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VIRTUALLY REPELLING FIXED POINTS

Xavier Buff

Abstract
In this article, we study the notion of virtually repelling fixed point.
We first give a definition and an interpretation of it. We then
prove that most proper holomorphic mappings f : U → V with U
contained in V have at least one virtually repelling fixed point.

1. Preliminaries

Let f : (C, α) → (C, α) be a holomorphic germ fixing α.

Definition 1. The multiplicity m of α as a fixed point of f is the residue

m = residue
(

1 − f ′(z)
z − f(z)

dz, α

)
.

In other words, it is the multiplicity of α as a root of z − f(z). When
m = 1, α is a simple fixed point and when m > 1, α is a multiple fixed
point.

The multiplier of f at α is the derivative λ = f ′(α). When |λ| > 1,
α is repelling, when |λ| < 1, α is attracting and when |λ| = 1, α is
indifferent.

If α is repelling or multiple, it is weakly repelling.

Remark. Observe that α is multiple if and only if λ = 1.

One easily proves that analytic conjugacy preserves the multiplier
at a fixed point and that topological conjugacy preserves the property
of being repelling, attracting or indifferent. Topological conjugacy pre-
serves the multiplier at an indifferent fixed point (see [N] or [PM]). It
also preserves the multiplicity of a fixed point and two germs having
multiple fixed points with the same multiplicity are always topologically
conjugate (see [C]).
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Definition 2. The residue fixed point index ι(f, α) of f at a fixed
point α is the residue

ι(f, α) = residue
(

1
z − f(z)

dz, α

)
.

If the multiplicity is m and �(ι(f, α)) < m/2, α is virtually repelling, if
�(ι(f, α)) > m/2, α is virtually attracting and if �(ι(f, α)) = m/2, α is
virtually indifferent.

It is known that the residue fixed point index is invariant under ana-
lytic conjugacy (see [M, Lemma 12.3]) but not under topological conju-
gacy (as mentioned above, two germs having a multiple fixed point with
the same multiplicity are always topologically conjugate). Since the no-
tions introduced above are invariant under analytic conjugacies, it makes
sense to talk about the multiplier or the residue fixed point index of a
holomorphic germ f : (U, α) → (U, α) where U is an arbitrary Riemann
surface and α ∈ U is an arbitrary point (for example the point ∞ in P

1).
In Section 2, we show that a virtually repelling fixed point with mul-

tiplicity m may be thought as the superposition of m fixed points which
are repelling on average. More precisely, we prove the following theorem.

Theorem 1. A germ f : (C, α) → (C, α) has a virtually repelling fixed
point at α if and only if any sufficiently small perturbation fε of f has
at least one virtually repelling fixed point close to α. Besides, if α has
multiplicity m and is not virtually repelling, there exist arbitrarily small
perturbations fε having m attracting fixed points close to α.

In [J], Jellouli proves that when P (z) = e2iπp/qz + z2, then
q + 1

2
− 2q−1 ≤ � (ι(P ◦q, 0)) ≤ q + 1

2
.

The upper bound says that 0 is a virtually repelling fixed point of P ◦q.
The proof relies on the fact that the multiplicity of 0 as a fixed point of
P ◦q is q + 1 and that there exist small perturbations Pε of P such that
P ◦q

ε has only repelling fixed points. In [Sh3], [B] and [BE], refinements
of this result are given.

In Sections 3 and 4, we prove that most ramified coverings f : U → V
with U ⊂ V have at least one virtually repelling fixed point.

Definition 3. Let U ⊂ V be Riemann surfaces and f : U → V be a
holomorphic map. We say that f is repelling on average if and only if f
has finitely many fixed points αk ∈ U with multiplicities mk and

�
(∑

ι(f, αk)
)

<
1
2

∑
mk.
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When a holomorphic map f : U → V is repelling on average, the
barycenter of the quantities ι(f, αk)/mk weighted with multiplicities mk

has real part less than 1/2. Therefore, one of those quantities must
have real part less than 1/2. Hence, f must have at least one virtually
repelling fixed point.

Let us first consider the case where U = V = P
1, i.e., the case of

rational maps. It is well-known (see [M, Section 10]) that for any rational
map f : P

1 → P
1, we have the equality∑

{α∈P1|α=f(α)}
ι(f, α) = 1.

This is known as the Fatou’s Index Formula, or the Holomorphic Fixed
Point Formula. When the degree of f is d ≥ 2, it has d + 1 fixed points
counted with multiplicity. Therefore f is repelling on average and has
at least one virtually repelling fixed point. In Sections 3 and 4, we
generalize this result.

In Section 3, we introduce the notion of rational-like mappings
(see [R1] and [R2]). Those are ramified coverings f : U → V where U
and V are planar Riemann surfaces with finite Euler characteristic and U
is relatively compact in V . We prove an analog of Douady-Hubbard’s
Straightening Theorem (see [DH]). We then prove the following result.

Theorem 2. If f : U → V is a rational-like mapping, then it has at least
one virtually repelling fixed point. Besides, if V is simply connected, f
is repelling on average.

Question. Is a rational-like mapping always repelling on average?

In Section 4, we still consider the case where f : U → V is a ramified
covering with U ⊂ V . We allow U not to be compactly contained in V ,
but we restrict to the case where V is simply connected. In that case,
f : U → V is conformally conjugate to a ramified covering g : U ′ → D

(via an isomorphism ϕ : V → D). Therefore, we may restrict our study
to ramified coverings f : U → D with U contained in D.

Theorem 3. Let f : U →D be a proper holomorphic map of degree d ≥ 2
with U contained in D. If |f(z)− z| is bounded away from zero as z ∈ U
tends to ∂U , then, f has d fixed point in U , counting multiplicities,
and f is repelling on average. In particular, it has at least one virtually
repelling fixed point.

Finally, in Section 5, we give some applications. In particular, we
show that if f is a rational map with a (super)attracting fixed point α
whose immediate basin Ωα is not simply connected, then Ωα separates
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two virtually repelling fixed points of f . We also show that when a
rational map f has a fixed Herman ring A, each connected component
of P

1 \ A contains a virtually repelling fixed point.

2. Perturbations of virtually repelling fixed points

In this section we try and understand the notion of virtually repelling
fixed points. First, observe that this notion is finer than the one of
weakly repelling fixed point. Indeed, when α is not a multiple fixed
point, then the residue fixed point index ι(f, α) and the multiplier λ are
related by

ι(f, α) =
1

1 − λ
.

Consequently, |λ| > 1 if and only if �(ι(f, α)) < 1/2 and a simple fixed
point is virtually repelling if and only if it is repelling.

When α is a multiple fixed point of multiplicity m and �(ι(f, α)) <
m/2, we think of α has being the superposition of m fixed point which
are repelling on average. This is essentially the content of Theorem 1
which says that a germ f : (C, α) → (C, α) has a virtually repelling fixed
point at α if and only if any sufficiently small perturbation fε of f has
at least one virtually repelling fixed point close to α. In particular, if all
the fixed point of fε are simple, at least one of them is repelling.

Proof of Theorem 1: First, the result is clear if α is a simple fixed point.
Now, assume α is a multiple fixed point and let m be its multiplicity. The
multiplicity and the residue fixed point index of f at α can be defined
via the integrals of (1− f ′(z))/(z − f(z)) and 1/(z − f(z)) along a small
loop γ turning once around α. Those integrals depend continuously on f .
It follows that for any sufficiently small perturbation fε of f , the sum of
the multiplicities mk at the fixed point αk of fε contained in the region
delimited by γ is equal to m and the sum of residue fixed point indices
of fε at the points αk is close to the residue fixed point index of f at α.
In particular, for any sufficiently small perturbation fε, we have

�
(∑

ι(fε, αk)
)

<
1
2

∑
mk.

This precisely means that the barycenter of the quantities ι(fε, αk)/mk

weighted with multiplicities mk has real part less than 1/2. In particular
one of those quantities has real part less than 1/2 and the corresponding
fixed point is virtually repelling.

Conversely, assume α is not virtually repelling. We will show that
there exist arbitrarily small perturbations fε having m attracting fixed
points close to α. We will obtain the perturbation in two steps.
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Step 1: If α is virtually indifferent, we first make a perturbation that
turns it into a virtually attracting fixed point. For example, consider
the perturbation fε : (C, α) → (C, α) defined by

1
z − fε(z)

=
1

z − f(z)
+

ε

z − α
.

The map fε has a fixed point of multiplicity m at α and the residue fixed
point index is

ι(fε, α) = ι(f, α) + ε.

When �(ε) > 0, the fixed point becomes virtually attracting.

Step 2: Without loss of generality, we may now assume that α is virtually
attracting, i.e., �(ι(f, α)) > m/2.

In order to get a hand on the residue fixed point index, we will use
the following fact, which is known but not absolutely obvious (see for
example the appendix in [BE]): one may perform an analytic change of
coordinates so that the Taylor expansion of f at α becomes

f(z) = α + (z − α) + (z − α)m + ι(f, α)(z − α)2m−1 + O(|z − α|2m).

Let us first study the case of the polynomial g : C → C defined by

g(z) = α + (z − α) + (z − α)m + ι(f, α)(z − α)2m−1.

We define λε by
1

1 − λε
=

i

ε
+

ι(f, α)
m

and set gε = α + λε(g − α). The fixed points of the polynomials gε are
the solutions of the equation

1 + (z − α)m−1 + ι(f, α)(z − α)2(m−1) =
1
λε

.

For small values of ε, the polynomial gε has m attracting fixed points
close to α: one at α with multiplier λε and α1, . . . , αm−1 which, by
symmetry, all have the same multiplier. Thus, the residue fixed point
index ι(gε, αk) does not depend on k = 1, . . . , m − 1. Now, we have

ι(gε, α) =
i

ε
+

ι(f, α)
m

and

ι(gε, α) +
m−1∑
k=1

ι(gε, αk) −→
ε→0

ι(f, α).
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Therefore, for all k = 1, . . . , m − 1, we have

ι(gε, αk) =
−i

(m − 1)ε
+

ι(f, 0)
m

+ o(1).

In particular, for small values of ε, the residue fixed point indices have
real part close to �(ι(f, α))/m > 1/2 and the fixed points are attracting.

We will now define the perturbation of f . Let us work in a local coor-
dinate where f(z) = g(z)+O(|z−α|2m−1). We define the perturbation fε

by
1

z − fε(z)
=

1
z − gε(z)

+
1

z − f(z)
− 1

z − g(z)
.

The fixed point of fε are the poles of 1/(z − fε(z)). Since
1

z − f(z)
=

1
z − g(z)

+ O(1)

the fixed points of fε which are close to α and their residue fixed point
indices coincide with the fixed point of gε which are close to α and their
residue fixed point indices. In particular, for small values of ε, fε has m
attracting fixed points close to α.

Remark. The proof given above also shows that when f : (C, α) → (C, α)
has a virtually repelling fixed point at α with multiplicity m, there exist
arbitrarily small perturbations fε having m repelling fixed points close
to α.

3. Rational-like mappings

Definition 4. A rational-like mapping is a proper holomorphic map-
ping f : U → V of degree d ≥ 2, where U and V are connected open
subsets of P

1 with finite Euler characteristic and U is relatively compact
in V .

A rational-like mapping comes with a filled-in Julia set Kf (the set of
non-escaping points), and a Julia set Jf (the boundary of Kf ). The Julia
set Jf may equivalently be defined as the closure of the set of repelling
periodic points. The following result shows that rational-like mappings
behave like rational maps. This result is probably not new and may
already appear somewhere in the literature.

Theorem 4 (Straightening Theorem). For any rational-like map f:U→
V , there exist a rational map F : P

1 → P
1, neighborhoods U ′ and V ′ of

the Julia set JF and a quasi-conformal homeomorphism ϕ : V → V ′

which conjugates f : U → V to F : U ′ → V ′.
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Remark. The ∂ derivative of ϕ may be chosen to vanish everywhere
on Kf .

Proof: We will only sketch the main lines of the proof of Theorem 4.
The proof mimics the one by Douady and Hubbard of the straightening
theorem for polynomial-like mappings (see [DH]).

By restricting V if necessary, we may assume that U and V have
smooth boundaries. We denote by (Bi)i∈I the connected components
of P

1 \ V and by (Dj)j∈J the connected components of P
1 \ U . The

sets I and J are finite by assumption, and the sets Bi and Dj are
Jordan domains. Besides, each Bi is contained in a unique Dj , and the
inclusion induces a map ι : I → J . The rational-like map f induces a
mapping f∗ : J → I so that f(∂Dj) = ∂Bf∗(j).

We may now define an extension of f to the Riemann sphere. This
extension will be quasi-regular and will satisfy Shishikura’s principle
(see [Sh1, Lemma 1]). Therefore, the proof will be completed.

If (j0, j1, . . . , jn) is a periodic cycle of the map ι ◦ f∗, we define Ajk

to be the annulus Djk
\ Bf∗(jk−1) and we let djk

be the degree of f |
∂Djk

. We choose a real number r ∈]0, 1[, and we define A′
jk

to be
the annulus {z ∈ C | rdk−1 ≤ |z| ≤ r}. We choose quasi-conformal
homeomorphisms ϕjk

: Ajk
→ A′

jk
which satisfy ϕjk

◦ f = (ϕjk−1)
djk−1

on ∂Djk−1 . Then, we use ϕjk
to glue the dynamics of z 	→ zdjk in each

disk Djk
. This defines the extension of f in every disk Dj such that j

is a periodic point of the map ι ◦ f∗. For the remaining disks Dj , we
choose any quasi-regular extension.

Since any rational map F has at least one weakly repelling fixed point,
and since this point is contained in JF , it follows that any rational-like
map has at least one weakly repelling fixed point. However, since quasi-
conformal conjugacies do not necessarily preserve the property of being
virtually repelling, one has to work a little to prove Theorem 2.

Proof of Theorem 2: Let us first prove that any rational-like mapping
has at least one virtually repelling fixed point. If this were not the case,
we could find a rational-like mapping f : U → V having only virtually
attracting and virtually indifferent fixed points. The idea is to find a
perturbation fε : U ′ → V ′ which is still rational-like but the fixed points
of which are all attracting, which clearly gives a contradiction.

Denote by α1, . . . , αn ∈ U the fixed points of f . In a neighborhood
of each fixed point αk, Theorem 1 provides a local perturbation fε,k

which only has attracting fixed points. The only difficulty consists in
gluing the perturbations fε,k into a global one. For any meromorphic
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function h : U → P
1, we can write a decomposition h = P(h) + R(h),

where P(h) is the polar part of h (i.e., sum of negative powers of (z−pj)
at the poles pj), and R(h) ∈ O(1) is the regular part of h. Then, in
a neighborhood of each fixed point αk, the polar part P(1/(z − fε,k))
converges to the polar part P(1/(z−f)) at αk as ε tends to 0. Therefore,
we can define a global perturbation fε : U → P

1 by

1
z − fε

=
n∑

k=1

P
(

1
z − fε,k

)
+ R

(
1

z − f(z)

)
.

The perturbation fε is defined on the whole set U but a priori, it is
not rational-like. However, since fε converge to f on every compact
subset of U as ε tends to 0, we can find a restriction V ′ of V so that
U ⊂ V ′ ⊂ V and fε : U ′ = f−1

ε (V ′) → V ′ is rational-like. The fixed
points of fε : U ′ → V ′ and their residue fixed point indices coincide with
the fixed points in U ′ of the maps fε,k and their residue fixed point
indices. By construction, all those points are attracting which gives the
required contradiction.

Let us now prove that any rational-like mapping f : U → V , with V
simply connected, is repelling on average. In that case, f : U → V
is conjugate, via an isomorphism ϕ : V → D, to a rational-like map-
ping g : U ′ → D. The number of fixed points of f and g are the same,
and the residue fixed point indices coincide. Thus, without loss of gen-
erality, we may assume that V = D.

Then, we may choose r < 1 sufficiently close to 1 so that U is con-
tained in the disk Dr centered at 0 with radius r. We set Ur = f−1(Dr)
so that f : Ur → Dr is a ramified covering of degree d. For r is sufficiently
close to 1, the boundary of Ur is a union of R-analytic Jordan curves
(canonically oriented by Ur) and f is holomorphic in a neighborhood
of Ur.

Observe that the fixed point of f are contained in Ur. We must
show that f : Ur → Dr has d fixed points counting multiplicities. For
any z ∈ ∂Ur, we have |z| < |f(z)|. Thus, by Rouché’s Theorem, f
and Id−f have the same number of zeros in Ur, counting multiplicities.
Since f : Ur → Dr is a ramified covering of degree d, 0 has d pre-images
counted with multiplicities. Therefore, there are d fixed points.

We must now show that f is repelling on average. The sum of residue
fixed point indices is given by the integral

1
2iπ

∫
∂Ur

dz

z − f(z)
.
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We must prove that the real part of this integral is less than d/2. We
can decompose it as follows:

1
2iπ

∫
∂Ur

dz

z − f(z)
=

1
2iπ

∫
∂Ur

1 − f ′(z)
z − f(z)

dz +
1

2iπ

∫
∂Ur

f ′(z)
z − f(z)

dz

=
1

2iπ

∫
∂Ur

f ′(z)
f(z)

dz +
1

2iπ

∫
∂Ur

f(z)
z − f(z)

f ′(z)
f(z)

dz

=
1

2iπ

∫
∂Ur

z

z − f(z)
f ′(z)
f(z)

dz.

Now, f : ∂Ur → ∂Dr is orientation preserving, and thus,
1

2iπ

f ′(z)
f(z)

dz is

real and positive. Besides, when z ∈ ∂Ur, we have |f(z)/z| < 1 and thus

�
(

z

z − f(z)

)
<

1
2
.

Therefore,

�
(∫

∂Ur

z

z − f(z)
· 1
2iπ

f ′(z)
f(z)

dz

)
=

∫
∂Ur

�
(

z

z − f(z)

)
· 1
2iπ

f ′(z)
f(z)

dz

<
1
2

(
1

2iπ

∫
∂Ur

f ′(z)
f(z)

dz

)
=

d

2
.

This concludes the proof of Theorem 2.

In fact, still under the assumption that V is simply connected, one
can better control the sum of residue fixed point indices. Let A ⊂ V
be the connected component of V \U which is not compactly contained
in V . Observe that A is an annulus. There exists a unique real ρ ∈
]0, 1[ such that A is conformally equivalent to the annulus D \ [0, ρ].
The sum of residue fixed points indices of f is contained in the disk
of diameter [dρ/(ρ − 1), dρ/(ρ + 1)]. The proof is very similar to the
argument given above. Without loss of generality, we may assume that
V = D and 0 ∈ U . Since the annulus A is conformally equivalent
to D \ [0, ρ], it is known (see [A, Section 4]) that for any z ∈ U , we
have |z| < ρ. Thus, when z ∈ ∂Ur, z/(z − f(z)) belongs to the disk

of diameter [ρ/(ρ − 1), ρ/(ρ + 1)]. Since
1

2iπ

f ′(z)
f(z)

dz defines on ∂Ur a



204 X. Buff

positive measure of total mass d, the quantity
1
d

∫
∂Ur

z

z − f(z)
· 1
2iπ

f ′(z)
f(z)

dz

is a barycenter of the quantities z/(z − f(z)). Thus, it still belongs to
the disk of diameter [ρ/(ρ − 1), ρ/(ρ + 1)] and the result is proved.

4. Proof of Theorem 3

We now consider the case of a ramified covering f : U → D of de-
gree d ≥ 2 with U ⊂ D. We assume that |f(z) − z| remains bounded
away from 0 as z ∈ U tends to ∂U . We will prove that f is repelling on
average. We will generalize the proof given in the settings of rational-like
mappings.

Since |z−f(z)| is bounded away from 0 as z tends to ∂U , f has finitely
many fixed point in U . Therefore, for any r sufficiently close to 1, all
the fixed points are contained in the disk Dr and we may count them or
compute the sum of residue fixed point indices via the integrals

1
2iπ

∫
∂Ur

1 − f ′(z)
z − f(z)

dz and
1

2iπ

∫
∂Ur

1
z − f(z)

dz,

where Ur = f−1(Dr). The problem is that we may fail to have |z| <
|f(z)| on ∂Ur and thus, we must be careful.

In order to prove that f has d fixed points in U , we have to redo
the proof of Rouché’s Theorem. For r sufficiently close to 1 and any
t ∈ [0, 1], the function z 	→ tz−f(z) does not vanish on ∂Ur. Otherwise,
the assumption that |z − f(z)| remains bounded away from 0 as z tends
to ∂U would be violated. It follows that for any r sufficiently close to 1,
the integral

I(t) =
1

2iπ

∫
∂Ur

t − f ′(z)
tz − f(z)

dz

is well defined. It depends continuously on t and takes values in Z. Thus,
it is constant. For t = 0 it gives the number of pre-images of 0, i.e., the
degree of f , and for t = 1 it gives the number of fixed points of f . Hence,
f has d fixed points in U , counting multiplicities.

Next, we have seen that
∑

{α∈U |α=f(α)}
ι(f, α) =

1
2iπ

∫
∂Ur

z

z − f(z)
f ′(z)
f(z)

dz.

In order to go further with this equality, we would like to do the change of
variable w = f(z). Since f : ∂Ur → ∂Dr is d to 1, we have to be careful.
The ramified covering f : U → D has finitely many critical values in D.
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Thus, if r0 is sufficiently close to 1, f : U \Ur0 → D\Dr0 is a non-ramified
covering. We define A to be the slit annulus

A = D \
{

Dr0 ∪ [r0, 1]
}

,

and we let g1, . . . , gd : A → U be the d inverse branches of f . Then,
we can make the change of variables z = gk(reiθ), summing over the d
inverse branches:

∑
{α∈U |α=f(α)}

ι(f, α) =
d∑

k=1

1
2π

∫ 2π

0

gk(reiθ)
gk(reiθ) − reiθ

dθ.

Since gk : A → U is a bounded holomorphic function, a theorem of Fatou
asserts that the radial limit of gk(reiθ) exists for almost every θ ∈]0, 2π[
and that this radial limit is contained in ∂U . Thus, by Lebesgue domi-
nated convergence theorem, we may write

∑
{α∈U |α=f(α)}

ι(f, α) =
d∑

k=1

1
2π

∫ 2π

0

gk(eiθ)
gk(eiθ) − eiθ

dθ,

where gk : ∂D → ∂U is defined almost everywhere by the radial limit of
gk. We have ||gk(eiθ)||∞ ≤ 1 and as a consequence

�


 ∑

{α∈U |α=f(α)}
ι(f, α)


 ≤ d

2
.

In order to get the strict inequality, we must show that we cannot have
|gk(eiθ)| = 1 for every k = 1, . . . , d and almost every θ ∈]0, 2π[. If this
were the case, the boundary of U would be entirely contained in ∂D and
we would have U = D. But then, the ramified covering f : U → D would
be a Blaschke product and |z − f(z)| could not remain bounded away
from 0 as z tends to ∂U .

5. Applications

Let us first give some applications of Theorem 2. The following result
is due to Przytycki [Pr] if one replaces virtually repelling by weakly re-
pelling. His proof is completely different. We do not think his arguments
can yield the existence of virtually repelling fixed points.

Proposition 1. Assume f : P
1 → P

1 is a rational map having a (su-
per)attracting fixed point α. If the immediate basin Ωα of α is not simply
connected, it separates two virtually repelling fixed points of f .
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Proof: Choose simply connected neighborhoods U0 and U1 of α such that
U0 is compactly contained in U1 and f : U1 → U0 is a proper mapping
(for example, choose a small disk in linearizing or Böttcher coordinates).
Then, define Un —by induction— to be the connected component of
f−1(Un−1) which contains Un−1. The immediate basin Ωα is the union
of the sets Un. Since Ωα is not simply connected, there exists an inte-
ger n0 > 0 such that Un0 is simply connected but not Un0+1. Define
V = P

1 \ Un0 . Then, V is connected and simply connected, but f−1(V )
has several connected components V ′

1 , . . . , V ′
k compactly contained in V .

It follows from Proposition 2 that each connected component V ′
j must

contain at least one virtually repelling fixed point of f .

Let us illustrate this proposition with two examples. The first ex-
ample is due to Przytycki [Pr]: when f is the Newton’s method of a
polynomial P , ∞ is the unique fixed point which is not attracting. It
follows that the immediate basins of attractions of the roots of P are
necessarily simply connected. This result turns out to be very useful, for
example, in Hubbard-Schleicher-Sutherland’s article [HSS]. There, the
authors explain how to find all the roots of a polynomial, using Newton’s
method.

Remark. Shishikura [Sh2] proved that any rational map having only one
weakly repelling fixed point has a connected Julia set and thus, every
Fatou component is simply connected. There are examples showing that
in Shishikura’s result, one cannot replace weakly repelling by virtually
repelling. For example, the quadratic rational map z 	→ z+1+1/(9z) has
only one virtually repelling fixed point: −1/9. The other fixed point, ∞,
has multiplicity 2 and is virtually attracting. However, the Julia set is
totally disconnected.

The second example is the following: for any integer m ≥ 2, if
�(am−1) < −1/2 or �(am−1) > m/2, then the polynomial z−zm+azm+1

has a connected Julia set. Indeed, this polynomial has only two fixed
point: 0 which has multiplicity m and residue fixed point index am−1

and 1/a which has multiplicity 1 and residue fixed point index −am−1.
If the hypothesis are satisfied, only one of them is virtually repelling
and the basin of infinity is simply connected. Thus, the Julia set is con-
nected. This result can be proved differently, arguing that the number
of critical points contained in the immediate basin of attraction of a vir-
tually attracting or indifferent multiple fixed point is greater than the
multiplicity of the fixed point (see for example [Sh3], [B] or [BE]).
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Let us now mention a possible application of Theorem 3. The result we
give can probably be improved, for example when a rational map restricts
to an orientation preserving homeomorphism of an annular compact set.

Proposition 2. Let f : P
1 → P

1 be a rational map that restricts to an
orientation preserving homeomorphism of a Jordan curve γ. Let V be
a connected component of P

1 \ γ. Then one of the following three cases
must occur.

1. The curve γ contains a fixed point of f .
2. The restriction of f to V is conjugate to a rotation.
3. The component V contains a virtually repelling fixed point of f .

Corollary 1. If a rational map f : P
1 → P

1 has a fixed Herman ring A,
each connected component of P

1 \ A contains a virtually repelling fixed
point.

In [Sh2], Shishikura proves that more generally, if a rational map f
has a periodic Herman ring, then the cycle of Herman rings must separate
two weakly repelling fixed points. His proof is based on quasi-conformal
surgery. We do not know whether Corollary 1 can be proved using
Shishikura’s arguments.

Question. If a rational map has a periodic Herman ring, does the cycle
of Herman rings separate two virtually repelling fixed points?

Question. Assume f is a rational map and (γ1, . . . , γk), k > 2, is a cycle
of disjoint Jordan curves. Besides, assume f◦k : γ1 → γ1 is orientation
preserving and has irrational rotation number. Does the cycle of Jordan
curves separate two weakly (or virtually) repelling fixed points?
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