WHEN IS EACH PROPER OVERRING OF R AN S(EIDENBERG)-DOMAIN?

Noômen Jarboui

Abstract

A domain R is called a maximal "non-S" subring of a field L if $R \subset L, R$ is not an S-domain and each domain T such that $R \subset$ $T \subseteq L$ is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying $\operatorname{dim}(R)=1, \operatorname{dim}_{v}(R)=2$ and $L=\mathrm{qf}(R)$.

1. Introduction

Throughout this paper, $R \hookrightarrow S$ denotes an extension of commutative integral domains, $\mathrm{qf}(R)$ the quotient field of an integral domain R and $\operatorname{tr} . \operatorname{deg}[S: R]$ the transcendence degree of $\operatorname{qf}(S)$ over qf (R). If $\operatorname{tr} . \operatorname{deg}[S$: $R]=0$, we say that S is algebraic over R. We recall that a ring R of finite Krull dimension n is a Jaffard ring if its valuative dimension (the limit of the sequence $\left.\left(\operatorname{dim}\left(R\left[X_{1}, \ldots, X_{n}\right]\right)-n, n \in \mathbb{N}\right)\right) \operatorname{dim}_{v}(R)$, is also n. Prüfer domains and Noetherian domains are Jaffard domains. Recall that a domain R is an S-domain [12] if for each height 1 prime ideal p of R, the extended prime $p[X]$ in one indeterminate is also height 1 in $R[X]$. We assume familiarity with these concepts as in [1] and [12].

In [3], the author and M. Ben Nasr considered maximal non-Jaffard subrings of a field L, that is, the domains R where R is a non Jaffard domain and each ring $T, R \subset T \subseteq L$ is Jaffard. They characterized these domains in terms of pseudo-valuation domains. On the other hand the author and I. Yengui in [11] studied the domains R such that each domain contained between R and its quotient field is an S-domain. They are said to be absolutely S-domains. To complete this circle of ideas and to honor Seidenberg we deal with maximal "non-S" subring(s) of a field; that is, the domains R, where R is not an S -domain and each $\operatorname{ring} T$, $R \subset T \subseteq L$ is an S -domain. First we show that if R is a maximal

2000 Mathematics Subject Classification. Primary: 13B02; Secondary: 13C15, 13A17, 13A18, 13B25, 13E05.
Key words. Jaffard domain, S-domain, valuation domain, Krull dimension, pullback.
"non-S" subring of a field L, then $L=\mathrm{qf}(R)$. Hence, we may restrict ourselves to the case where $L=\mathrm{qf}(R)$. Let us recall some terminology: Let T be a ring, I an ideal of T, D be a subring of T / I and let R be the subring of T defined by the following pullback construction:

Following [4], we say that R is the ring of the (T, I, D) construction and we set $R:=(T, I, D)$. Note that $R:=(T, I, D)$ if and only it is contained in T and shares the ideal I with the ring T. The (T, I, D) constructions were considered for the first time in [7], in the contest of general pullback construction. Particularly the last construction to be noted here concerns the notion of a pseudo-valuation domain (for short, a PVD), which was introduced by J. R. Hedstrom and E. G. Houston [9] and has been studied subsequently in [2], [5], [6] and [10]. A domain R is said to be a PVD in case each prime ideal p of R is strongly prime, in the sense that whenever $x, y \in \mathrm{qf}(R)$ satisfy $x y \in p$, then either $x \in p$ or $y \in p$, equivalently, in case R has a (uniquely determined) valuation overring V such that $\operatorname{Spec}(R)=\operatorname{Spec}(V)$ as sets, equivalently (by [2, Proposition 2.6]) in case R is a pullback of the form $V \times_{K} k$, where V is a valuation domain with residue field K and k is a subfield of K. As the terminology suggests, any valuation domain is a PVD [9, Proposition 1.1]. Although the converse is false [9, Example 2.1], any PVD must, at least, be local [9, Corollary 1.3]. The main result of this paper is Theorem 2.2, which states that R is a maximal "non-S" subring of $\mathrm{qf}(R)$ if and only if R is an integrally closed pseudo-valuation domain with $\operatorname{dim}(R)=1$ and $\operatorname{dim}_{v}(R)=2$. As an application of Theorem 2.2, we give necessary and sufficient conditions for certain pullbacks to be maximal "non-S" subrings of their quotient fields.

2. Main results

Let R be a domain contained in a field L. We say that R is a maximal "non-S"subring of L if R is not an S-domain and each ring T such that $R \subset T \subseteq L$ is an S-domain.

First of all, we establish the following:
Proposition 2.1. Let R be a domain and L a field containing R. If R is a maximal "non-S"subring of L, then $L=\mathrm{qf}(R)$.

Proof: First notice that L is algebraic over R. Indeed, if not then there exists an element t of L transcendental over R. Hence each overring of $R[t]$ should be an S-domain that is $R[t]$ is an absolutely S-domain. Hence by [11, Proposition 1.14] R is a field which contradicts the fact that R is not an S-domain. Now our task is to show that $L=\mathrm{qf}(R)$. Assume that $\mathrm{qf}(R) \subset L$, and let $\alpha \in L \backslash \mathrm{qf}(R)$. Then α is algebraic over R. Thus there exists an element $r \in R$ such that $r \alpha$ is integral over R. Thus $R \subset R[r \alpha]$ is an integral extension. But $R[r \alpha]$ is an S-domain. Hence R is an S-domain, the desired contradiction to complete the proof.

As a direct consequence of Proposition 2.1, the study of maximal "non-S" subring(s) of a field L can be reduced to the case where $L=$ $\mathrm{qf}(R)$. Now notice that if R is a maximal "non-S" subring of $\mathrm{qf}(R)$, then R is integrally closed. Indeed, if $R \neq R^{\prime}$, then R^{\prime} is an S-domain, and hence so is R (since $R \subset R^{\prime}$ is an integral extension), which is impossible.

Our main result is the following:
Theorem 2.2. Let R be a domain. Then the following statements are equivalent:
(i) R is a maximal "non-S" subring of $\mathrm{q}(R)$;
(ii) R is an integrally closed $P V D$ with $\operatorname{dim}(R)=1$ and $\operatorname{dim}_{v}(R)=2$.

Proof: (i) \Rightarrow (ii). We have already noticed that R is integrally closed. On the other hand since R is not an S-domain, then there is a height 1 prime ideal p of R such that $h t(p[X])=2$. Then there is a nonzero prime ideal P of $R[X]$ contained in $p[X]$ such that $P \cap R=(0)$. Thus R is a subring of $R_{1}=R[X] / P$ which is isomorphic to $R[u]$, where u is an algebraic element over R. By [8, Corollary 19.7], there is a valuation overring W of R_{1} containing a prime ideal P^{\prime} of height 1 such that $P^{\prime} \cap R_{1}=p[X] / P$. Denoting $V=W \cap \mathrm{qf}(R), V$ is a valuation overring of R containing a height 1 prime ideal $q=P^{\prime} \cap \operatorname{qf}(R)$ [8, Theorem 19.16] such that $q \cap R=p$. Now, $\operatorname{tr} . \operatorname{deg}\left[W / P^{\prime}: V / q\right]=0[8$, Theorem 19.16]. Hence

$$
\begin{aligned}
\operatorname{tr} \cdot \operatorname{deg}[V / q: R / p] & =\operatorname{tr} \cdot \operatorname{deg}\left[W / P^{\prime}: R / p\right] \\
& \geq \operatorname{tr} \cdot \operatorname{deg}\left[R_{1} /(p[X] / P): R / p\right] \\
& =\operatorname{tr} \cdot \operatorname{deg}[(R[X] / P) /(p[X] / P): R / p] \\
& =\operatorname{tr} \cdot \operatorname{deg}[(R[X] / p[X]): R / p]=1 .
\end{aligned}
$$

Assume that $R \neq\left(V_{q}, q V_{q}, R_{p} / p R_{p}\right)$, then the domain $\left(V_{q}, q V_{q}, R_{p} / p R_{p}\right)$ is a proper overring of R and it should be an S -domain and by [11, Proposition 1.4], we get $\operatorname{tr} . \operatorname{deg}\left[V_{q} / q V_{q}: R_{p} / p R_{p}\right]=0$ which is impossible. Therefore $R:=\left(V_{q}, q V_{q}, R_{p} / p R_{p}\right)$. Hence R is a PVD (cf. [2]). Our task now is to show that tr. $\operatorname{deg}\left[V_{q} / q V_{q}: R_{p} / p R_{p}\right]=1$. The extension $R_{p} / p R_{p} \subset V_{q} / q V_{q}$ can not be algebraic since R is not an S-domain [11, Proposition 1.4]. Assume that tr. $\operatorname{deg}\left[V_{q} / q V_{q}: R_{p} / p R_{p}\right] \geq 2$, and let X, Y be two transcendental algebraically independent elements of $V_{q} / q V_{q}$ over $R_{p} / p R_{p}$. Then the domain $T:=\left(V_{q}, q V_{q},\left(R_{p} / p R_{p}\right)[X]\right)$ is a proper overring of R, thus T is an S -domain. Hence by [11, Proposition 1.4], we get $\operatorname{tr} . \operatorname{deg}\left[V_{q} / q V_{q}:\left(R_{p} / p R_{p}\right)[X]\right]=0$, which is impossible. Hence tr. $\operatorname{deg}\left[V_{q} / q V_{q}: R_{p} / p R_{p}\right]=1$. Therefore by [1, Proposition 2.5], $\operatorname{dim}(R)=1$ and $\operatorname{dim}_{v}(R)=2$.
(ii) \Rightarrow (i). Since R is a PVD, then $R:=(V, M, k)$, where V is a valuation domain with maximal ideal M and k is a field. It is clear that R is not an S-domain because $\operatorname{tr} . \operatorname{deg}[V / M: R / M]=1$. Now, let T be a domain such that $R \subset T \subseteq \mathrm{qf}(R)$. Then by [3, Lemma 1.3], either T is an overring of V, so it is an S-domain, or T is an intermediate domain between R and V, so $T:=(V, M, D)$, where $R / M \subset D \subseteq V / M$. Since R is integrally closed, then $\operatorname{tr} . \operatorname{deg}[V / M: D]=0$. Thus T is an S-domain. Hence R is a maximal "non- S " subring of $\mathrm{qf}(R)$.

Now we determine when a pullback R is a maximal "non-S" subring of its quotient field. We recall some notation for conductors. If R is a domain and I, J are R-submodules of $\mathrm{qf}(R)$, then $(I: J)=\{x \in$ $\mathrm{qf}(R) \mid x J \subset I\}$. If R is a PVD with associated valuation domain V and maximal ideal M, assume that $R \neq V$, then M is not a principal ideal of R and $V=(M: M)$ [2, Proposition 2.3], and by [2, Lemma 2.4], we get $V=(R: M)=(M: M)$.

We establish the following theorem.
Theorem 2.3. Let T be a domain, M a maximal ideal of T and D a subring of the field $K=T / M$. Let $R:=(T, M, D)$. Then the following statements are equivalent:
(i) R is a maximal "non-S" subring of $\mathrm{qf}(R)$;
(ii) D is a field algebraically closed in $(M: M) / M$, with $\operatorname{tr} \cdot \operatorname{deg}[K$: $D]=1$ and T is a one-dimensional Jaffard PVD.
Proof: (i) \Rightarrow (ii). By Theorem 2.2, R is a PVD. Hence there exists a valuation domain V with m as a maximal ideal such that $R:=(V, m, k)$, where k is a field. Since T is an overring of R, then by [3, Lemma 1.3], either $R \subset T \subseteq V$ or $V \subseteq T$.

Case 1: If $R \subset T \subseteq V$, then T shares the ideal m with R and V, so $T:=(V, m, T / m)$. But we have $M \subseteq m$ (since R is local with maximal ideal m). Thus $M=m$ because M is a maximal ideal of T. Hence $T:=(V, M, K), D=R / M=R / m=k$, so D is a field. On the other hand R is integrally closed (Theorem 2.2), thus D is algebraically closed in $V / M=(M: M) / M$. We have $\operatorname{dim}(T)=\operatorname{dim}(V)=\operatorname{dim}(R)=1$, and since T is an S-domain, then $\operatorname{dim}(T)=\operatorname{dim}_{v}(T)=1$. Now tr. $\operatorname{deg}[K$: $D]=\operatorname{dim}_{v}(R)-\operatorname{dim}_{v}(T)=1$.

Case 2: If T is an overring of V, then $T=V$ since V is a one-dimensional valuation domain. Thus $m=M$. This yields $D=R / M=R / m=k$ and it is obvious that D is algebraically closed in $V / M=(M: M) / M$. On the other hand $\operatorname{tr} . \operatorname{deg}[K: D]=\operatorname{dim}_{v}(R)-\operatorname{dim}_{v}(T)=1$.
(ii) \Rightarrow (i). Since $D \subset K$ is not an algebraic extension, then R is not an S-domain [11, Proposition 1.4]. The ring T is a PVD, so there is a valuation domain W with maximal ideal M such that $T:=(W, M, K)$. But $R:=(T, M, D)$. Hence R is a PVD with associated valuation domain $W=(M: M)$. Furthermore, $\operatorname{dim}(R)=\operatorname{dim}(T)=1$ and $\operatorname{dim}_{v}(R)=\operatorname{dim}_{v}(T)+\operatorname{dim}_{v}(D)+\operatorname{tr} \cdot \operatorname{deg}[K: D]=2$. Since D is algebraically closed in W / M, then R is integrally closed. Thus by Theorem $2.2, R$ is a maximal "non- S " subring of $\mathrm{qf}(R)$.

Acknowledgement. The author express thanks to the referees for valuable suggestions.

References

[1] D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domains, Exposition. Math. 6(2) (1988), 145-175.
[2] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math. 32(2) (1980), 362-384.
[3] M. Ben Nasr and N. Jarboui, Maximal non-Jaffard subrings of a field, Publ. Mat. 44(1) (2000), 157-175.
[4] P.-J. Cahen, Couples d'anneaux partageant un idéal, Arch. Math. (Basel) 51(6) (1988), 505-514.
[5] D. E. Dobbs, Coherence, ascent of going-down, and pseudovaluation domains, Houston J. Math. 4(4) (1978), 551-567.
[6] D. E. Dobbs, On the weak global dimension of pseudo-valuation domains, Canad. Math. Bull. 21(2) (1978), 159-164.
[7] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. (4) 123 (1980), 331-355.
[8] R. Gilmer, "Multiplicative ideal theory", Pure and Applied Mathematics 12, Marcel Dekker, Inc., New York, 1972.
[9] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75(1) (1978), 137-147.
[10] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains. II, Houston J. Math. 4(2) (1978), 199-207.
[11] N. Jarboui and I. Yengui, Absolutely S-domains and pseudo polynomial rings, Colloq. Math. (to appear).
[12] I. Kaplansky, "Commutative rings", revised edition, The University of Chicago Press, Chicago, Ill.-London, 1974.

Department of Mathematics
Faculty of Sciences of Sfax
3018 Sfax, BP 802
Tunisia
E-mail address: noojarboui@hotmail.com

Primera versió rebuda el 8 de novembre de 2001, darrera versió rebuda el 16 de maig de 2002.

