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WEIGHTED TWO-PARAMETER BERGMAN SPACE
INEQUALITIES

J. Michael Wilson

Abstract
For f , a function defined on Rd1×Rd2 , take u to be its biharmonic

extension into Rd1+1
+ × Rd2+1

+ . In this paper we prove strong

sufficient conditions on measures µ and weights v such that the
inequality

(∗)

(∫
R

d1+1
+ ×R

d2+1
+

|∇1∇2u|q dµ(x1, x2, y1, y2)

)1/q

≤
(∫

Rd1×Rd2

|f |pv dx

)1/p

will hold for all f in a reasonable test class, for 1 < p ≤ 2 ≤ q < ∞.
Our result generalizes earlier work by R. L. Wheeden and the
author on one-parameter harmonic extensions. We also obtain
sufficient conditions for analogues of (∗) to hold when the entries
of ∇1∇2u are replaced by more general convolutions.

1. Introduction

In an earlier paper [WhWi], Richard L. Wheeden and the author
studied the following weighted norm inequality for the Poisson inte-
gral u(x, y) (x ∈ Rd, y > 0) of a function f :(∫

Rd+1
+

|∇u(x, y)|q dµ(x, y)

)1/q

≤
(∫

Rd

|f |pv dx

)1/p

.(1.1)

In this inequality, ∇ denotes the full gradient in Rd+1
+ : ∇ = (∂/∂x1, . . . ,

∂/∂xd, ∂/∂y); Rd+1
+ is the usual upper half space Rd × (0,∞); µ is a

positive Borel measure defined on Rd+1
+ ; and v is a non-negative function

in L1
loc(R

d). We studied this inequality primarily for p and q in the
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range 1 < p ≤ q < ∞. For the case in which q ≥ 2, we proved sufficient
conditions on µ and v (depending on p, q, and d) for the inequality (1.1)
to hold for all f ∈ ∪1≤r<∞Lr(Rd, dx).

The argument in [WhWi] began with the observation that (1.1) is
a special case of a more general inequality. Let h be a smooth function
with decay at infinity (precisely how much decay will be specified later),
defined on Rd. For y > 0, set hy(x) = y−dh(x/y), the usual L1-dilation.
If we set u(x, y) = f ∗ hy(x), then any component of ∇u(x, y) can be
written as f ∗ (y−1φy)(x), where φ is smooth, has some decay, and in
addition satisfies ∫

Rd

φ dx = 0.(1.2)

This said, we may now shift our attention to an arbitrary smooth φ
with decay (how much, again, to be specified presently), and which sat-
isfies (1.2), and we may ask: What conditions on µ and v ensure that

(∫
Rd+1

+

|f ∗ (y−1φy)(x)|q dµ(x, y)

)1/q

≤
(∫

Rd

|f |pv dx

)1/p

(1.3)

holds for all f in our test class?
In this paper, we are concerned with two-parameter generalizations

of (1.1) and (1.3), and especially the latter. What does “two-parameter”
mean? Let Rd = Rd1×Rd2 . For i = 1, 2, let φi be smooth functions with
good decay, defined on Rdi , and which satisfy

∫
Rdi

φi dxi = 0. In our
two-parameter problem, we look for sufficient conditions on measures µ,
defined on Rd1+1

+ ×Rd2+1
+ , and non-negative weights v ∈ L1

loc(R
d1×Rd2),

which are sufficient for the inequality

(1.4)

(∫
R

d1+1
+ ×R

d2+1
+

|f ∗
[
(y−1

1 (φ1)y1)·(y−1
2 (φ2)y2)

]
(x1, x2)|q dµ(x, y)

)1/q

≤
(∫

Rd1×Rd2

|f |pv dx

)1/p

to hold for all f . (Here we are using ‘(x, y)’ to stand for ‘(x1, x2, y1, y2).’)
When we write (φi)yi(xi), we mean, of course, y−di

i φi(xi/yi). In the
case where the φi’s are the kernels that “generate” the components of
the Poisson kernel (in their respective upper half spaces!), such a result
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would yield a sufficient condition for the inequality

(1.5)

(∫
R

d1+1
+ ×R

d2+1
+

|∇1∇2u|q dµ(x1, x2, y1, y2)

)1/q

≤
(∫

Rd1×Rd2

|f |pv dx

)1/p

,

where u is f ’s biharmonic extension and ∇i denotes the full gradient in
the (xi, yi) variables. Thus, ∇1∇2u is a (d1 + 1) × (d2 + 1) matrix of
functions, and |∇1∇2u| can be taken to be the square root of the sum
of the squares of its entries.

In this paper we prove sufficient conditions for inequality (1.4), valid
for 1 < p ≤ 2 ≤ q < ∞ and for a certain class of φi’s. This class includes
the kernels that generate the x-derivatives of the Poisson kernels, but not,
alas, the y-derivatives. The reason for this troubling gap is that, while
the convolution kernels for the x-derivatives of the d-dimensional Pois-
son kernel decay to order (1 + |x|)−d−2, the corresponding y-derivative
kernel only decays like (1 + |x|)−d−1. Unfortunately, our general one-
parameter result (Theorem 1.1 below) requires decay like (1 + |x|)−d−2.
In [WhWi], the authors treated the y-derivative by means a trick com-
bining harmonicity and the Poisson kernel’s semigroup property. The
whole trick is given on [WhWi, pp. 955–959], but in a nutshell it’s
this. Our duality argument (which works so well with the x-derivatives)
requires that we obtain good Littlewood-Paley estimates for a certain
function Tg(x), expressed as a weighted integral of ∂Py(x − t)/∂y over
(t, y) ∈ Rd+1

+ . For the x-derivatives, the corresponding integrals involved
∂Py(x − t)/∂xi, and we got our Littlewood-Paley estimates by convolv-
ing with ψη(·), where ψ was a smooth, compactly-supported function
with cancellation. The extra decay in the ∂Py(x− t)/∂xi’s let us bound
the resulting integrals nicely. Lacking that decay for the y-derivative,
R. L. Wheeden and the author convolved Tg with ∂Py(·)/∂y. By har-
monicity and the semigroup property, the resulting integral could be
expressed in terms of second partials in the x derivatives —for whose
kernels we do have good bounds. In our final section we drag this addi-
tional argument in to obtain a sufficient (but not so good) condition for
the y-derivatives in the bi-space setting as well.

Before stating our main theorem, we should state the one-parameter
result from [WhWi] that motivated it. Even this earlier result is fairly
technical, and the two-parameter result is, in our opinion, liable to be
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completely indigestible to a reader who has not seen the one-parameter
version first.

The one-parameter result.

As is traditional in this business, we begin with cubes Q ⊂ Rd. We
use �(Q) to denote the sidelength of Q, and |Q| is its Lebesgue measure.
We denote the Euclidean center of Q by xQ. By Q̂ we mean the set

Q̂ = {(x, y) ∈ Rd+1
+ : x ∈ Q, 0 < y < �(Q)},

the so-called “Carleson box” sitting above Q. We use T (Q) to denote
the “top half” of Q̂:

T (Q) = {(x, y) ∈ Rd+1
+ : x ∈ Q, �(Q)/2 ≤ y < �(Q)}.

One more definition: If η ≥ 0, σ ∈ L1
loc(R

d) is a non-negative weight,
and Q ⊂ Rd is a cube, we set

σ∗(Q, η) ≡
∫

Q

σ(x) logη(e + σ(x)/σQ) dx,(1.6)

where σQ = (1/|Q|)
∫

Q
σ, σ’s average over Q. Equation (1.6) defines

an Orlicz-type norm that shows up in weighted Littlewood-Paley the-
ory [W1], [W2], and whose properties underlie the results in [WhWi]
as well as those of the present paper.

Theorem 1.1. Let m be a non-negative integer. Let φ ∈ C∞(Rd) have∫
φ = 0. Let φ also satisfy |φ(x)| ≤ (1+ |x|)−d−2−m and |∇φ(x)| ≤ (1+

|x|)−d−3−m for all x ∈ Rd. Let v ∈ L1
loc(R

d) be a non-negative weight
and let µ be a positive Borel measure on Rd+1

+ . Let 1 < p ≤ 2 ≤ q < ∞.
Set σ = v1−p′

, where p′ is the dual exponent to p. Let η > p′/2. There
is a positive constant C = C(η, p, q, d, m) such that the following is true:
If there exists a weight w satisfying

σ∗(Q, η) ≤
∫

Q

w(1.7)

and

(1.8) µ(T (Q))1/q

(∫
Rd

logp′/q′
(e + |x − xQ|/�(Q))w(x)

(�(Q) + |x − xQ|)(d+2+m)p′/q′ dx

)1/p′

≤ C�(Q)d+1−(d+2+m)/q′

for all cubes Q ⊂ Rd, then (1.3) holds for all f ∈ ∪1≤r<∞Lr(Rd, dx).

Remark. The reader can see what we mean by indigestibility.
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Remark. The theorem, as stated in [WhWi], actually gives a sufficient
condition for the range 1 < p ≤ q < ∞, with q ≥ 2. We have stated
this limited form of the theorem to make it more closely resemble The-
orem 1.3 below. The restriction in Theorem 1.3 comes about because
our method of proof, in two parameters, requires p′ ≥ 2. This is re-
lated to another difference between Theorem 1.1 and the corresponding
result in [WhWi]. The theorem in [WhWi] does not contain the hy-
pothesis (1.7). Rather, it speaks of pairs of weights (‘p′-pairs’) (σ, w)
for which w also satisfies (1.8). However, as is pointed out in [WhWi,
p. 949] and in [W1], a pair that satisfies (1.7) is a p′-pair. Unfortu-
nately, we have no good characterization of p′-pairs (for p′ 
= 2) in the
two-parameter setting. We express Theorem 1.1 in this fashion in order
to make its statement look more like those of Theorem 1.3 and Theo-
rem 5.3 (see below).

Remark. If σ belongs to the Muckenhoupt A∞ class, then (1.7) holds for
w = cσ, where c depends on η, d, and the A∞ “box specs” of σ. In that
case, (1.8) amounts to saying that µ and σ cannot put too much mass
too near any cube Q. Since σ is big when v is small, this is a quantitative
way of saying that v cannot be too small near points where µ is “large”.
Theorem 1.1 is a restatement of this fact for v’s whose corresponding σ’s
are not in A∞.

The two-parameter result.

We begin here with rectangles R = Q1 × Q2, where the Qi are cubes
in Rdi . We use |R| to mean the Lebesgue measure of R. We set T (R) =
T (Q1) × T (Q2) and R̂ = Q̂1 × Q̂2, where T (Qi) and Q̂i are as defined
above.

We will be using the next definition so often that it merits its own
formal statement:

Definition 1.2. Let η ≥ 0 be a number and let σ ∈ L1
loc(R

d1 × Rd2)
be a non-negative weight. If R ⊂ Rd1 × Rd2 is rectangle, we set

σ(R, η) =
∫

R

σ(x) logη(e + σ(x)/σR) dx,

where σR = (1/|R|)
∫

R
σ denotes σ’s average over R.

Remark. The only difference between Definition 1.2 and the one given
earlier is that Definition 1.2 applies to rectangles.

Our main result, which we prove in Section 4, is:
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Theorem 1.3. Let m1 and m2 be non-negative integers. For i = 1, 2,
let φi ∈ C∞(Rdi) have

∫
φi = 0. Let the φi also satisfy |φi(xi)| ≤

(1 + |xi|)−di−2−mi and |∇φi(xi)| ≤ (1 + |xi|)−di−3−mi for all xi ∈ Rdi .
Let v ∈ L1

loc(R
d) be a non-negative weight and let µ be a positive Borel

measure on Rd1+1
+ × Rd2+1

+ . Let 1 < p ≤ 2 ≤ q < ∞. Set σ = v1−p′
,

where p′ is the dual exponent to p. Let η > p′ and let ε > 0. There is a
positive constant C,

C = C(η, ε, p, q, d1, d2, m1, m2),

such that the following is true: If there exists a weight w satisfying

σ(R, η) ≤
∫

R

w(1.9)

and

µ(T (R))1/q

(∫
Rd1×Rd2

[
1

(�(Q1)+|x1−xQ1 |)(d1+2+m1−ε)p′/q′

× 1
(�(Q2)+|x2−xQ2 |)(d2+2+m2−ε)p′/q′

× w(x)
]

dx

)1/p′

≤ C�(Q1)d1+1−(d1+2+m1−ε)/q′
�(Q2)d2+1−(d2+2+m2−ε)/q′

(1.10)

for all rectangles R=Q1×Q2, then (1.4)holds for all f∈∪1≤r<∞Lr(Rd,dx).

Remark. Note the absence of log’s in the numerator and the extra ε’s in
the denominator of the two-parameter condition (1.10).

The rest of the paper is laid out as follows. In Section 2 we state and
prove certain results from weighted Littlewood-Paley theory which we
will need in the proof of Theorem 1.3. In Section 3 we state a technical
result from [WhWi], concerning convolutions of smooth functions with
specified amounts of decay and cancellation, and we apply this result to
prove a lemma (Lemma 3.2). Lemma 3.2 is a pointwise substitute for
a series of integral inequalities used in [WhWi] to prove Theorem 1.1.
This pointwise result is part of what lets us prove our two-parameter
theorem without having a full-blooded, two-parameter weighted-norm
theory of the Littlewood-Paley square function; it is also where the ex-
tra ε’s in (1.10) will come from. In Section 4 we prove Theorem 1.3.
In Section 5 we state and prove a sufficiency result for the biharmonic
Poisson kernel.
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2. Littlewood-Paley theory

The basis of all of our arguments is the Calderón-Torchinsky decom-
position lemma. Let ψi (i = 1, 2) be real, radial, C∞ functions defined
on Rdi , that satisfy:

1)
∫

ψi = 0;

2) suppψi ⊂ {xi : |xi| ≤ 1} ⊂ Rdi ;

3) for any ξ ∈ Rdi \ {0},∫ ∞

0

|ψ̂i(tξ)|2
dt

t
= 1.

For yi > 0, we let (ψi)yi
(xi) = yi

−diψi(xi/yi). If y1 and y2 are positive
numbers and x = (x1, x2) ∈ Rd1 × Rd2 , we define y = (y1, y2) and
set Ψy(x) = (ψ1)y1(x1) · (ψ2)y2(x2). The Calderón-Torchinsky lemma
consists in the following observation: if f ∈ L2(Rd1 × Rd2), then, by
Fourier inversion,

f(x) =
∫
R

d1+1
+ ×R

d2+1
+

(f ∗ Ψy(t)) · Ψy(x − t)
dt1 dt2 dy1 dy2

y1y2
(2.1)

as a distribution [CF].
It is easy to show that, for f ∈ L2, the (vector-valued) integral (2.1)

actually converges to f in the L2 norm. If f is smooth and decays rapidly
at infinity, then the integral (2.1) converges uniformly and pointwise, and
can be cut up and rearranged at will. We will use this freedom in the
following way. Let R = Q1 × Q2 ⊂ Rd1 × Rd2 be a double-dyadic
rectangle, that is, a Cartesian product of dyadic cubes Qi ⊂ Rdi , and
let T (R) = T (Q1) × T (Q2) be the corresponding “top half” of its two-
parameter Carleson box, as defined above. (It is important to note that
the family {T (R)}R tiles Rd1+1

+ × Rd2+1
+ .) With suitable (and quite

weak) hypotheses on f , we may re-write the integral formula (2.1) as a
sum:

f =
∑
R

∫
T (R)

(f ∗ Ψy(t)) · Ψy(x − t)
dt1 dt2 dy1 dy2

y1y2
=

∑
R

bR(x).

Each of these functions bR has support contained in R̃ (the concentric
triple of R), is smooth (it inherits this from the ψi’s), and has cancella-
tion in the x1 and x2 directions; that is to say, for each fixed x∗

1 ∈ Rd1 ,∫
Rd2

b(x∗
1, t) dt = 0,
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and analogously for each fixed x∗
2 ∈ Rd2 ; this cancellation property is

also inherited from the ψi’s.
The meaning of the Calderón-Torchinsky lemma is that any (essen-

tially arbitrary) function can be written as a sum of smooth, compactly
supported functions that have cancellation. We can go further. Let us
say that a function aR(x) is adapted to a rectangle R = Q1 × Q2 ⊂
Rd1 × Rd2 if:

a) supp aR ⊂ R;

b) aR is infinitely differentiable;

c) for each x∗
1 ∈ Rd1 , ‖∇x2aR(x∗

1, ·)‖∞ ≤ �(Q2)−1|R|−1/2;

d) for each x∗
2 ∈ Rd2 , ‖∇x1aR(·, x∗

2)‖∞ ≤ �(Q1)−1|R|−1/2;

e) ‖∇x1∇x2aR‖∞ ≤ �(Q1)−1�(Q2)−1|R|−1/2;

f) for each x∗
1 ∈ Rd1 ,

∫
Rd2 aR(x∗

1, t) dt = 0;

g) for each x∗
2 ∈ Rd2 ,

∫
Rd1 aR(t, x∗

2) dt = 0.

Each of the functions bR obtained above can be expressed as λR̃aR̃,
where each aR̃ is adapted to R̃, and the λR̃’s are complex numbers
satisfying:

|λR̃| ≤ C

(∫
T (R)

|f ∗ Ψy(t)|2 dt1 dt2 dy1 dy2

y1y2

)1/2

,

for some constant C that depends on Ψ (which, recall, depends on d1

and d2) but not on f .
Let us say that a function f is in standard form if there is a finite

family, G, of triples of double-dyadic rectangles, such that

f(x) =
∑
R∈G

λRaR(x),

where the λR’s are real numbers and each aR is adapted to R. (Notice
that the ‘tildes’ have been “absorbed” into the R’s.)

We will use Littlewood-Paley theory to bound certain functions in
standard form on weighted spaces. We will measure the “badness” of
our weights via the Orlicz-type norm σ(R, η) given in Definition 1.2.
When η > 0, the ratio σ(R, η)/

∫
R

σ measures the extent to which σ’s
mass gets concentrated on a small part of R (that is, a subset with small
Lebesgue measure compared to |R|). In particular, the ratio is uniformly
bounded (for any η > 0) if and only if σ is a two-parameter A∞ weight.

The proof of Theorem 1.3 depends on this result from [W2]:
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Theorem 2.1. Let η > 2. There is a constant C = C(η, d1, d2) so that
the following holds: If σ ∈ L1

loc(R
d1 × Rd2) is any non-negative weight

and f =
∑

R∈G λRaR is any function in standard form, then∫
Rd1×Rd2

|f |2σ dx ≤ C
∑
R∈G

|λR|2
|R| σ(R, η).

Theorem 2.1 has an immediate consequence. For f =
∑

R∈G λRaR in
standard form, set

S̃(f)(x) =

(∑
R∈G

|λR|2
|R| χR(x)

)1/2

.

(This is one of many variants of the Lusin square function.) The next
corollary follows by rearranging sums.

Corollary 2.2. Let σ and w be weights such that, for some η > 2,
σ(R, η) ≤

∫
R

w for all rectangles R ⊂ Rd1 ×Rd2 . For any f in standard
form, ∫

Rd1×Rd2

|f |2σ dx ≤ C(η, d1, d2)
∫
Rd1×Rd2

S̃2(f)w dx.

In the one-parameter setting, both Theorem 2.1 and Corollary 2.2
have Lp analogues for p 
= 2 [W1]. Precisely, by applying the one-
parameter version of the Calderón-Torchinsky lemma, we can write an
essentially arbitrary f as a sum f =

∑
Q λQa(Q), indexed over the dyadic

cubes Q ⊂ Rd, where the λQ’s are numbers and the a(Q)’s are smooth
functions satisfying:

a) supp a(Q) ⊂ Q̃, the concentric triple of Q;

b) ‖∇a(Q)‖∞ ≤ �(Q)−1|Q|−1/2;

c)
∫

a(Q) = 0.
We define an analogous one-parameter square function:

S(f)(x) ≡


∑

Q

|λQ|2
|Q| χQ̃(x)




1/2

.

Now let η > p/2 (0 < p < ∞), and suppose that σ and w are two weights
in L1

loc(R
d) satisfying∫

Q

σ(x) logη(e + σ(x)/σQ) dx ≤
∫

Q

w(x) dx
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for all cubes Q ⊂ Rd. Then, for all reasonable f (say, f ∈ ∪1<r<∞Lr),

∫
|f |pσ dx ≤ C(p, η, d)

∫
(S(f))pw dx.

In the two parameter setting, the appropriate theorem would be that
if η > p, and σ and w are two weights such that σ(R, η) ≤ w(R) for all
rectangles R, then

∫
Rd1×Rd2

|f |pσ dx ≤ C(η, p, d1, d2)
∫
Rd1×Rd2

(S̃(f))pw dx

for all f in standard form.
Unfortunately, this is not known to be the case (yet) in the two-

parameter context. Now, we obviously need some Lp estimates to prove
our main result. However, the Lp estimates we need do not have to be
the precise analogues of the one given in Corollary 2.2. This saving fact
lets us get around the hole in our theory by means of a trick. The
author introduced this device in the context of two-parameter martin-
gales in [W3], and we apply it with essentially no change here. The
only difference is that, in [W3], we used it to estimate linear sums of
two-parameter Haar functions, whereas here we are applying it to lin-
ear sums of two-parameter (i.e., rectangle) adapted functions, as defined
above.

The trick yields:

Theorem 2.3. Let r ≥ 2 and let η > r. There is a constant C =
C(η, r, d1, d2) such that the following holds: If σ ∈ L1

loc(R
d1 × Rd2) is

a non-negative weight and f =
∑

R∈G λRaR is a function in standard
form, then

∫
|f |rσ dx ≤ C

(∑
R∈G

|λR|2
|R| σ(R, η)2/r

)r/2

.

Proof of Theorem 2.3: Let s̃ = (r/2)′, the dual exponent to r/2 (which,
recall, is ≥ 1). Let h be a non-negative, measurable function defined
on Rd1 × Rd2 , such that ‖h‖Ls̃(σ) = 1 and

∫
Rd1×Rd2

|f |rσ dx =
(∫

Rd1×Rd2

|f |2h σ dx

)r/2

.(2.2)
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Let α̃ = 2η/r > 2. Define w ≡ hσ. According to Theorem 2.1, the
right-hand side of (2.2) is less than or equal to

C

(∑
R∈G

|λR|2
|R| w(R, α̃)

)r/2

.(2.3)

Let us now consider one of the terms w(R, α̃). By following the argument
from [W3] (which is essentially Young’s Inequality1) we see that w(R, α̃)
is bounded above by a positive constant times∫

R

w(x)φ(R)(x) dx,(2.4)

where φ(R) is a positive function satisfying

1
|R|

∫
R

exp([φ(R)(x)]1/α̃) ≤ 6.(2.5)

Now let’s apply Hölder’s Inequality to (2.4). We get:∫
R

w(x)φ(R)(x) dx =
∫

R

h(x)σ(x)φ(R)(x) dx

≤ ‖h‖Ls̃(σ) ·
(∫

R

[φ(R)(x)]r/2σ dx

)2/r

≤
(∫

R

[φ(R)(x)]r/2σ dx

)2/r

.

(What we just did is the beginning of the trick we mentioned before
the statement of the theorem.) Define ψ(x) = [φ(R)(x)]r/2. Because
of (2.5), the function ψ satisfies

1
|R|

∫
R

exp(ψ2/(rα̃)) dx =
1
|R|

∫
R

exp(ψ(1/η)) dx

≤ 6.

1Here we are applying the Young’s Inequality that deals with pairs of so-called “com-
plementary” functions, not the more familiar theorem on Lp estimates for convolu-
tions. We refer the reader to [St, p. 358] for a fuller discussion of this topic.
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But now, a second application of our Young’s Inequality argument im-
plies that

w(R, α̃) ≤
(∫

R

ψ(x)σ dx

)2/r

≤ Cσ(R, η)2/r.

(2.6)

This finishes the trick.

Plugging (2.6) into (2.3) yields the result.

It might be helpful here if we explain how we will use Theorem 2.3.
The reader of [WhWi] will recall how, in that paper, inequality (1.3)
was treated by writing the kernel φ as a sum of a ψ1 and a ψ2, where ψ1

had compact support and integral equal to 0; and ψ2, while not com-
pactly supported, had many moments of cancellation. The analogous
inequalities (1.3) for ψ1 and ψ2 were treated by different arguments. In
the two-parameter setting, we get four inequalities like (1.4). One of
these —that in which both kernels are compactly supported— will be
handled as a direct consequence of Theorem 2.3. The other three will
require more subtlety, but their treatment will follow the basic idea of
Theorem 2.3.

3. Two technical estimates

The proof of Theorem 1.3 depends on certain precise estimates on the
convolutions of smooth kernels that have cancellation. These estimates
are stated in the following (highly technical) lemma, whose proof can be
found in [WhWi, pp. 939–941].

Lemma 3.1. Let ψi and φi belong to C∞(Rdi) (i = 1, 2). Assume that
each ψi has support contained in {|x| ≤ 1} and satisfies

∫
ψi = 0. Fur-

thermore, suppose that, for some non-negative integer mi, and for all
xi ∈ Rdi ,

|φi(xi)| ≤ (1 + |xi|)−di−mi−2

|∇φi(xi)| ≤ (1 + |xi|)−di−mi−3,

and that
∫
Rdi

φi(xi)P (xi) dxi = 0 for all polynomials of degree ≤ mi +1.
Then the following estimates hold for the convolutions (ψi)y ∗ (φi)η(xi),
for all xi ∈ Rdi and positive numbers y and η:
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a) if η ≥ y,

|(ψi)y ∗ (φi)η(xi)| ≤
Cyηmi+2

(η + |xi|)di+mi+3
;

b) if η ≤ y and |xi| ≥ 5y,

|(ψi)y ∗ (φi)η(xi)| ≤
Cyηmi+2

(η + |xi|)di+mi+3
;

c) if η ≤ y and |xi| ≤ 5y,

|(ψi)y ∗ (φi)η(xi)| ≤
Cηmi+2 log(e + y/η)

ydi+mi+2
;

for constants C = Ci only depending on the φi’s, ψi’s, mi’s, and di’s.

We will be applying Lemma 3.1 in the following, very specific way.
Let Qi and Q′

i be dyadic cubes in Rdi . Call the center of Qi (resp., Q′
i),

xQi
(resp., xQ′

i
). Fix (xi, yi) ∈ T (Q′

i) and (ti, ηi) ∈ T (Qi) (these as-
sumptions force yi ∼ �(Q′

i) and ηi ∼ �(Qi)). If ψi and φi satisfy the
hypotheses of Lemma 3.1 for some mi, then

(3.1) η−1
i |(ψi)yi

∗ (φi)ηi
(ti − xi)|

≤ C

(
�(Qi)mi+1

�(Q′
i)di+mi+2

)
· log(e + �(Q′

i)/�(Qi)),

if Qi ⊂ Q̃′
i; and

η−1
i |(ψi)yi

∗ (φi)ηi
(ti − xi)| ≤ C

�(Q′
i)�(Qi)mi+1

(�(Qi) + |xQi − xQ′
i
|)di+mi+3

,(3.2)

if Qi 
⊂ Q̃′
i. Inequality (3.1) follows from statement c) in Lemma 3.1 and

inequality (3.2) follows from a) and b). We will be seeing a lot of (3.1)
and (3.2). Therefore, let us define, for dyadic cubes Q′

i and Qi in Rdi ,
and non-negative integers mi:

ai(Q′
i, Qi) =




(
�(Qi)mi+1

�(Q′
i)di+mi+2

)
· log(e + �(Q′

i)/�(Qi)) if Qi ⊂ Q̃′
i;

�(Q′
i)�(Qi)mi+1

(�(Qi) + |xQi − xQ′
i
|)di+mi+3

if Qi 
⊂ Q̃′
i.

The next lemma is important:
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Lemma 3.2. With ai(Q′
i, Qi) (i = 1, 2) as defined above, let

Ai(Q′
i, Qi) = ai(Q′

i, Qi) · |Q̂i|.

Let γ > 0, 0 < ε < 1, and let k be an integer. There is a constant C =
C(γ, ε, di, mi) such that, for all xi ∈ Rdi , all cubes Qi ⊂ Rdi , and all k,

(3.3)
∑

Q′
i
:�(Q′

i
)=2k�(Qi)

[Ai(Q′
i, Qi)]

γ
χQ̃′

i
(xi)

≤C(1+|k|)γ2−|k|εγ�(Qi)(di+mi+2−ε)γ

(
1

(�(Qi)+|xi−xQi |)di+mi+2−ε

)γ

.

Proof of Lemma 3.2: For each fixed k, no point is in more than C(di)
cubes Q̃′

i. Thus, it is enough to show that, if �(Q′
i) = 2k�(Qi), then

(3.4) Ai(Q′
i, Qi)χQ̃′

i
(xi)

≤ C(1 + |k|)2−|k|ε�(Qi)di+mi+2−ε

(
1

(�(Qi) + |xi − xQi |)di+mi+2−ε

)
.

We consider two cases: k ≤ 0 and k > 0.

k ≤ 0. In this case, �(Qi)+|xQ′
i
−xQi

| is comparable to �(Qi)+|xi−xQi
|,

and we have that

A(Q′
i, Qi) =

�(Q′
i)�(Qi)di+mi+2

(�(Qi) + |xQi
− xQ′

i
|)di+mi+3

= 2−|k| �(Qi)di+mi+3

(�(Qi) + |xQi
− xQ′

i
|)di+mi+3

,

so the inequality is trivial.

k > 0. If Qi ⊂ Q̃′
i then

A(Q′
i, Qi) =

(
�(Qi)
�(Q′

i)

)di+mi+2

log(e + �(Q′
i)/�(Qi))

≤ C2−kε

(
�(Qi)
�(Q′

i)

)di+mi+2−ε

log(e + �(Q′
i)/�(Qi)).
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It is obvious that

e + �(Q′
i)/�(Qi) ≤ C2k;

therefore

log(e + �(Q′
i)/�(Qi)) ≤ C(1 + k).

On the other hand, if xi ∈ Q̃′
i, then �(Qi) and |xQi

− xi| are both
≤ C�(Q′

i). Therefore

A(Q′
i, Qi) ≤ C(1 + k)2−kε

(
�(Qi)

(�(Qi) + |xQi − xi|)

)di+mi+2−ε

,

which is what we wanted.
If Qi 
⊂ Q̃′

i and xi ∈ Q̃′
i, then �(Qi) + |xi − xQi

| ≤ C(�(Qi) + |xQ′
i
−

xQi
|), and the latter quantity is ≥ C2k�(Qi) = C�(Q′

i). Thus:

A(Q′
i, Qi) =

�(Q′
i)�(Qi)di+mi+2

(�(Qi) + |xQi − xQ′
i
|)di+mi+3

≤ C
�(Qi)di+mi+2

(�(Qi) + |xQi
− xQ′

i
|)di+mi+2

≤ C2−kε �(Qi)di+mi+2−ε

(�(Qi) + |xQi
− xQ′

i
|)di+mi+2−ε

≤ C2−kε �(Qi)di+mi+2−ε

(�(Qi) + |xQi
− xi|)di+mi+2−ε

.

Definition 3.3. For R = Q1 × Q2 and R′ = Q′
1 × Q′

2, rectangles in
Rd1 × Rd2 , set

β(R′, R) = a1(Q′
1, Q1) · a2(Q′

2, Q2)

B(R′, R) = β(R′, R) · |Q̂1| · |Q̂2|

= β(R′, R) · |R̂|

= A1(Q′
1, Q1) · A2(Q′

2, Q2).

The next corollary follows by iterating Lemma 3.2:
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Corollary 3.4. Let γ > 0 and 0 < ε < 1. There is a constant C =
C(γ, ε, d1, d2, m1, m2) so that, for all rectangles R = Q1×Q2 ⊂ Rd1×Rd2

and all integers k1 and k2,

∑
R′=Q′

1×Q′
2×�(Q′

i
)=2ki�(Qi)

B(R′, R)γχR̃′(x1, x2)

≤ C × (1 + |k1|)γ2−|k1|εγ × (1 + |k2|)γ2−|k2|εγ

× �(Q1)(d1+m1+2−ε)γ × �(Q2)(d2+m2+2−ε)γ

×
(

1
(�(Q1)+|x1 − xQ1 |)d1+m1+2−ε(�(Q2)+|x2 − xQ2 |)d2+m2+2−ε

)γ

.

4. Proof of Theorem 1.3

We rephrase our weighted norm inequality in a dual form. Set σ =
v1−p′

. Let φ1 and φ2 satisfy the respective hypotheses of Theorem 1.3.
If g : Rd1+1

+ ×Rd2+1
+ 
→ C is bounded, Borel measurable, and compactly

supported, we define:

T̃ g(x1, x2) =
∫
R

d1+1
+ ×R

d2+1
+

g(t1, t2, η1, η2)

× [η−1
1 (φ1)η1(t1 − x1)η−1

2 (φ2)η2(t2 − x2)] dµ(t1, t2, η1, η2).

This integral converges absolutely for all x ∈ Rd1 × Rd2 because of our
special assumptions on g (note that the support of g stays away from
∂(Rd1+1

+ × Rd2+1
+ )). The operator T̃ is the adjoint of the operator that

takes f into

f ∗
[
(y−1

1 (φ1)y1) · (y−1
2 (φ2)y2)

]
(x1, x2).

Inequality (1.4) will hold for all f ∈ ∪1≤r<∞Lr(Rd1 × Rd2 , dx) if

(∫
Rd1×Rd2

|T̃ g(x)|p′
σ dx

)1/p′

≤
(∫

R
d1+1
+ ×R

d2+1
+

|g(t, y)|q′
dµ(t, y)

)1/q′

for all these g. We will prove Theorem 1.3 by showing that that is what
happens (given hypotheses (1.9) and (1.10)).



Two-Parameter Bergman Inequalities 177

For i = 1, 2, we can write

φi = ρ
(1)
i + ρ

(2)
i ,(4.1)

where supp ρ
(1)
i ⊂ {xi : |xi| ≤ 1} ⊂ Rdi , each

∫
Rdi

ρ
(j)
i = 0, and∫

Rdi
ρ
(2)
i Pi(x) dx = 0 for all polynomials Pi (in the xi variables) of de-

gree ≤ mi+1; we do this by, essentially, throwing mi+1 of φi’s moments
“onto” ρ

(1)
i . When we do this, the functions ρ

(1)
i get one good property

(compact support), while the non-compactly supported ρ
(2)
i ’s get lots of

cancellation. Using our decompositon (4.1), we may write T̃ g as a sum
of four terms:

T̃ g =
2∑

k,j=1

T̃ (k,j)g,

where

T̃ (k,j)g(x1, x2)=
∫
R

d1+1
+ ×R

d2+1
+

g(t1, t2, θ1, θ2)

×[θ−1
1 (ρ(k)

1 )θ1(t1−x1)θ−1
2 (ρ(j)

2 )θ2(t2−x2)] dµ(t1, t2, θ1, θ2).

Now, the piece T̃ (1,1)g, from its very formulation, is equal to a function
in standard form. We can dispose of it quickly. We write:

T̃ (1,1)g(x1, x2)=
∫
R

d1+1
+ ×R

d2+1
+

g(t1, t2, θ1, θ2)

×[θ−1
1 (ρ(1)

1 )θ1(t1−x1)θ−1
2 (ρ(1)

2 )θ2(t2−x2)] dµ(t1, t2, θ1, θ2)

=
∑
R

∫
T (R)

g(t1, t2, θ1, θ2)

×[θ−1
1 (ρ(1)

1 )θ1(t1−x1)θ−1
2 (ρ(1)

2 )θ2(t2−x2)] dµ(t1, t2, θ1, θ2).

(4.2)

The sum is over all double-dyadic rectangles R, but only finitely many
terms are not identically zero, because g and the ρ

(1)
i ’s have compact

supports. It is clear that each summand in (4.2), as a function of x,
has support contained in its respective R̃. These functions also inherit
smoothness and cancellation from the ρ

(1)
i ’s. Thus we may write the
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sum as ∑
R

λR̃bR̃(x1, x2),

where each bR̃ is adapted to R̃ and the λR̃’s satisfy

|λR̃| ≤ C

(∫
T (R)

|g| dµ(t, y)

)
�(Q1)−1�(Q2)−1|R|−1/2

≤ C

(∫
T (R)

|g|q′
dµ(t, y)

)1/q′

µ(T (R))1/q�(Q1)−1�(Q2)−1|R|−1/2

with a constant C that depends on the di’s and the ρ
(1)
i ’s.

Take η > p′, as in the hypotheses of Theorem 1.3, and suppose that w
is a weight satisfying (1.9) for all rectangles R. By Theorem 2.3,

∫
Rd1×Rd2

|T̃ (1,1)g|p′
σ dx ≤ C

(∑
R

|λR̃|2
|R| σ(R̃, η)2/p′

)p′/2

≤ C

(∑
R

|λR̃|2
|R| w(R̃)2/p′

)p′/2

.

Since q′ ≤ 2, the last quantity is less than or equal to

C

(∑
R

|λR̃|q
′

|R|q′/2
w(R̃)q′/p′

)p′/q′

.(4.3)

The hypothesis (1.10) on w implies (after an elementary estimate)

µ(T (R))q′/qw(R̃)q′/p′
�(Q1)−q′

�(Q2)−q′ |R̃|−q′ ≤ C.

Therefore, our bound on λR̃ implies that (4.3) is less than or equal to

C

(∑
R

[∫
T (R)

|g|q′
dµ(t, y)

])p′/q′

=C

(∫
R

d1+1
+ ×R

d2+1
+

|g|q′
dµ(t, y)

)p′/q′

,

which is exactly what we want. Thus, the T̃ (1,1)g term is okay.
The terms T̃ (1,2)g, T̃ (2,1)g, and T̃ (2,2)g involve non-compactly-

supported kernels, and require different arguments. This is where we
will use Lemma 3.1. It is obvious that T̃ (1,2)g and T̃ (2,1)g are the same
kind of animal, and so we need only treat one of them. It will turn out
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that the argument that handles T̃ (2,2)g can also be used, with minor
modifications, on T̃ (1,2)g. Therefore we shall deal with T̃ (2,2)g first.

Our argument is modeled closely on that of [WhWi]. Let κ be the
dual exponent to p′/2 (which, recall, is ≥ 1), and let h ∈ Lκ(σ) be
non-negative, satisfy ‖h‖Lκ(σ) = 1, and be chosen so that∫

Rd1×Rd2

|T̃ (2,2)g|p′
σ dx =

(∫
Rd1×Rd2

|T̃ (2,2)g|2h σ dx

)p′/2

.(4.4)

We seek a good a priori bound, independent of h, for the right-hand
side of (4.4).

The function T̃ (2,2)g is bounded, smooth, and has good decay at in-
finity. If we let Ψy be as defined at the beginning of Section 2, then by
a standard approximation argument (essentially Fatou’s Lemma), com-
bined with Theorem 2.1, we may write:∫

Rd1×Rd2

|T̃ (2,2)g|2h σ dx ≤ C
∑
R

|ΛR|2
|R| (hσ)(R̃, η),

where η is any number larger than 2, and

ΛR =

(∫
T (R)

|T̃ (2,2)g ∗ Ψy(t)|2 dt1 dt2 dy1 dy2

y1y2

)1/2

.

As in the proof of Theorem 2.3, we can dominate (hσ)(R̃, η) by a constant
times ∫

R̃

h σ φ(R̃) dx,

where φ(R̃) is positive and satisfies
1
|R̃|

∫
R̃

exp([φ(R̃)]1/η) dx ≤ 6.

With the φ(R̃)’s now fixed, let us define

ν(R) =
∫

R̃

h σ φ(R̃) dx.

Then: ∫
Rd1×Rd2

|T̃ (2,2)g|2h σ dx ≤ C
∑
R

|ΛR|2
|R| ν(R),

and it is this last object which we must bound.
We need to know how big Λ(R) can get (or doesn’t get). Let us make

the convention that “(x, y) ∈ Rd1+1
+ × Rd2+1

+ ” means “x = (x1, x2);
xi ∈ Rdi ; y = (y1, y2); yi > 0”; and analogously, when we write “(x, y) ∈
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T (R)”, with R = Q1 × Q2, we mean that (xi, yi) ∈ T (Qi). For (t, θ) ∈
Rd1+1

+ × Rd2+1
+ , set

Πθ(t) = (ρ(2)
1 )θ1(t1) · (ρ

(2)
2 )θ2(t2).

The “ρ(2)” functions satisfy the cancellation and decay hypotheses re-
quired of the φi’s in the statement of Lemma 3.1. The discussion fol-
lowing the lemma shows that if (t, θ) ∈ T (R) = T (Q1) × T (Q2) and
(x, y) ∈ T (R′) = T (Q′

1) × T (Q′
2), then

θ−1
1 θ−1

2 |Ψy ∗ Πθ(t − x)| ≤ Ca1(Q′
1, Q1) · a2(Q′

2, Q2)

= Cβ(R′, R).

Since

|T̃ (2,2)g ∗ Ψy(x)| ≤
∫
R

d1+1
+ ×R

d2+1
+

|g(t, θ)|θ−1
1 θ−1

2 |Ψy ∗ Πθ(t − x)| dµ(t, θ)

=
∑
R

∫
(T (R)

|g(t, θ)|θ−1
1 θ−1

2 |Ψy ∗ Πθ(t − x)| dµ(t, θ),

we at once get that

Λ(R′) =

(∫
T (R′)

|Ψy ∗ T (2,2)g(x)|2 dx1 dx2 dy1 dy2

y1y2

)1/2

≤ C|R′|1/2

[∑
R

β(R′, R)G(R)

]
,

where we have set

G(R) =
∫

T (R)

|g(t, θ)| dµ(t, θ).

(We refer the reader to [WhWi, pp. 942–943] for a detailed discussion
of this argument in the one-parameter setting.)

If we now define
Γ(R) = µ(T (R))1−q′

,

then Hölder’s inequality implies(∑
R

G(R)q′
Γ(R)

)1/q′

≤
(∫

R
d1+1
+ ×R

d2+1
+

|g|q′
dµ(t, θ)

)1/q′

.
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On the other hand, the preceding discussion implies that

(∫
Rd1×Rd2

|T̃ (2,2)g|p′
σ dx

)1/p′

≤C

(∑
R′

|Λ(R′)|2
|R′| ν(R′)

)1/2

≤C


∑

R′

[∑
R

β(R′, R)G(R)

]2

ν(R′)




1/2

.

(4.5)

Our goal now is to show that, under the hypotheses of Theorem 1.3, the
inequality


∑

R′

[∑
R

β(R′, R)G(R)

]2

ν(R′)




1/2

≤ C

(∑
R

G(R)q′
Γ(R)

)1/q′

obtains for all non-negative, finitely-supported sequences {G(R)}R.
In other words, we have reduced our problem to showing that the

“kernel” β(R′, R) maps boundedly from the sequence space �q′
(Γ(R))

into the sequence space �2(ν(R)). We shall prove this boundedness in the
same way as in [WhWi], i.e., by means of the Riesz-Thorin Interpolation
Theorem.

We shall need two endpoint estimates, �∞ 
→ �∞ and �1 
→ �2/q′

(recall that 2/q′ ≥ 1). In order to make these estimates (particularly
the first) go through smoothly, let us redefine our problem, by setting
G(R) = Y (R)|R̂|, and having {Y (R)} be the sequence that is acted on.
This change-of-variable requires that we replace the kernel β(R′, R) with
B(R′, R). In addition, we must replace the “weight” Γ(R) by |R̂|q′

Γ(R).
This done, we now need to show that the kernel B(R′, R) maps bound-
edly �∞ 
→ �∞ and �1(|R̂|q′

Γ(R)) 
→ �2/q′
(ν(R)).

�∞ �→ �∞. This is equivalent to having
∑

R B(R′, R) ≤ C for all R′,
and this inequality will follow if we have, for i = 1, 2, and all dyadic
cubes Q′

i ⊂ Rdi , ∑
Qi

Ai(Q′
i, Qi) ≤ C.

This is proved in [WhWi], though with slightly different notation from
what we have here. For the sake of completeness (and ease of reading),
we shall give a proof that uses our present notation.
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Let us write the sum as (I)i + (II)i + (III)i, where

(I)i =
∑
Qi

Qi⊂Q̃′
i

Ai(Q′
i, Qi)

(II)i =
∑

Qi:Qi �⊂Q̃′
i

�(Qi)≤�(Q′
i)

Ai(Q′
i, Qi)

(III)i =
∑

Qi:Qi �⊂Q̃′
i

�(Qi)>�(Q′
i)

Ai(Q′
i, Qi).

Now:

(I)i ≤ C
∑
Qi

Qi⊂Q̃′
i

(
�(Qi)
�(Q′

i)

)di+mi+2

log(e + �(Q′
i)/�(Qi))

≤ Cδ

∑
Qi

Qi⊂Q̃′
i

[ |Qi|
|Q′

i|

]1+δ

,

for some δ > 0, since di + mi + 2 > di. But it is easy to see [WhWi]
that this last sum is ≤ Cδ,di . So much for (I)i.

(II)i:

(II)i =
∞∑

k=0

∑
Qi:Qi �⊂Q̃′

i

�(Qi)=2−k�(Q′
i)

Ai(Q′
i, Qi)

≤ C

∞∑
k=0

∫
xi /∈Q̃′

i

�(Q′
i)(2

−k�(Q′
i))

mi+2

(2−k�(Q′
i) + |x − xQ′

i
|)di+mi+3

dxi

≤ C

∞∑
k=0

�(Q′
i)(2

−k�(Q′
i))

mi+2�(Q′
i)

−mi−3

≤ C

∞∑
k=0

2−k(mi+2)

≤ C.
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(III)i:

(III)i =
∞∑

k=1

∑
Qi:Qi �⊂Q̃′

i

�(Qi)=2k�(Q′
i)

Ai(Q′
i, Qi)

≤ C

∞∑
k=1

∫
Rdi

�(Q′
i)(2

k�(Q′
i))

mi+2

(2k�(Q′
i) + |x − xQ′

i
|)di+mi+3

dxi

≤ C

∞∑
k=1

2−k

≤ C.

The �∞ 
→ �∞ bound has been proved.

Now for the �1 
→ �2/q′
bound. By Minkowki’s inequality for double

integrals,


∑

R′

[∑
R

B(R′, R)Y (R)

]2/q′

ν(R′)




q′/2

≤
∑
R

[∑
R′

B(R′, R)2/q′
ν(R′)

]q′/2

Y (R).

Therefore, the �1 
→ �2/q′
bound will follow if

(∑
R′

B(R′, R)2/q′
ν(R′)

)q′/2

≤ C|R̂|q′
Γ(R),(4.6)

holds for all R, for some constant C.
Inequality (4.6) will turn out to be an easy consequence of Lemma 3.2

and the hypotheses of Theorem 1.3.
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Proof of Inequality (4.6):

∑
R′

B(R′, R)2/q′
ν(R′)

=
∑
k1,k2

∑
R′=Q′

1×Q′
2

�(Q′
j)=2ki�(Qj)

B(R′, R)2/q′
∫

R̃′
hφ(R̃′)σ dx

≤C
∑
k1,k2

∫
Rd1×Rd2




∑
R′=Q′

1×Q′
2

�(Q′
j)=2kj �(Qj)

B(R′, R)2/q′
χR̃′(x)


 hφ(R̃′)σ dx

≤C
∑
k1,k2




∫
Rd1×Rd2




∑
R′=Q′

1×Q′
2

�(Q′
j)=2kj �(Qj)

B(R′, R)p′/q′
(φ(R̃′))p′/2χR̃′(x)


σ dx




2/p′

.

(4.7)

Inequality (4.7) is true because of Hölder’s inequality (recall the normal-
ization on h) and the fact that, for each fixed pair (k1, k2), no point of
Rd1 × Rd2 lies in more than C(d1, d2) rectangles R̃′ with the specified
dimensions. The reasoning from Theorem 2.3 tells us that, for each R̃′,

∫
(φ(R̃′))p′/2χR̃′(x)σ dx ≤ Cσ(R̃′, ηp′/2),

which, by taking η sufficiently close to 2, we may assume is ≤ Cw(R̃′).
Thus, we may dominate (4.7) by

C
∑
k1,k2




∫
Rd1×Rd2




∑
R′=Q′

1×Q′
2

�(Q′
j)=2kj �(Qj)

B(R′, R)p′/q′
χR̃′(x)


 w dx




2/p′

.
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Because of Corollary 3.4, this is less than or equal to:

C
∑
k1,k2

[
(1 + |k1|)(1 + |k2|)2−(|k1|+|k2|)ε

]2/q′

×
(∫

Rd1×Rd2

(
1

(�(Q1) + |x1 − xQ1 |)d1+m1+2−ε

× 1
(�(Q2) + |x2 − xQ2 |)d2+m2+2−ε

× �(Q1)(d1+m1+2−ε)�(Q2)(d2+m2+2−ε)

)p′/q′

w dx

)2/p′

≤ C

(∫
Rd1×Rd2

(
1

(�(Q1) + |x1 − xQ1 |)d1+m1+2−ε

× 1
(�(Q2) + |x2 − xQ2 |)d2+m2+2−ε

× �(Q1)(d1+m1+2−ε)�(Q2)(d2+m2+2−ε)

)p′/q′

w dx

)2/p′

,

which (see again the hypotheses of Theorem 1.3) is assumed to be less
than or equal to

Cµ(T (R))−2/q�(Q1)2(d1+1)�(Q2)2(d2+1).

When we raise this to the power q′/2, the result is less than or equal to

Cµ(T (R))−q′/q|R̂|q′
= CΓ(R)|R̂|q′

,

which is what we wanted. Therefore, the T (2,2) term is okay.
We can handle the term T̃ (1,2)g by modifying the preceding argument

just a little. First, observe that, if f ∈ L2(Rd1 × Rd2), then

f(x1, x2) =
∫
R

d2+1
+

[f(x1, ·) ∗ (ψ2)y2(t2) · (ψ2)y2(x2 − t2)]
dt2 dy2

y2
(4.8)

in L2. The meaning of (4.8) is that we take the convolution of f with
(ψ2)y2 “in the x2 variable” (leaving x1 fixed), and then convolve that
with (ψ2)y2 again, much as we do in the original Calderón-Torchinsky
formula (2.1). The proof of (4.8) comes by Fourier inversion, where we
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take the Fourier transform only with respect to the x2 variable. If we
let f = T̃ (1,2)g in (4.8), we get:

T̃ (1,2)g(x1, x2) =
∫
R

d2+1
+

H(x1, t2, y2)(ψ2)y2(x2 − t2)
dt2 dy2

y2
,(4.9)

where

(4.10) H(x1, t2, y2) =
∫
R

d1+1
+ ×R

d2+1
+

g(s, η)

×
[
η−1
1 (ρ(1)

1 )η1(s1 − x1) [η−1
2 (ψ2)y2 ∗ (ρ(2)

2 )η2(t2 − s2)]
]

dµ(s, η).

Let us define

(4.11) F (x1, s, η, t2, y2) ≡ η−1
1 (ρ(1)

1 )η1(s1 − x1)

× [η−1
2 (ψ2)y2 ∗ (ρ(2)

2 )η2(t2 − s2)].

If we plug (4.11) into (4.10), and then substitute that into (4.9), we get

T̃ (1,2)g(x1, x2)=
∫
R

d2+1
+

(∫
R

d1+1
+ ×R

d2+1
+

g(s, η)F (x1, s, η, t2, y2) dµ(s, η)

)

× (ψ2)y2(x2 − t2)
dt2 dy2

y2

=
∑

Q2:Q2⊂Rd2

∫
T (Q2)

∑
Q1:Q1⊂Rd1

(∫
T (Q1)×R

d2+1
+

g(s, η)F (x1, s, η, t2, y2) dµ(s, η)

)

× (ψ2)y2(x2 − t2)
dt2 dy2

y2
,

where the Qi are, as usual, dyadic cubes. For R′ = Q′
1×Q′

2 ⊂ Rd1×Rd2 ,
define

bR′(x1, x2) ≡
∫

T (Q′
2)

(∫
T (Q′

1)×R
d2+1
+

g(s, η)F (x1, s, η, t2, y2) dµ(s, η)

)

× (ψ2)y2(x2 − t2)
dt2 dy2

y2
.



Two-Parameter Bergman Inequalities 187

It is important to note that the integration over T (Q′
2) is done in the

(t2, y2) variables and that the integration over T (Q′
1)×Rd2+1

+ is done in
the (s, η) variables: failure to observe this hung the author up for some
time.

It is easy to see that, if (s1, η1) ∈ T (Q′
1), then F (x1, s, η, t2, y2), con-

sidered as a function of x1, is supported in Q̃′
1. Similarly, if (t2, y2) ∈

T (Q′
2), then (ψ2)y2(x2 − t2), as a function of x2, is supported in Q̃′

2.
Therefore, bR′(x1, x2) is supported in R̃′. The function F inherits
smoothness and cancellation (in x1) from ρ

(1)
1 , and therefore so does bR′ .

In the same fashion, bR′ inherits smoothness and cancellation (in x2)
from (ψ2)y2(x2 − t2). Thus, we may write bR′(x1, x2) = λR′aR̃′(x1, x2),
where λR′ is a number and aR̃′(x1, x2) is adapted to R̃′.

We need a good bound on |λR′ |, which we get, as usual, by controlling
‖bR′‖∞. Let x = (x1, x2) ∈ R̃′ ⊂ Rd1 × Rd2 . Note that, for any
x2 ∈ Rd2 , ∫

T (Q′
2)

|(ψ2)y2(x2 − t2)|
dt2 dy2

y2
≤ C

for some constant C = C(ψ2, d2). Therefore,

(4.12) |bR′(x)| ≤ C sup
(t2,y2)∈T (Q′

2)

∫
T (Q′

1)×R
d2+1
+

|g(s, η)|

×[|F (x1, s, η, t2, y2)|] dµ(s, η),

= C sup
(t2,y2)∈T (Q′

2)

∫
R

d1+1
+ ×R

d2+1
+

|g(s, η)|

×
[
|F (x1, s,η, t2, y2)|χT (Q′

1)
(s1,η1)

]
dµ(s,η),

≡ C sup
(t2,y2)∈T (Q′

2)

∫
R

d1+1
+ ×R

d2+1
+

|g(s, η)|

×[P (x1, s, η, t2, y2)] dµ(s, η),

(4.13) = C sup
(t2,y2)∈T (Q′

2)

∑
R=Q1×Q2

∫
T (R)

|g(s, η)|

×[P (x1, s, η, t2, y2)] dµ(s, η).
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The key to estimating (4.12) is to bound P . Now, P has two factors,
one depending on (s1, η1) and one depending on (s2, η2) and (t2, y2). The
absolute value of the first factor, η−1

1 (ρ(1)
1 )η1(x1 − s1) · χT (Q′

1)
(s1, η1), is

less than or equal to C�(Q′
1)

−d1−1 and is zero if (s1, η1) /∈ T (Q′
1). We

note that, if (s1, η1) ∈ T (Q1), then this factor is less than or equal to
a constant times what we have called a(Q′

1, Q1), for any value of m1.
The meaning of that last sentence is so simple-minded that it might
appear to result from a typographical error. What we mean is this: Take
(s1, η1) ∈ T (Q1). Either Q1 equals Q′

1 or it doesn’t. In the first case, our
factor is less than or equal to C�(Q′

1)
−d1−1 ≤ Ca(Q′

1, Q
′
1) = Ca(Q′

1, Q1);
and in the second case, it’s zero.

The function P ’s second factor, |η−1
2 (ψ2)y2 ∗(ρ(2)

2 )η2(t2−s2)| is treated
similarly. If (t2, y2) ∈ T (Q′

2) and (s2, η2) ∈ T (Q2) (which is the situation
we have), then, by Lemma 3.1, this second factor is less than or equal
to a constant times a(Q′

2, Q2). Thus, in each of the separate integrals
in (4.13), the function P is dominated by a constant times what we have
called β(R′, R). Recalling our earlier convention,

G(R) =
∫

T (R)

|g(s, η)| dµ(s, η),

we see that

‖bR′‖∞ ≤ C
∑
R

β(R′, R)G(R);

implying

|λR′ | ≤ C|R′|1/2

[∑
R

β(R′, R)G(R)

]
.

But this (see (4.5) and preceding) is precisely the bound we got ear-
lier! Our result now follows from the arguments that took care of the
T̃ (2,2) term. Theorem 1.3 is proved.

5. The Poisson kernel

The Poisson kernel presents us with some new difficulties. One of
them concerns notation; something which, in this context, is non-trivial.
For i = 1, 2, we let P (i) denote the Poisson kernel for Rdi . If f : Rd1 ×
Rd2 
→ R is measurable and satisfies∫

Rd1×Rd2

|f(x)|
(1 + |x1|)d1+1(1 + |x2|)d2+1

dx < ∞,
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then

u(x, y) = [(P (1))y1 · (P (2))y2 ] ∗ f(x1, x2)

≡
∫
Rd1×Rd2

(P (1))y1(x1 − t1)(P (2))y2(x2 − t2)f(t1, t2) dt1 dt2

is defined, and is called f ’s bi-harmonic extension into Rd1+1
+ × Rd2+1

+ .
Let us (very temporarily) set xi = (x(1)

i , . . . , x
(di)
i ) and yi = x

(0)
i (i =

1, 2). As stated in the introduction, the full gradient ∇1∇2u is a (d1 +
1) × (d2 + 1) matrix whose entries are the second mixed partials

∂2u

∂x
(j1)
1 ∂x

(j2)
2

,

where the ji’s run respectively from 0 to di. These entries are given by
double convolutions:

∂2u

∂x
(j1)
1 ∂x

(j2)
2

=
∫
Rd1×Rd2

y−1
1 (φ(j1)

1 )y1(x1 − t1)y−1
2 (φ(j2)

2 )y2(x2 − t2)

× f(t1, t2) dt1 dt2,

where

φ
(ji)
i (xi) =




∂P (i)

∂x
(ji)
i

(xi) if ji 
= 0;

−diP
(i)(xi) −

∑di

k=1 x
(k)
i

∂P (i)

∂x
(k)
i

(xi) if ji = 0.

It is easy to see that all of these kernels satisfy
∫
Rdi

φ
(ji)
i (xi) dxi = 0. If

we also have ji 
= 0, then φ
(ji)
i satisfies

|φ(ji)
i (xi)| ≤ Ci(1 + |xi|)−di−2

|∇iφ
(ji)
i (xi)| ≤ Ci(1 + |xi|)−di−3.

These are the hypotheses of Theorem 1.3 (with mi = 0). Therefore, the
following theorem is immediate:
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Theorem 5.1. Let 1 < p ≤ 2 ≤ q < ∞ and let v, µ, and σ be as in the
hypotheses of Theorem 1.3. Let η > p′ and ε > 0. There is a positive
constant

C = C(η, ε, p, q, d1, d2)

such that the following is true: If there exists a weight w satisfying

σ(R, η) ≤
∫

R

w

and

µ(T (R))1/q

(∫
Rd1×Rd2

[
1

(�(Q1) + |x1 − xQ1 |)(d1+2−ε)p′/q′

× 1
(�(Q2) + |x2 − xQ2 |)(d2+2−ε)p′/q′

× w(x)
]

dx

)1/p′

≤ C�(Q1)d1+1−(d1+2−ε)/q′
�(Q2)d2+1−(d2+2−ε)/q′

(5.1)

for all rectangles R = Q1 × Q2, then(∫
R

d1+1
+ ×R

d2+1
+

| ∂2u

∂x
(j1)
1 ∂x

(j2)
2

|q dµ(x, y)

)1/q

≤
(∫

Rd1×Rd2

|f |pv dx

)1/p

holds for all mixed partials such that neither ji = 0, and for all f ∈
∪1≤r<∞Lr(Rd, dx).

Unfortunately, the kernels φ
(0)
i only decay like (1+|xi|)−di−1, which is

not quite good enough for Theorem 1.3. In [WhWi], the authors circum-
vented this by a trick that exploited harmonicity and the Poisson kernel’s
semigroup property. We refer the reader to [WhWi, pp. 957–959] for
the details of this argument. Its upshot is that, in obtaining our sequence
space estimates when ji = 0, it is sufficient to replace ai(Q′

i, Qi) by (see
the top of p. 959):

a∗
i (Q

′
i, Qi) =




�(Q′
i)

2

(�(Q′
i) + |xQi − xQ′

i
|)di+3

if �(Qi) ≤ �(Q′
i);

0 otherwise.

We analogously define A∗
i (Q

′
i, Qi) = a∗

i (Q
′
i, Qi) · |Q̂i|. The proof of

the following lemma is like that of Lemma 3.2, and we omit it.
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Lemma 5.2. Let γ > 0, 0 < ε < 1, and let k be a positive integer.
There is a constant C = C(γ, ε, di) such that, for all all xi ∈ Rdi , all
cubes Qi ⊂ Rdi , and all k,

(5.2)
∑

Q′
i
:�(Q′

i
)=2k�(Qi)

[A∗
i (Q

′
i, Qi)]

γ
χQ̃′

i
(xi)

≤ C2−kεγ�(Qi)(di+1−ε)γ

(
1

(�(Qi) + |x − xQi
|)di+1−ε

)γ

.

The proof of the following theorem is essentially identical to that of
Theorem 5.1, and we omit it.

Theorem 5.3. Let 1 < p ≤ 2 ≤ q < ∞ and let v, µ, and σ be as in the
hypotheses of Theorem 1.3. Let η > p′ and ε > 0. There is a positive
constant

C = C(η, ε, p, q, d1, d2)

such that the following is true: If there exists a weight w satisfying

σ(R, η) ≤
∫

R

w

and

µ(T (R))1/q

(∫
Rd1×Rd2

(
1

(�(Q1) + |x1 − xQ1 |)(d1+1−ε)p′/q′

× 1
(�(Q2) + |x2 − xQ2 |)(d2+2−ε)p′/q′

× w(x)
]

dx

)1/p′

≤ C�(Q1)d1+1−(d1+1−ε)/q′
�(Q2)d2+1−(d2+2−ε)/q′

(5.3)

for all rectangles R = Q1 × Q2, then

(∫
R

d1+1
+ ×R

d2+1
+

| ∂2u

∂x
(0)
1 ∂x

(j2)
2

|q dµ(x, y)

)1/q

≤
(∫

Rd1×Rd2

|f |pv dx

)1/p
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holds for all mixed partials such that j2 
= 0, and for all
f ∈ ∪1≤r<∞Lr(Rd, dx). The symmetric result holds for j2 = 0 and
j1 
= 0. When j1 = j2 = 0, the inequality analogous to (5.3) is:

µ(T (R))1/q

(∫
Rd1×Rd2

[
1

(�(Q1) + |x1 − xQ1 |)(d1+1−ε)p′/q′

× 1
(�(Q2) + |x2 − xQ2 |)(d2+1−ε)p′/q′

× w(x)
]

dx

)1/p′

≤ C�(Q1)d1+1−(d1+1−ε)/q′
�(Q2)d2+1−(d2+1−ε)/q′

= C|R̂|1/q�(Q1)−ε/q′
�(Q2)−ε/q′

.
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