclidean rectifiable set S ⊆ R
3 ≡ H is 3-di-

mensional H-rectifiable.
(ii) There are 3-dimensional H-rectifiable sets S ⊆ R

3 ≡ H that are
not 2-dimensional Euclidean rectifiable.

Proof: (i) By Remark 5.1, given a 2-dimensional Euclidean rectifiable
subset S ⊆ R

3, we can assume without loss of generality that

S = N ∪
⋃
i∈N

Si

where H2
E(N) = 0 and Si ⊆ R

3 is a Euclidean C1 regular hypersurface.
Let S̃i := Si \C(Si), where C(Si) denotes the set of characteristic points
of Si. Then S̃i is an H-regular hypersurface, and

S = Ñ ∪
⋃
i∈N

S̃i

with

Ñ = N ∪
⋃
i∈N

C(Si).

By Theorem 1.1 with α = 2 we have H3
H(N) = 0. According to a

result from [Ba2], if S is a Euclidean C1 regular hypersurface, then
H3

H(C(S)) = 0. This gives H3
H(C(Si)) = 0 for all i ∈ N. Hence

H3
H(Ñ) = 0 and consequently S is 3-dimensional H-rectifiable.

(ii) Given 0 < δ < 0.5, we know by Theorem 1.2 (ii) that there is a
compact set N = A3,δ ⊆ H such that

H3
H(N) = 0 but H2.5−δ

E (N) > 0.

Therefore N is 3-dimensional H-rectifiable by definition but not 2-dimen-
sional Euclidean rectifiable since its Hausdorff dimension in (R3, dE) is
strictly bigger than 2.
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