
Publ. Mat. 45 (2001), 95–123

NONDEGENERATE LINEARIZABLE CENTRES OF
COMPLEX PLANAR QUADRATIC AND SYMMETRIC

CUBIC SYSTEMS IN C
2

C. Christopher and C. Rousseau

Abstract
In this paper we consider complex differential systems in the plane,
which are linearizable in the neighborhood of a nondegenerate cen-
tre. We find necessary and sufficient conditions for linearizability
for the class of complex quadratic systems and for the class of
complex cubic systems symmetric with respect to a centre.
The sufficiency of these conditions is shown by exhibiting explic-
itly a linearizing change of coordinates, either of Darboux type or
a generalization of it.

1. Introduction

This paper originated from the interest of the two authors in isochro-
nous centres ([CD], [MRT] and [MMR]). Several authors have made
a systematic study of the isochronous centres inside certain classes of
systems with centre ([CJ], [L], [P], [RT1], [De], [Sa1] and [Sa2]). The
first four papers study isochronous centres inside quadratic systems and
cubic systems symmetric with respect to its centre. The work of De-
vlin [De] deals with those centres for which there is an integrating fac-
tor (x2 + y2)α. The papers by Sabatini give conditions for isochronicity
in terms of commuting vector fields. These studies are made possible by
the fact that the centre conditions are known in both these cases.

Unfortunately, there are very few “natural” families in which the cen-
tre conditions are known, although a number of mechanisms producing
strata of centres are well known.

In [CD] the Kukles family of systems was studied:
ẋ = −y

ẏ = x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3.
(1.1)

2000 Mathematics Subject Classification. 34C, 58F.
This work was supported by NSERC and FCAR.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13268456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


96 C. Christopher, C. Rousseau

An original feature of this work is that, although the centre conditions are
not known, it is still possible to find necessary and sufficient conditions
for an isochronous centre in this family.

The paper [CD] brings to light other interesting questions, one of
which is the starting point for our investigations here. In looking for the
necessary conditions for an isochronous centre in the Kukles system, a
new set of conditions was found which cannot be satisfied for real systems
in the family. However if we allow the coefficients ai to be complex, then
the conditions can be satisfied, and the origin is again isochronous. The
notion of isochronicity still makes sense in this context as long as we
keep to real time.

In [CD] it was shown that a singular point is a complex isochronous
centre if and only if a whole punctured neighborhood of the point con-
sists entirely of closed trajectories. This interesting result thus gives
a geometric characterization of isochronicity. This is completely differ-
ent from the real case, where any centre can be made isochronous by
multiplying by a suitable positive function. In the complex case, mul-
tiplying by a non-constant function changes the geometry of the (real
time) trajectories.

Simultaneous to these investigations, there has been a growing interest
in the complex centres of systems in C

2, a centre being a non-degenerate
singular point with zero trace and a local analytic first integral. Note
that integrable saddles also come within this category. Complex cen-
tres in quadratic systems have been studied by several mathematicians:
Dulac [Du], Liu and Li [LL] and more recently Farell [F].

Putting together the results of these works it becomes natural to ask
what are the complex isochronous quadratic systems. This raises the
need of a good definition of a complex isochronous centre. Using a real
time for such a system is somewhat artificial, especially since it excludes
the natural identification of centres and saddles when working over the
complex numbers. Our starting point here, therefore, is to introduce the
equivalent notion of linearizable centre. That is, a system whose centre
can be reduced to its linear part by an analytic change of coordinates.

In this paper we give necessary and sufficient conditions for lineariz-
ability of complex quadratic and symmetric cubic centres. The pa-
per [MMR] introduces a new method to prove isochronicity via Dar-
boux linearizing change of coordinates. A refinement of this method
allows us to give explicit linearizing changes of coordinates for each of
these conditions.

One important contribution of these investigations to the study of
isochronicity is that there seems to be a far wider range of linearizable
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centres if we allow the coefficients to be complex. This seems to be in
contrast to the case of integrability, where the corresponding strata are
very similar. However, if we consider linearizable saddles instead, then
the complex and real cases are comparable.

A simple reason for this situation is that, for real centres, the sepa-
ratrices are conjugate and there can be no independence in how a real
linearizing transformation can act on either one. In the complex case
and in the case of a real saddle this independence is preserved.

It seems, therefore, that a better understanding of isochronicity as a
phenomena should be obtained from considering linearizable saddles in
more detail.

In all studies of this nature, there is a need to have “visible” phenom-
ena to spur on investigation. In the case of a real isochronous centre,
it is easy to see that no finite critical point can lie on the boundary of
the period annulus attached to the centre; a result which has been used
in several classification problems. If we consider linearizable saddles,
then this phenomena only remains valid with complex time, and conse-
quently loses its power. However, from our investigations we conjecture
the following obstruction to linearizability, which we hope will provide an
impetus to further investigation along these lines: No linearizable sad-
dle can lie on a homoclinic loop or, more generally, on a monodromic
graphic.

2. Generalities

2.1. Complex centres and linearizable centres.

Definition 2.1. (1) A singular point of a complex analytic system

ż = P (z, w)

ẇ = Q(z, w)
(2.1)

in C
2 is a centre if the system has an analytic first integral in a

neighborhood of the singular point.
(2) A centre is nondegenerate if the system has a non-vanishing 1-jet

at the singular point which is a Morse singular point of an analytic
first integral.

(3) A nondegenerate centre is linearizable if there exists an analytic
change of coordinates in the neighborhood of the singular point,
bringing the system to a linear system.

Remark 2.2. A nondegenerate centre necessarily has two opposite eigen-
values.
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From now on, we will always restrict ourselves to nondegenerate cen-
tres.

Proposition 2.3. Let us suppose that the system (2.1) has a nondegen-
erate centre at the origin and is of the form

ż = iz + p(z, w) = iz + o(|(z, w)|2)
ẇ = −iw + q(z, w) = −iw + o(|(z, w)|2).

(2.2)

The following are equivalent:
(1) The origin is linearizable;
(2) There exists a neighborhood of the origin such that every trajectory

inside that neighborhood (with time as a real parameter) is periodic
(if this is so, then the period is a constant).

(3) The origin is stable, in the sense stable in the future and stable in
the past, for real time t.

Proof: As pointed by the referee the equivalence of (1) and (3) is a
consequence of a theorem of Cartan-CarathThetaodory (1932) (see for
instance [M, Theorem 2.1]), stating that a system of the form (2.2) is
linearizable if and only if the solution (z, w) = (0, 0) is stable. As any
trajectory of the linear system is periodic, which implies the same result
for the linearizable system, we have that (1) implies (2). The last part
follows from (2) implies (3).

Note, that the linearizability condition here is stronger than integra-
bility and is not equivalent to the linearizability of foliations defined by
1-forms. More details on this can be found in [CMR].

2.2. Darboux linearization and its generalization.

We start with some definitions.

Definitions 2.4. (1) For equation (2.1) we define the differential op-
erator D acting on analytic functions F (z, w) defined in a neigh-
borhood of (0, 0) by

D(F ) =
∂F

∂z
P (z, w) +

∂F

∂w
Q(z, w).(2.3)

(2) An invariant algebraic curve of the system (2.1) is a curve in C
2

given by an equation F (z, w) = 0, with F (z, w) ∈ C[z, w] such that
there exists K(z, w) ∈ Cn−1[z, w] satisfying

DF (z, w) = F (z, w)K(z, w).(2.4)
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Here Cn−1[z, w] denotes the space of polynomials in z and w of
degree ≤ n − 1 and complex coefficients. F (x, y) is also called a
Darboux factor.

(3) Any analytic function F (z, w) satisfying (2.4), for some K(z, w) ∈
Cn−1[z,w], is a generalized Darboux factor. The polynomial K(F )=
K(z, w) is called the cofactor of the Darboux factor.

(4) A nonconstant function F (z, w) satisfying DF (z, w) ≡ 0 is a first
integral.

(5) A Darboux function is a function Z(z, w) of the form

Z =
k∏

j=0

F
αj

j , αj ∈ C,(2.5)

with Fj ∈ C[z, w], j = 0, . . . , k.
(6) Given a system (2.1) and the differential operator D defined by

(2.3), a Darboux function (resp. generalized Darboux function) as-
sociated with the system (2.1) is a function Z of the form (2.5),
with Fj = 0 invariant algebraic curves (resp. Fj Darboux factors),
j = 0, . . . , k.

(7) A system is (generalized) Darboux integrable if it has a first integral
which is a (generalized) Darboux function associated to it.

Many of the strata of polynomial systems with a centre have a first
integral which is a Darboux function, or a generalized Darboux function
(cf. [C], [S1], [S2]). In practice, the Darboux factors that we are most
interested in arise as limiting cases of Darboux functions, and can be
expressed in the form eD/E , where D and E are polynomials [C]. Many
examples of isochronous centres having Darboux first integrals are also
given in [MRT].

The concept of Darboux linearizability is introduced in [MMR],
which however is only concerned with real systems. In the real con-
text a linearizing change of coordinates is hence given by a unique func-
tion Z = F (z, z). Here we must adapt the definitions to the fact that
we are dealing with systems in C

2.

Definition 2.5. The system (2.2) is (generalized) Darboux linearizable
if there exists a (generalized) Darboux change of coordinates

(Z,W ) =


 k∏

j=0

F
αj

j ,

	∏
j=0

G
βj

j


 ,(2.6)
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regular at the origin, i.e. of the form (Z,W ) = (z + o(|(z, w)|), w +
o(|(z, w)|)) linearizing (2.2). Such a function Z is called a (generalized)
Darboux linearizing change of coordinates.

Remark 2.6. A (generalized) Darboux linearizable system is (general-
ized) Darboux integrable with first integral F (Z,W ) = ZW .

The following theorem characterizing Darboux linearizability is ob-
tained exactly as the corresponding theorem in [MMR]:

Theorem 2.7. (i) The system (2.2) is Darboux linearizable if and
only if there exist invariant algebraic curves F0 = 0 and G0 = 0
of the form F0(z, w) = z + o(|(z, w)|), G0(z, w) = w + o(|(z, w)|)
and there exist invariant algebraic curves Fj = 0, j ∈ J1, Gj = 0,
j ∈ J2 where J1 and J2 are finite subsets of N (possibly void) such
that Fj(0, 0) �= 0, Gj(0, 0) �= 0 and

K0 +
∑
j∈J1

αjKj = i

L0 +
∑
j∈J2

βjLj = −i
(2.7)

where Kj is the cofactor of Fj, Lj is the cofactor Gj and αj , βj ∈
C. The Darboux linearizing change of coordinates is then given by

(Z,W ) =


F0

∏
j∈J1

F
αj

j , G0

∏
j∈J2

G
βj

j


 .(2.8)

(ii) The system (2.2) is generalized Darboux linearizable if and only if
(2.7) is satisfied with the Kj and Lj cofactors of Darboux factors Fj

and Gj. The linearizing change of coordinates is again given by
(2.8).

Proof: The proof goes exactly as in [MMR]. It follows from the fact
that (Z,W ) = (F (z, w), G(z, w)) is a linearizing change of coordinates if
and only if the functions F and G are Darboux factors satisfying DF = i
and DG = −i.

It turned out, in several examples of Darboux integrable systems, that
we could only find algebraic invariant curves or Darboux factors so that
one equation of (2.7) is satisfied. In order to construct the linearizing
change of coordinates in that case we prove the following lemma.
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Lemma 2.8. Suppose that the system (2.2) has a first integral H(z, w)=
zw + o(|(z, w)|2), and that there exist (generalized) Darboux factors Fj

such that the first equation of (2.7) is satisfied. Then a linearizing change
of coordinate is given by

(Z,W ) =


F0

∏
j∈J1

F
αj

j ,
H(z, w)

F0

∏
j∈J1

F
αj

j


 .(2.9)

Proof: Let us call F = F0

∏
j∈J1

F
αj

j and G = H(z,w)

F0

∏
j∈J1

F
αj
j

. Then

H = FG. Since H is a first integral we have DH = 0. From DF = i we
then deduce that DG = −i.

Remark 2.9. A common method to exhibit explicitly a first integral is
to use the Darboux method (with invariant algebraic curves or Darboux
factors). It may happen that all Darboux factors occuring in the expres-
sion of the first integral do not vanish at the origin. In that case the
integral obtained H(z, w) does not vanish at the origin. The theorem
has to be applied to the first integral H(z, w) = H(z, w)−H(0, 0). Even
if H is a Darboux first integral it may occur that H, and hence G is not
a Darboux function.

2.3. A class of Darboux linearizable centres.

Theorem 2.10. The system

ż = iz + zn + awn

ẇ = −iw +
1
n
zn−1w

(2.10)

has a linearizable centre at the origin.

Proof: For each system, we have the invariant algebraic curves F1(z, w)=
w = 0 and F2(z, w) = z − iawn/(n + 1) = 0, with cofactors −i +
zn−1/n and i + zn−1 respectively. A third invariant curve with cofac-
tor K3(z, w) = (n − 1)zn−1 is given by F3(z, w) = 1 + h(z, wn), where
h(z,W ) =

∑n−1
j=0 ajz

jWn−1−j , with

an−1 = −i, aj = − i(j + 1)a
n(n− 1 − j) − j

aj+1 j = 0, . . . , n− 2.(2.11)

The Darboux linearizing change of coordinates is then given by:

(Z,W ) =
(

F2(z, w)
(F3(z, w))1/(n−1)

,
w

(F3(z, w))1/(n(n−1))

)
.(2.12)
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3. Linearizable complex quadratic systems

Theorem 3.1. We consider a quadratic system in C
2:

ż = iz + c20z
2 + c11zw + c02w

2

ẇ = −iw + d20z
2 + d11zw + d02w

2.
(3.1)

The system has a linearizable centre if and only if one of the following
conditions is satisfied

I c11 = d20 = d11 = 0(3.2)

II c11 = c02 = d11 = 0(3.3)

III c02 = d20 = 0, c20 − d11 = d02 − c11 = 0(3.4)

IV 7c11 − 6d02 = 7d11 − 6c20 = 7d2
11 − 12d20d02(3.5)

= 14d20c02 − 3d11d02 = 49d11c02 − 18d2
02 = 0

V 2c20 − 5d11 = 2d02 − 5c11 = 15d2
11 + 4d20d02(3.6)

= 6d2
02 + 25c02d11 = 10d20c02 − 9d11d02 = 0

VI c11 = c02 = d02 = 0(3.7)

VII c20 = d20 = d11 = 0(3.8)

VIII c11 = d20 = d02 = c20 − 2d11 = 0(3.9)

IX c20 = c02 = d11 = d02 − 2c11 = 0.(3.10)

In all cases one separatrix of the origin is an algebraic curve.

Proof: To prove the necessity of the conditions, we bring the system (3.1)
to normal form

Ż = iZ +
∑
j≥1

cjZ
j+1W j

Ẇ = −iW +
∑
j≥1

djZ
jW j+1

(3.11)

up to terms of order 7 under a change of coordinates (z, w) = (Z +
o(|Z,W |),W + o(|Z,W |)). If the system is linearizable then we must
have a1 = a2 = a3 = b1 = b2 = b3 = 0. The computations of aj and
bj , for j = 1, 2, 3 were performed in Maple and Reduce and a factorised
Gröbner basis produced. The results were checked carefully between
both packages, and yield the conditions I–IX above.

The sufficiency of the conditions is given below: for each case (3.2)–
(3.10) we give a linearizing change of coordinates. All Darboux factors
are noted Fi and their respective cofactors Ki.



Complex Linearizable Centres 103

(1) c11 = d20 = d11 = 0. Let us first suppose that c20, d02 �= 0. We
then scale c20 = d02 = 1. (The case c02 = 0 corresponds to the Loud
system (S1) in the notation of [MRT].) The system has four invariant
lines:

F1(z, w) = w K1(z, w) = −i + w

F2(z, w) = 1 + iw K2(z, w) = w

F3,4 = 1 − iz + B3,4w K3,4(z, w) = z − iB3,4w,

(3.12)

where B3,4 are the roots of B2 − iB− c02 = 0. The first integral is given
by

H(z, w) =
1 − iz + B3w

1 − iz + B4w
(1 + iw)i(B3−B4).(3.13)

Choosing H(z, w) = i 1−H(z,w)
B3−B4

= zw + o(|z, w|2), the linearizing change
of coordinates is given by

(Z,W ) =
(
H(z, w)(1 + iw)

w
,

w

1 + iw

)
.(3.14)

We now consider the case d02 = 0 and c20 = 1 (after scaling). Darboux
factors and cofactors are given by:

F1(z, w) = w K1(z, w) = −i

F2,3(z, w) = 1 − iz ± w K2,3(z, w) = z ∓ iw

F4(z, w) = ew K4(z, w) = −iw.

(3.15)

This yields a first integral

H(z, w) = e−2w 1 − iz + w

1 − iz − w
.(3.16)

We let H(z, w) = 1
2i (H(z, w)−1) = zw+ o(|z, w|2) yielding the lineariz-

ing change of coordinates

(Z,W ) =
(
H(z, w)

w
,w

)
.(3.17)

The case c20 = d02 = 0 is contained in (7) below.

(2) c11 = c02 = d11 = 0 is dual of (1) under (z, w, t) 	→ (w, z,−t).

(3) c02 = d20 = 0, c20 − d11 = d02 − c11 = 0. In the case c20d02 �= 0
we can scale c20 = d02 = 1, yielding the Loud system (S2) in the notation
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of [MRT]. This system has the three invariant lines:

F1(z, w) = z K1(z, w) = i + z + w

F2(z, w) = w K2(z, w) = −i + z + w

F3 = 1 − iz + iw K3(z, w) = z + w,

(3.18)

yielding the linearizing change of coordinates

(Z,W ) =
(

z

1 − iz + iw
,

w

1 − iz + iw

)
.(3.19)

In the nonlinear case with c20 = 0 or d02 = 0 we are in case (7) or (6)
below.

(4) 7c11−6d02 = 7d11−6c20 = 7d2
11−12d20d02 = 14d20c02−3d11d02 =

49d11c02−18d2
02 = 0. Either c20 and d02 vanish simultaneously, in which

case we have a subcase of (6) or (7), or they are both nonzero, yielding
the Loud system (S4) (in the notation of [MRT]), which can be scaled
to

ż = iz + 7z2 + 6zw + 3w2

ẇ = −iw + 3z2 + 6zw + 7w2.
(3.20)

This system has an invariant line and three invariant conics:

F1(z, w) = 1 − 4i(z − w) K1(z, w) = 4(z + w)

F2(z, w) = 1 − 16i(z − w) K2(z, w) = 16(z + w)
−96(z2 + w2) − 64zw

F3(z, w) = z − i(z − w)2 K3(z, w) = i + 8(z + w)

F4(z, w) = w + i(z − w)2 K4(z, w) = −i + 8(z + w),

(3.21)

yielding the linearizing change of coordinates

(Z,W ) =
(

z − i(z − w)2

(1 − 4i(z − w))2
,

w + i(z − w)2

(1 − 4i(z − w))2

)
.(3.22)

(5) 2c20 − 5d11 = 2d02 − 5c11 = 15d2
11 + 4d20d02 = 6d2

02 + 25c02d11 =
10d20c02 − 9d11d02 = 0. Here again c20 and d02 vanish simultaneously,
a case treated in (6) or (7). The nonvanishing case corresponds to the
Loud system (S3) (in the notation of [MRT]) and can be scaled to

ż = iz + 5z2 + 2zw − 3w2

ẇ = −iw − 3z2 + 2zw + 5w2.
(3.23)
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This system has an invariant line and two invariant conics:

F1(z, w) = 1 − 8i(z − w) K1(z, w) = 8(z + w)

F2(z, w) = z + i(z + w)2 K2(z, w) = i + 4(z + w)

F3(z, w) = w − i(z + w)2 K3(z, w) = −i + 4(z + w).

(3.24)

The linearizing change of coordinates is given by

(Z,W ) =

(
z + i(z + w)2√
1 − 8i(z − w)

,
w − i(z + w)2√
1 − 8i(z − w)

)
.(3.25)

(6) c11 = c02 = d02 = 0. When c20 �= 0 we scale c20 = 1. Scaling on w
allows to choose d20 = 0, 1. In the case d20 = 0 the system is linearized
via

(Z,W ) =
(

z

1 − iz
,

w

(1 − iz)d11

)
.(3.26)

If d20 = 1, the system has two invariant lines and an invariant conic:

F1(z, w) = z K1(z, w) = i + z

F2(z, w) = 1 − iz K2(z, w) = z

F3(z, w) = −2 + 2i(1 + d11)z K3(z, w) = (1 + d11)z,
+(d11 + d2

11)z
2

+d11(d2
11 − 1)zw

(3.27)

yielding first integrals

H(z, w) = F3(z, w)(1 − iz)−(1+d11)(3.28)

and H(z, w) = 1
d11(d2

11−1)
(H(z, w) − H(0, 0)) = z(w + o(|(z, w)|)). The

linearizing change of coordinates is given by

(Z,W ) =
(

z

1 − iz
,
H(z, w)(1 − iz)

z

)
.(3.29)

We next consider the case c20 = 0. If d11 �= 0 we scale d11 = 1. If
d20 = 0 we have two invariant lines z = 0, w = 0 and the Darboux
factor ez, yielding the linearizing change of coordinates

(Z,W ) = (z, weiz).(3.30)
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In the case c20 = 0 d11 = 1 and d20 �= 0 the system has Darboux
factors

F1(z, w) = z K1(z, w) = i

F2(z, w) = 1 − iz − 1
2z

2 − 1
2d20

zw K2(z, w) = z
[4pt]F3(z, w) = ez K3(z, w) = iz.

(3.31)

This yields the first integral

H(z, w) = eiz

(
1 − iz − 1

2
z2 − 1

2d20
zw

)
.(3.32)

We consider the first integral H(z, w) = −2d20(H(z, w) − 1) = wz +
o(|z, w|2), yielding the linearizing change of coordinates

(Z,W ) =
(
z,

H(z, w)
z

)
.(3.33)

If c20 = d11 = 0 we have a Hamiltonian system linearized via

(Z,W ) =
(
z, w +

i

3
z2

)
.(3.34)

(7) c20 = d20 = d11 = 0. This case is the dual of (6).

(8) and (9) are special cases of Theorem 2.10.

4. Linearizable complex cubic symmetric systems

Theorem 4.1. We consider a complex cubic symmetric system in C
2

ż = iz + c30z
3 + c21z

2w + c12zw
2 + c03w

3

ẇ = −iw + d30z
3 + d21z

2w + d12zw
2 + d03w

3.
(4.1)

The system has a linearizable centre if and only if

c21 = d12 = 0(4.2)

and one of the following conditions is satisfied
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I c30 = d30 = d21 = 0(4.3)

II c12 = c03 = d03 = 0(4.4)

III c30 − d21 = c12 − d03 = d30 = c03 = 0(4.5)

IV c12 = c03 = d30 = d21 = 0(4.6)

V 3c30 − 7d21 = 3d03 − 7c12 = 48c330 + 343c12d2
30(4.7)

= 16c30c12 − 21d30c03 = 49c212d30 + 9c230c03

= 27c30c203 + 112c312 = 0

VI d30 = d03 = c12 = c30 − 3d21 = 0(4.8)

VII c30 = c03 = d21 = d03 − 3c12 = 0.(4.9)

In all cases one separatrix of the origin is an algebraic curve.

Proof: The necessity of the conditions is obtained by setting to zero the
coefficients of the normal form (3.11) up to degree 7 and the sufficiency
by providing the linearizing change of coordinates. As there are no new
arguments we limit ourselves to the generic cases. The limiting cases
can be done as in Section 3 (see also [C]).

(1) c30 = d30 = d21 = 0. If d03 �= 0 we can scale d03 = i. The system
has the three invariant lines F1(z, w) = w = 0 and has F2,3(z, w) = 1 ±
w = 0 with respective cofactors K1(z, w) = −i(1−w2) and K2,3(z, w) =
iw(w ∓ 1).

If c03 �= 0 we can scale c03 = 1. We then have for c12 �= ±i an
invariant conic F4(z, w) = 1 + i

2 (1 + c212)zw + 1
2 (−1 + ic12)w2 with co-

factor K4(z, w) = (i + c12)w2. This yields a Darboux first integral

H(z, w) =
(1 − w2)1−ic12

F 2
4

.(4.10)

A linearizing change of coordinates is given by

(Z,W ) =
(
i(H(z, w) − 1)(1 − w2)1/2

(1 + c212)w
,

w

(1 − w2)1/2

)
.(4.11)

(2) c12 = c03 = d03 = 0 is the dual of (1).

(3) c30 − d21 = c12 − d03 = d30 = c03 = 0. When c30d03 �= 0 we
recover the case (S∗

2 ) of [MRT]. We can scale c30 = d03 = i, i.e. we
have four invariant lines given by 1 + irz + sw = 0 with cofactors of the
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form −(rz + sw) + i(w2 + z2) and r, s = ±1. This yields a linearizing
change of coordinates

(Z,W ) =

(
z√

1 − (iz + w)2)
,

w√
1 − (iz + w)2)

)
.(4.12)

If either c30 = 0 or d03 = 0, we are in case (1) or (2).

(4) c12 = c03 = d30 = d21 = 0. If c30d03 �= 0 we recover the case (S∗
1 )

of [MRT]. We can scale c30 = −i and d03 = i. This yields the linearizing
change of coordinates

(Z,W ) =
(

z√
1 − z2

,
w√

1 − w2

)
.(4.13)

If c30 = 0 or d03 = 0 then we are in case (1) or (2).

(5) 3c30 − 7d21 = 3d03 − 7c12 = 48c330 + 343c12d2
30 = 16c30c12 −

21d30c03 = 49c212d30 + 9c230c03 = 27c30c203 + 112c312 = 0. When c30d03 �=
0 we recover the two cases (S∗

3 ) and (S̃∗
3 ) of [MRT]. We can scale

c30 = 7i = −d03. This yields c03 = −d30 and d2
30 = −16. The two

cases d30 = ±4i are equivalent under (z, w) 	→ (z,−w). Hence we limit
ourselves to the case d30 = 4i. This system has the first integral

H =
(z + (z − w)3)(w − (z − w)3)

1 + 9(z2 + zw + w2)
,(4.14)

where the cofactors of the three brackets are i+9i(z2−w2), −i+9i(z2−
w2) and 18i(z2 − w2). From this we obtain the linearising change of
coordinates

Z =
z + (z − w)3√

1 + 9(z2 + zw + w2)

W =
w − (z − w)3√

1 + 9(z2 + zw + w2)
.

(4.15)

If either c30 = 0 or d03 = 0 we are in case (1) or (2).

(6) d30 = d03 = c12 = c30 − 3d21 = 0. If c30 = 0 then we are in
case (1), otherwise we scale to make c30 = 1. This is a special case of
Theorem 2.10.

(7) c30 = c03 = d21 = d03 − 3c12 = 0 is the dual of (6).
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5. Real linearizable saddles

We now study real quadratic and symmetric cubic systems with a
linearizable saddle at the origin. The idea is simply to change coordi-
nates (z, w, t) 	→ (ix, iy,−it) in Theorems 3.1 and 4.1. The conditions
for integrability given in those theorems thus remain unchanged. This is
in marked contrast to the real centre case, where the change of coordi-
nates (z, w, t) 	→ (x+ iy, x− iy, t) forces the conditions to have complex
conjugate coefficients and in this way reduces the number of branches
that can be realized in R

2.
The above observation seems to indicate that the linearizable saddles

in some sense give a better indication of what happens in questions of
linearizability than is the case for centres. However, the disadvantage
is that we lose the visible aspects of the isochronicity, since the system
is isochronous with respect to pure imaginary time. Even the concept
of an integrable saddle which corresponds to a centre is less well known,
and not geometrically intuitive.

All isochronous centres of real quadratic and symmetric cubic systems
lie in the stratum of reversible systems. We address the same question
for linearizable saddle points to see in which strata of integrable saddles
they lie in. Moreover we give their phase portraits to see if there are any
general conclusions we can draw on their topology.

It was remarked by Teixeira and Yang [TY] that analytic time-rever-
sibility and integrability were equivalent for real centres. We adapt this
criterion for our case. The converse part requires more work since we
cannot simply assert that time-reversibility implies the existence of an
analytic first integral.

Theorem 5.1. A non-degenerate saddle of a real or complex analytic
system is integrable if and only if there is a local analytic transforma-
tion T of the system, with T 2 = id whose effect is the same as the time
reversal t 	→ −t.

Proof: Suppose the system is integrable. Then there is an analytic
change of coordinates which brings the system to the form

ẋ = x
(
λ +

∑
ai(xy)i

)
, ẏ = −y

(
λ +

∑
ai(xy)i

)
,(5.1)

(see for example [SM]). It is easy to see that the transformation (x, y) 	→
(y, x) reverses the system.
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Conversely suppose that the saddle point of the system is not in-
tegrable. Modulo an analytic change of coordinates and division by a
locally non-vanishing function we can bring the system to a normal form

ẋ = x, ẏ = −y + Axkyk+1 + o(|(x, y)|2k+1)(5.2)

with A �= 0. We will see that this is an obstruction to find an involu-
tion. Indeed it can be argued that such an involution T has a linear
part of the form T1(x, y) = (by, x/b), with b �= 0. We look for the
involution as a power series T (x, y) = (X,Y ) = (by +

∑∞
r=2 hr(x, y),

x/b+
∑∞

r=2 kr(x, y)), where hr(x, y) and kr(x, y) are homogeneous poly-
nomials in x and y of degree r. From the hypothesis we must have the
relation Ẋ = −X. However the term in xkyk+1 of degre 2k + 1 in the
expression Ẋ + X is always of the form bA �= 0, which contradicts the
existence of such a T .

Remarks 5.2. (1) In fact the hypothesis of the theorem can be relaxed.
For example, by considering the order (2k+1)-terms of equation Ẏ

as well as Ẋ we can assume only that the linear parts of T (in
the expansion about the critical point) are involutive and that the
transformed system is equal to the original system multiplied by
some negative function. Details are left to the reader.

(2) It is also possible to prove the converse part of the theorem directly,
without using normal forms. We sketch the idea below.

If T : (x, y) 	→ (T1(x, y), T2(x, y)), then we take new variables
φ(x, y) = (X,Y ) = (T1(x, y) − x, T1(x, y) + x). We want to show
that in the coordinates (X,Y ) the involution becomes S(X,Y ) =
(−X,Y ), with S = φ ◦ T ◦ φ−1. If we call R(X,Y ) = (−X,Y ) the
symmetry with respect to the Y -axis, this amounts to showing that
R ◦ φ ◦ T (x, y) = φ(x, y), which is a straightforword consequence
of the fact that T is an involution.

We thus obtain a new system with a corresponding reversing
transformation S, and so the system must be of the form

Ẋ = −Y − P (X2, Y ), Ẏ = −X + XQ(X2, Y ).(5.3)

Now such a system arises from the system

Ẇ = −2Y − 2P (W,Y ), Ẏ = −1 + Q(W,Y ),(5.4)

via the transformation W = X2. Since this later system is non-
singular at the origin, it has a first integral H(W,Y ) = W −
Y 2 + o(W ) + o(Y 2), which can be pulled back to a first inte-
gral K(X,Y ) = X2 − Y 2 + o(|(X,Y )|2) of the original system.
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Theorem 5.3. We consider a quadratic system in R
2 with a saddle

point at the origin with opposite eigenvalues

ẋ = x + c20x
2 + c11xy + c02y

2

ẏ = −y + d20x
2 + d11xy + d02y

2.
(5.5)

The system is linearizable at the origin if and only if one of the con-
ditions (3.2)–(3.10) is satisfied. The phase portraits are given in Fig-
ures 1–6.

Proof: The system (5.5) is obtained from (3.1) by means of the trans-
formation (x, y, T ) = (−iz,−iw, it).

We have a real system whenever the cjk are real. As the conditions
are invariant under (x, y) 	→ (ax, by), the families I, II, VI–IX can be
reduced to one-dimensional families, while the cases III–V can be reduced
to 0-dimensional families. However for practical reasons it is simpler for
cases I, II, VI and VII to draw the bifurcation diagram on one fourth of
a 2-sphere.

For case I we suppose c220 + c202 + d2
02 = 1 and c20, d02 ≥ 0. The bifur-

cation diagram appears in Figure 1. The case II can be deduced easily
from it.

d02 = 0
c20

c02

Figure 1
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The phase portraits of case III, IV, V appear in Figures 2, 3, and 4
respectively.

Figure 2

Figure 3
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Figure 4

For case VI we suppose c220+d2
20+d2

11 =1, c20, d20 ≥ 0. The bifurcation
diagram appears on Figure 5. Case VII can be easily deduced from it.

c20 = 0
d20

d11

d
2
0

+
d
1
1

=
0 d

2
0 −

d
1
1

=
0

Figure 5
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For case VIII we can scale d2
11 + c202 = 1, d11 ≥ 0. The bifurcation

diagram appears in Figure 6. Case IX follows from it.

c20 = 0

c20 > 0c20 < 0

d11 = 0d11 = 0

Figure 6

A natural question for us was to see where these linearizable saddles
lie inside the strata of integrable saddles. The integrability conditions for
a quadratic system with a saddle at the origin first appear in the work
of Dulac [Du] in a case by case procedure. They have been simplified
in [LL] and then further more in [Z]. The phase portraits of integrable
saddle points of quadratic systems are systematically studied in [DGS].

Theorem 5.4 ([LL] and [Z]). The strata of integrable saddles of (5.5)
are given by

(A) c11 = d11 = 0,

(B) d11 + 2c20 = c11 + 2d02 = 0,

(C) c20c11 − d11d02 = c311d20 − d3
11c02 = 0,

(D) 2c11 − d02 = c20 − 2d11 = c02d20 − d11c11 = 0.

(5.6)

The stratum (A) consists of systems generically having three invariant
lines, allowing a Darboux first integral (called Lotka-Volterra in [Z] and
harmonic in [LL]).
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The stratum (B) consists of Hamiltonian systems.
The stratum (C) consists of systems generically having an invariant

line and an invariant conic allowing a Darboux first integral. It is called
“symmetric” in [LL] (for reasons of symmetry in the calculations of
Lyapunov quantities) and reversible in [Z].

The stratum (D) consists of systems having a Malkin first integral
generically constructed from an invariant conic and an invariant cubic.

Remark 5.5. When c11d11 �= 0 it is not possible to find a symmetry axis
in the usual sense and we must introduce a generalization of reversibility,
in the same way as exponential factors appear as the limits of Darboux
integrals.

The effect of approaching these limiting cases within the stratum (C)
is that the eigenvectors of the reversing transformation coalesce and the
transformation becomes singular. Thus, in order to resolve this difficulty,
we are led to consider the system as a blow-up of a simpler system.

For example the substratum (C1) of (C):

ẋ = x + c20x
2

ẏ = −y + d20x
2 + d11xy,

(5.7)

is a particular case of the following theorem which has been obtained by
an algebraic method in [LL] (symmetries in the calculations of Lyapunov
constants).

Theorem 5.6. The following class of integrable saddles lies in the clo-
sure of the strata of reversible systems:

ẋ = x + P (x, y) = x(1 + p(x, y))

ẏ = −y + Q(x, y),
(5.8)

where we have either

P (x, y) =
∑
i>j

i+j≥2

cijx
iyj , Q(x, y) =

∑
i>j−2
i+j≥2

dijx
iyj ,(5.9)

with cr+1,r + dr,r+1 = 0, or the conjugate system under (x, y, t) 	→
(y, x,−t).
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Proof: Taking X = x and Y = xy, we obtain the system

Ẋ = X

(
1 + p

(
X,

Y

X

))

Ẏ = Y p

(
X,

Y

X

)
+ XQ

(
X,

Y

X

)
.

(5.10)

The conditions imply that a common factor of X can be removed to leave
an analytic system with a non critical point at the origin. It therefore
has a local first integral Φ(X,Y ) = Y + o(|(X,Y )|) which can be pulled
back to a local first integral of the original system, Φ(x, xy) = xy +
o(|(x, y)|2).

Remarks 5.7. (1) In the corresponding case for real centres, such sys-
tems do not arise except in the trivial case

ẋ = −y
(
1 +

∑
αi(x2 + y2)i

)
ẏ = x

(
1 +

∑
αi(x2 + y2)i

)
.

(5.11)

(2) It would be interesting to see if the corresponding notion of a limit
of rational reversible systems would also give some new integrabil-
ity conditions.

Proposition 5.8. The linearizable saddles described in Theorem 5.3
lie in the stratum (A) for the cases I–II, the stratum (C) for the ca-
ses III–VII, and the stratum (D) for the cases VIII–IX. In the latter
case the invariant cubic is reducible, yielding a line through the origin
and a conic.

Theorem 5.9. We consider a cubic system in R
2 symmetric with re-

spect to a saddle point at the origin with opposite eigenvalues

ẋ = x + c30x
3 + c21x

2y + c12xy
2 + c03y

3

ẏ = −y + d30x
3 + d21x

2y + d12xy
2 + d03y

3.
(5.12)

The system is linearizable at the origin if and only if (4.2) and one
of the conditions (4.3)–(4.9) is satisfied. The phase portraits appear in
Figures 7–12 (only the generic cases).

Proof: For case I we suppose c212 + c203 + d2
03 = 1, c03 ≥ 0, which yields

a half 2-sphere. The bifurcation diagram appears in Figure 7. (Case II
is dual.)



Complex Linearizable Centres 117

d03

c12 = d03c12 = −d03

c12

c03 = 0

Figure 7

For case III we suppose c230+c212 = 1. The bifurcation diagram appears
in Figure 8.

c12

c30

Figure 8
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For case IV we suppose c230+d2
03 = 1. The bifurcation diagram appears

in Figure 9.

c30

d03

Figure 9

Case V is zero-dimensional. We have the conditions c30c12 < 0,
d30c03 < 0, c30d21 > 0, c12d03 > 0 which yields, after scaling, the two
cases

ẋ = x + 7x3 − 3xy2 − 4y3

ẏ = −y + 4x3 + 3x2y − 7y3
(5.13)

and

ẋ = x− 7x3 + 3xy2 + 4y3

ẏ = −y − 4x3 − 3x2y + 7y3.
(5.14)

Their respective phase portraits appear in Figures 10 and 11.

Figure 10
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Figure 11

For case VI we suppose c203 + d2
21 = 1 and c03 ≥ 0. The bifurcation

diagram appears in Figure 12. (Case VII is dual.)

c03

d21

Figure 12

Theorem 5.10 ([LL]). The strata of integrable saddles are given by

(A) d21 + 3c30 = c21 + d12 = c12 + 3d03 = 0,

(B) c21 = d12 = c30 − 3d21 = 3c12 − d03

= 3c03d30 − 4d21d03 = 0,

(C) c21 + d12 = c30c12 − d21d03 = c230c03 + d30d
2
03

= c212d30 + c03d
2
21 = 0.

(5.15)

The stratum (A) consists of Hamiltonian systems.
The stratum (B) consists of systems having a Malkin first integral

constructed generically from an invariant quartic and an invariant sextic
which give a rational first integral.

The stratum (C) consists of reversible systems (called symmetric in
[LL]), possibly in the generalized sense of Theorem 5.6 or in the sense
below.
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For the substratum (C2) given by

c12 − d21 = c30 − d03 = c03 + d30 = c21 + d12 = 0(5.16)

there is no symmtry axis and it cannot be studied by means of Theo-
rem 5.6. The geometry can be explained as follows. We consider the
double folding transformation

(u, v) 	→ (x2 − y2, xy).(5.17)

The system can then be shown to arise from a new system

u̇ = (u2 + v2)(1 + h(u, v))

v̇ = (u2 + v2)(k(u, v)).
(5.18)

When we divide through by the common factor (u2+v2), the origin is not
a critical point. Trajectories passing close to the origin approximate to
the lines v = constant and are transformed to trajectories approximating
the curves xy = constant. Furthermore the first integral φ(u, v) = v +
o(|(u, v)|) which exists in a neighbourhood of the origin is transformed
to a first integral of the original system φ(x2 −y2, xy) = xy+o(|(x, y)|2)
and so the origin is integrable. Visually, this transformation is equivalent
to the 2-1 map z 	→ z2 of the complex plane to itself.

Proposition 5.11. The linearizable saddles described in Theorem 5.9
lie in the stratum (C) for the cases I–V and the Malkin stratum (B) for
the cases VI–VII. In the latter case the invariant quartic is reducible,
yielding a line through the origin and a cubic.

Finally, we raise some questions which are natural from the phase
portraits given in this paper and from the fact that all the examples of
linearizable saddles studied in this paper have at least one separatrix
which is an invariant algebraic curve.

Conjecture 5.12. A homoclinic loop through an integrable saddle of a
real vector field in the plane is an obstruction to linearizability. More
generally, any integrable saddle cannot lie on a monodromic graphic.

Question 5.13. Does there exist a complex polynomial system with a
nondegenerate linearizable centre at the origin and such that no separa-
trix of the origin is an algebraic curve?
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This last question is linked with [Z], where ŻoRla̧dek considers centres
with eigenvalues in p : −q resonances with p �= q. In view of his examples
he asks the following question: Does there exist a complex polynomial
system with a centre at the origin with eigenvalues in p : −q resonances
with p �= q and such that no separatrix of the origin is an algebraic
curve? From Remark 2.9 and the calculations in the previous sections
we know that we need not necessarily have both separatrices algebraic.
Again this is in contrast to the case of real isochronous centres where
the separatrices must be conjugate.
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tiques intégrables avec point de selle, Mémoire de mâıtrise de
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