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BOUNDING THE ORDERS OF FINITE SUBGROUPS

Ian J. Leary and Brita E. A. Nucinkis

Abstract
We give homological conditions on groups such that whenever the
conditions hold for a group G, there is a bound on the orders of fi-
nite subgroups of G. This extends a result of P. H. Kropholler. We
also suggest a weaker condition under which the same conclusion
might hold.

1. Introduction

Let R be a non-trivial unital ring. An R-module M is said to be of
type FPn if there is a projective resolution

· · · → Pn+1 → Pn → · · · → P0 → M → 0

of M over R in which P0, . . . , Pn are finitely generated. M is said to
be of type FP∞ if M is FPn for each n. Similarly, M is said to be of
type FP (resp. FL) over R if there is a resolution of M of finite length
in which each term is a finitely generated projective (resp. free) module.
For any discrete group G and commutative ring R, the augmentation
homomorphism RG → R gives R the structure of a module for the
group algebra RG. The group G is said to be FPn (resp. FP∞, FP , FL)
over R if the RG-module R is FPn (resp. FP∞, FP , FL) in the above
sense. The cohomological dimension of G over R, denoted by cdR(G), is
the projective dimension of R as an RG-module. For further information
concerning these definitions, see [2] or Chapter VIII of [3]. As usual, let
Q and Z denote the rational numbers and the integers respectively. We
prove the following.

Proposition 1. Let G be a group with cdQ(G) = n < ∞ and suppose
that G is of type FPn over Z. Then there is a bound on the orders of
finite subgroups of G.
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A similar result was proved by P. H. Kropholler in Section 5 of [6],
under the extra hypothesis that G should be FP∞ over Z. His proof
made use of the complete cohomology introduced by D. Benson, J. Carl-
son, G. Mislin and F. Vogel [1], [9] as will ours. (Complete cohomology
can be viewed as a generalization of Tate cohomology.)

The conclusion does not hold for all groups of type FPn−1 over Z.
K. S. Brown has shown [4] that for each n > 0, the Houghton groups [5]
afford an example of a group G = G(n) such that:

(a) G contains the infinite, finitary symmetric group;
(b) cdQ(G) = n;
(c) G is FPn−1 over Z.

The authors have recently constructed groups G of type FP∞ over
Z with cdQ G finite that contain infinitely many conjugacy classes of
finite subgroups [7], and it was these examples that led to the authors’
interest in Proposition 1. It is not known whether there is a bound on
the orders of finite subgroups for every G of type FP over Q. Some
remarks concerning this question will be made at the end of the paper.

2. Proofs

Before starting, we recall a basic property of FPn-modules. Suppose
that M is an R-module of type FPn, and that

Pn−1 → Pn−2 → · · · → P1 → P0 → M → 0

is a partial projective resolution of M in which each Pi is finitely gener-
ated. Then Kn−1, defined as the kernel of the map from Pn−1 to Pn−2,
is finitely generated.

We shall also give a brief outline of Benson and Carlson’s version of
generalized Tate cohomology for arbitrary rings R [1]. For R-modules M
and N let P HomR(M,N) be the group of all R-module homomorphisms
which factor through a projective, and let

[M,N ] = HomR(M,N)/P HomR(M,N).

For arbitrary R-modules M let FM be the free module on the set M
and ΩM is the kernel of the canonical projection FM � M . Let ΩiM =
Ω(Ωi−1M). Then there is a well defined sequence of maps

[M,N ] → [ΩM,ΩN ] → [Ω2M,Ω2N ] → · · ·

and it is now possible to define the Tate cohomology group in degree
zero as a direct limit as follows:
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Definition.
Êxt

0

R(M,N) = lim−→[ΩiM,ΩiN ].

From now on we shall concentrate on projective resolutions P∗ � Z

of the trivial module Z over the group-ring ZG. Let Ki be the kernel of
the map Pi → Pi−1 for i ≥ 1 and K0 = ker(P0 � Z).

Lemma 2. For every i ≥ 0 the following groups are isomorphic:

[Ki,Ki] ∼= [Ωi+1Z,Ωi+1Z].

Proof: This follows from Shanuel’s Lemma and an application of the fact
that for arbitrary M , N and projective modules P and Q,

[M ⊕ P,N ] ∼= [M,N ] ∼= [M,N ⊕Q].

Proof of Proposition 1: Consider a partial projective resolution of Z over
ZG where all Pi, i ≤ n− 1, are finitely generated:

Pn−1 → · · · → P0 → Z → 0,

and let K be the kernel of the map Pn−1 → Pn−2. As G is of type FPn

the kernel K is finitely generated. Since tensoring with Q is exact we
obtain a projective resolution of Q over QG, which is of type FP :

0 → K ⊗ Q → Pn−1 ⊗ Q → · · · → P0 ⊗ Q → Q → 0.

Therefore K⊗Q is a direct summand of a finite rank QG-free module F ,
freely generated by {f1, . . . , fr}, say. Let F0 be the free ZG-module on
these generators.

Claim. There is an integer m, such that multiplication with m from K
to K factors through F0.

Let π : F � K⊗Q be the projection onto K⊗Q and τ : K⊗Q ↪→ F be
a splitting, i.e., a map such that πτ = idK⊗Q. Denote by ι : K ↪→ K⊗Q

the inclusion defined by ι(k) = k ⊗ 1. Suppose k1, . . . , ks generate K.
For each 1 ≤ j ≤ s there exist λij ∈ QG such that ιτ(kj) =

∑r
i=1 λijfi.

Now pick m ∈ Z such that each mλij ∈ ZG. Since τ is a split injection
we can precompose the identity idK⊗Q = πτ with multiplication by m.
Hence the map

K
ι−→ K ⊗ Q

×m−→ K ⊗ Q

factors through F0 and has image in K thus proving the claim.
The claim together with Lemma 2 gives that

m[K,K] ∼= m[ΩnZ,ΩnZ] = 0.
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Complete cohomology agrees with ordinary Tate cohomology for finite
groups and we can therefore take an arbitrary finite subgroup H of G
and get that

mĤ0(H,Z) ∼= m[K,K] ∼= lim−→m[ΩiZ,ΩiZ] = 0.

The direct limit vanishes since for every ϕ ∈ Hom(ΩiZ,ΩiZ), which fac-
tors through a projective, the induced maps Ωjϕ : Ωi+jZ → Ωi+jZ also
factor through projectives. (Note that ΩiZ here denotes the
ith kernel in the Benson-Carlson construction for ZH and not ZG as
earlier used. This does not change the outcome, though.) But also
Ĥ0(H,Z) ∼= Z/|H|Z and therefore the group order is a divisor of m,
thus bounded.

3. FP-groups over Q

Let us consider again the partial resolution of the R-module M of
type FPn, which was mentioned at the beginning of the previous section:

Pn−1 → Pn−2 → · · · → P1 → P0 → M → 0.

There is such a partial resolution in which each Pi is finitely generated
and free. If also M has projective dimension n, then M is FP . If M has
projective dimension n and the Pi are finitely generated free modules,
then M is FL if and only if K is stably free. These results can be found
in [3, Sections VIII.4–VIII.6]. The following lemma is well-known, but
we could not find a reference, so we briefly sketch a proof. A similar
topological result appears in [8, Corollary 5.5].

Lemma 3. Let C denote an infinite cyclic group. For any R, if G is a
group of type FP over R, then G× C is of type FL over R.

Proof: There is a free resolution Q∗ of R over RC of length one, with
Q1

∼= Q0
∼= RC. Now suppose that

0 → Pn → Pn−1 → · · · → P0 → R → 0

is a projective resolution of R over RG in which each Pi is finitely gen-
erated, and Pi is free for i < n. Let P ′ be such that Pn ⊕ P ′ is a
finitely-generated free RG-module. Writing ⊗ for tensor products over
R, the total complex T∗ for the double complex P∗ ⊗Q∗ is a projective
resolution of R ⊗ R = R over RG ⊗ RC ∼= R(G × C), of length n + 1.
Each Ti is finitely generated and Ti is free for i < n. Let S∗ be the exact
chain complex consisting of one copy of P ′⊗RC in degree n+1 and one
copy in degree n, with the identity map as the boundary. Then S∗ ⊕ T∗
is a finite free resolution of R over R(G× C).
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Lemma 4. Let Fn → · · · → F0 be a finite-length chain complex of free
ZG-modules, suppose that H0(F∗) is isomorphic to the trivial ZG-mod-
ule Z, and that for each j > 0, there exists an integer mj > 0 such that
multiplication by mj annihilates Hj(F∗). Then any finite subgroup of G
has order dividing

∏n
j=1 mj.

Sketch-proof: The above bound is obtained by comparing the two spec-
tral sequences arising from the double complex

Ei,j
0 = HomH(Pi, Fj),

where H is a finite subgroup of G and P∗ is a complete resolution for
H.

These lemmas can be used to prove a slightly weaker version of Propo-
sition 1 using only ordinary Tate cohomology for finite groups. Suppose
that G is FPn over Z, FP over Q, and cdQ(G) = n − 1. By Lemma 3,
G′ = G × C is FPn over Z, FL over Q, and cdQ(G′) = n. A sequence
of free ZG′-modules satisfying the conditions of Lemma 4 can then be
constructed.

Let us now consider the problem of bounding the orders of finite
subgroups of an arbitrary group of type FP over Q. Such a G is finitely
generated, and by Lemma 3, we may assume without loss of generality
that G is FL over Q. Let P0 be a free QG-module of rank one with
generator v, and let P1 be QG-free on a set e1, . . . , em bijective with a
set g1, . . . , gm of generators for G. Define a map from P0 to Q by v �→ 1
and a map from P1 to P0 by ei �→ (1 − gi)v. Finally, let

0 → Pn → · · · → P1 → P0 → Q → 0

be a finite free resolution of Q over QG extending this partial resolution.
Now let F0 (resp. F1) be the ZG-submodule of P0 (resp. P1) generated

by v (resp. e1, . . . , em). For i ≥ 2, if Fi−1 has already been chosen,
let Fi be a ZG-lattice in Pi (i.e., a ZG-free ZG-submodule such that
Q⊗Fi = Pi), such that the image of Fi in Pi−1 is contained in Fi−1. This
defines a finite chain complex F∗ of finitely-generated free ZG-modules
such that H0(F∗) ∼= Z and Hi(F∗) is torsion for i > 0. If one could
bound the exponent of the torsion in Hi(F∗), Lemma 4 could be applied
to bound the orders of finite subgroups of G. Note that in general Hi(F∗)
will not be finitely generated as ZG-module. For example, if G is not
FP2 over Z, then H1(F∗) will not be finitely generated.
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