SOLVABLE GROUPS WITH MANY BFC-SUBGROUPS

O. D. Artemovych

Abstract \quad| We characterize the solvable groups without infinite properly as- |
| :--- |
| cending chains of non- $B F C$ subgroups and prove that a non- $B F C$ |
| group with a descending chain whose factors are finite or abelian |
| is a Černikov group or has an infinite properly descending chain |
| of non- $B F C$ subgroups. |

0. Introduction

In a series of papers Belyaev-Sesekin [2], Belyaev [3], Bruno-Phillips [4], [5], Kuzucuoğlu-Phillips [12], Leinen-Puglisi [13], Asar [1], Leinen [14] have obtained the results on mimimal non- $F C$ groups. In particular, in [2] are characterized the minimal non- $B F C$ groups, i.e. the non- $B F C$ groups in which every proper subgroup is $B F C$. Recall that a group G is called a $B F C$-group if there is a positive integer d such that no element of G has more than d conjugates. Due to the well known result of B. H. Neumann (see e.g. [16, Theorem 4.35]) the BFC-groups are precisely the groups with the finite commutator subgroups.

We say that a group G satisfies the minimal condition on non- $B F C$ subgroups (for short Min- $\overline{B F C}$) if for every properly descending series $\left\{G_{n} \mid n \in \mathbb{N}\right\}$ of subgroups of G there exists a number $n_{0} \in \mathbb{N}$ such that G_{n} is a $B F C$-group for every integer $n \geq n_{0}$ and a group G satisfies maximal condition on non-BFC subgroups (for short Max- $\overline{B F C}$) if there exists no infinite properly ascending series of non-BFC subgroups in G. Every minimal non- $B F C$ group satisfies Min- $\overline{B F C}$ and Max- $\overline{B F C}$. S. Franciosi, F. de Giovanni and Ya. P. Sysak [11] have investigated the locally graded groups with the minimal condition on non- $F C$ subgroups.

In this paper we characterize the solvable groups satisfying Max- $\overline{B F C}$ and Min- $\overline{B F C}$, respectively. Namely, we prove the two following theorems.

[^0]Theorem 1. A solvable group G satisfies $\operatorname{Max}-\overline{B F C}$ if and only if it is of one of the following types:
(i) G is a BFC-group;
(ii) $G=B U$ is a finitely generated group, where B is a proper torsion normal subgroup of G, U its polycyclic subgroup and $B\langle x\rangle$ is either a BFC-subgroup or a finitely generated subgroup for every element x of U;
(iii) $G=D U$ is a locally nilpotent-by-finite group with the torsion commutator subgroup G^{\prime}, where D is a normal divisible abelian p-subgroup, U is a polycyclic subgroup, and if $\langle u\rangle$ acts non-trivially on D for an element u of U, then D is an indecomposable injective $\mathbb{Q}\langle u\rangle$-module and $A\langle u\rangle$ is a BFC-subgroup for every proper submodule A of a $\mathbb{Z}\langle u\rangle$-module D with the action induced by the conjugation of u on D.

Theorem 2. Let the group G have a descending series whose factors are finite or abelian. If G satisfies the minimal condition on non-BFC subgroups, then it is a BFC-group or a Černikov group.

Throughout this paper p is a prime. For a group $G, Z(G)$ will always denote the centre of $G, G^{\prime}, G^{\prime \prime}, \ldots, G^{(n)}$ the terms of derived series of $G, \tau(G)$ the set of all torsion elements of $G, G^{p}=\left\langle g^{p} \mid g \in G\right\rangle$. In the sequel we will use the following notation:
\mathbb{Q} the rational number field; \mathbb{F}_{p} the finite field with p elements;
\mathbb{Q}_{p} the additive group of all rational numbers whose denominators are p-numbers;
\mathbb{Z} the additive group of all rational integers;
$\mathbb{C}_{p^{\infty}}$ the quasicyclic p-group;
$R\langle x\rangle$ the group ring of a cyclic group $\langle x\rangle$ over a commutative ring R.
We will also use other standard terminology from $[\mathbf{1 0}]$ and $[\mathbf{1 6}]$.

1. Solvable groups with Max- $\overline{B F C}$

In this section we study the solvable groups with the maximal condition on non-BFC subgroups.

Lemma 1.1. Let G be a group satisfying $\operatorname{Max}-\overline{B F C}$ and H its subgroup. Then:
(i) H satisfies Max $-\overline{B F C}$;
(ii) if H is normal in G, then the quotient group G / H satisfies Max$\overline{B F C}$;
(iii) if H is a normal non-BFC subgroup of G, then G / H satisfies the maximal condition on subgroups.

Proof: Is immediate.
Lemma 1.2. Let G be a group which satisfies Max- $\overline{B F C}$. If G contains a normal abelian subgroup N with the quasicyclic quotient group G / N, then G is a nilpotent group.

Proof: We prove this lemma by the same arguments as in the proof of Lemma 2.3 from [2]. Since G / N is a quasicyclic p-group for some prime p,

$$
G / N=\bigcup_{n=1}^{\infty}\left\langle\bar{a}_{n}\right\rangle
$$

where $\bar{a}_{n}{ }^{p}=\bar{a}_{n-1}, \bar{a}_{0}=N$. Put $A_{n}=\left\langle N, a_{n}\right\rangle$. Then $A_{n} \triangleleft G, A_{n}{ }^{\prime} \triangleleft G$ and by Lemma 1.1(iii) A_{n} is a $B F C$-subgroup. Hence $A_{n}{ }^{\prime} \leq Z(G)$ and consequently

$$
G^{\prime}=\bigcup_{n=1}^{\infty} A_{n}^{\prime} \leq Z(G)
$$

as desired.
Lemma 1.3. If G is a Černikov group with Max- $\overline{B F C}$, then it is a $B F C$-group or the quotient group G / G^{\prime} is finite.

Proof: Assume that the quotient group $\bar{G}=G / G^{\prime}$ is infinite and G is not a $B F C$-group. Then by Theorem 21.3 of $[\mathbf{1 0}] \bar{G}=\bar{D} \times \bar{F}$ is a direct product of the non-trivial divisible part \bar{D} and a reducible subgroup \bar{F}. Let D and F be the inverse images of \bar{D} and \bar{F} in G, respectively. By Corollary 2.2 of $[\mathbf{2}] G^{\prime}=D^{\prime} F^{\prime}$. Since G is not a $B F C$-group, \bar{F} is a finite group. It is clear that $\bar{D} \cong \mathbb{C}_{p \infty}$ for some prime p and G has a normal $B F C$-subgroup N with $G / N \cong \mathbb{C}_{p^{\infty}}$. By Theorem 1.16 of [7] $G=N Z(G)$ and so $G^{\prime}=N^{\prime}$, a contradiction with our assumption. The lemma is proved.

Proposition 1.4. If a group G satisfies $\operatorname{Max}-\overline{B F C}$, then it is a BFC-group or the quotient group G / G^{\prime} is finitely generated.

Proof: As it is well known $\bar{G}=G / G^{\prime}=\bar{D} \times \bar{S}$ is a direct product of the divisible part $\bar{D}=D / G^{\prime}$ and a reducible subgroup $\bar{S}=S / G^{\prime}$.
(1) First, let \bar{D} be a non-trivial subgroup. Then S and G^{\prime} are the $B F C$-subgroups. It is clear that G is a $B F C$-group or \bar{D} is a quasicyclic group. We suppose that $\bar{D} \cong \mathbb{C}_{p \infty}$. Let $\bar{F}=F / G^{\prime}$ be a p-basic subgroup of \bar{S}. If $\bar{F} \neq \bar{S}$, then \bar{G} / \bar{F} is a direct product of a quasicyclic p-subgroup and an infinite p-divisible abelian subgroup. By Lemma 2.2 of $[\mathbf{2}]$ and Lemma $1.1 G$ is a $B F C$-group.

Assume that $\bar{F}=\bar{S}$. Then by Lemma 26.1 and Proposition 27.1 from $[\mathbf{1 0}] \bar{G} / \bar{F}^{p}=D^{*} \times F^{*}$ is a direct product of a quasicyclic p-subgroup D^{*} and a p-subgroup F^{*} of exponent p. Lemma 2.2 of [2] implies $G^{\prime}=D^{\prime} S^{\prime}$. If \bar{F} is not a finitely generated subgroup, then in view of Lemma $1.1 D$ and G are the $B F C$-groups. Therefore we assume that \bar{F} is a finitely generated subgroup. Since F is a $B F C$-subgroup, $\left|G^{\prime}: D^{\prime}\right|<\infty$. By Lemma 1.2 $D / G^{\prime \prime}$ is a nilpotent group and so D / D^{\prime} is a Černikov group. This yields that D is a Černikov group. By Lemmas 1.1 and $1.3 D$ is a $B F C$-group and as a consequence G is the ones.
(2) Now let the divisible part \bar{D} is trivial. If $\bar{F}=\bar{S}$, then the quotient group G / G^{\prime} is finitely generated or \bar{G} / \bar{F}^{p} is a direct product of infinitely many cyclic subgroups of order p in which case G is a $B F C$-group. Therefore we assume that $\bar{F} \neq \bar{S}$. If \bar{F} is not finitely generated, in the same manner as above we can prove that G is a $B F C$-group.

Let \bar{F} be a finitely generated subgroup.
(a) Assume that the quotient group $G_{1}=\bar{G} / \bar{F}$ is non-torsion. Then there exists a subgroup \bar{F}_{0} such that $\bar{F} \leq \bar{F}_{0} \leq \bar{G}$ and \bar{G} / \bar{F}_{0} is torsionfree. As noted in [6] (see also [7, Chapter 2, §6]) \bar{G} / \bar{F}_{0} contains a subgroup \bar{T} / \bar{F}_{0} isomorphic to \mathbb{Q}_{p}. If \bar{Z} / \bar{F}_{0} is a subgroup of \bar{T} / \bar{F}_{0} isomorphic to \mathbb{Z}, then \bar{T} / \bar{Z} is a quasicyclic p-group, and it follows that G has a normal $B F C$-subgroup X with $G / X \cong \mathbb{C}_{p^{\infty}}$. By Lemma $1.2 G_{0}=G / X^{\prime} F^{p}$ is a nilpotent group and so by Lemma 26.1 and Proposition 27.1 from $[\mathbf{1 0}] G_{0} / G_{0}^{\prime}=F_{1} \times K_{1}$ is a direct product of a finite p-subgroup F_{1} and an infinite p-divisible abelian subgroup K_{1}. Let K_{0} be an inverse image of K_{1} in G_{0}. From what is proved above it follows that K_{0} has a normal subgroup K^{*} with $K_{0} / K^{*} \cong \mathbb{C}_{p^{\infty}}$. If $K^{*} \neq\left(K^{*}\right)^{p}$, then Theorem 1.16 of [7] yields that $K_{0} /\left(K^{*}\right)^{p}=\bar{X} \times \bar{Y}$ is a direct product of a quasicyclic p-subgroup \bar{X} and some divisible p-subgroup \bar{Y}. Since \bar{Y} is a non-trivial subgroup, it is infinite. Consequently G is a $B F C$-group. Therefore we suppose that $K^{*}=\left(K^{*}\right)^{p}$. As above we can prove that K^{*} contains a G-invariant subgroup L with $K^{*} / L \cong \mathbb{C}_{p \infty}$. Hence $K_{0} / L \cong \mathbb{C}_{p \infty} \times \mathbb{C}_{p \infty}$ and so G is a $B F C$-group.
(b) Let $G_{1}=\bar{G} / \bar{F}$ be an infinite torsion p^{\prime}-group. Then without loss of generality we can assume that G_{1} is an infinite q-group for some prime q different from p. By B we denote a basic subgroup of G_{1}. If $B=G_{1}$, then the quotient group G / G^{\prime} is finitely generated or B is an infinitely generated subgroup in which case G is a $B F C$-group.

Let $B \neq G_{1}$. If B is not a finitely generated subgroup, then Lemma 26.1 and Proposition 27.1 of $[\mathbf{1 0}]$ give that $G_{1} / B^{q} \cong \bar{B} \times \mathbb{C}_{q^{\infty}}$, where \bar{B} is an infinite abelian q-subgroup of exponent q, and this yields that G is a $B F C$-group. Therefore we assume that B is a finitely generated subgroup. Then without loss of generality let $B=1$ and $G_{1} \cong \mathbb{C}_{q^{\infty}}$. We would like to prove that the commutator subgroup G^{\prime} is torsion. Since the subgroup $G^{\prime \prime}$ is finite, without restricting of generality let $G^{\prime \prime}=1$. But then $\hat{F}=F / \tau\left(G^{\prime}\right)$ is an abelian subgroup of $\hat{G}=G / \tau\left(G^{\prime}\right)$ and from $G_{1} \cong \hat{G} / \hat{F}$ it follows that \hat{G} is an abelian group. This means that G^{\prime} is a torsion subgroup. By Lemma $1.2 G / F^{\prime}$ is a nilpotent group and it has the torsion commutator subgroup. So Corollary 3.3 of [2] yields that G / F^{\prime} is a torsion group. Hence G is a torsion group and $\bar{G} \cong \mathbb{C}_{q} \times M$, where M is a finite subgroup, a contradiction with our assumption.
(c) Finally, if $G_{1}=\bar{G} / \bar{F}$ is a torsion group and it has a non-trivial p-subgroup, then without loss of generality we can assume that G_{1} is a quasicyclic p-group. As in the line (b) this gives that G is a $B F C$-group. The proposition is proved.

Lemma 1.5. Let $G=B\langle x\rangle$ be a product of a normal abelian torsionfree subgroup B and a cyclic subgroup $\langle x\rangle$. If G satisfies Max- $\overline{B F C}$, then it is either an abelian group or a polycyclic group.

Proof: If F is any finitely generated subgroup of B, then $\langle F, x\rangle$ is a polycyclic subgroup in G and $\langle F, x\rangle=A\langle x\rangle$ for some G-invariant subgroup A of B. Assume that the quotient group G / A is not finitely genereted. Then $A\langle x\rangle$ is a $B F C$-subgroup in view of Lemma 1.1 and consequently it is abelian. Therefore a non-polycyclic group G is abelian, as desired.

Lemma 1.6. If G is a solvable group satisfying Max- $\overline{B F C}$, then one of the following conditions holds:
(i) $G=B U$ is a finitely generated group, where B is a proper torsion normal subgroup of G, U its polycyclic subgroup and $B\langle x\rangle$ is either a BFC-subgroup or a finitely generated subgroup for every element x of U;
(ii) G is a BFC-group;
(iii) $G=D V$ is a product of a normal divisible abelian p-subgroup D and a polycyclic subgroup V.

Proof: Suppose that G is not a $B F C$-group. Let n be the derived length of G. Then there exists an integer k such that $G^{(k-1)}$ is not a $B F C$-group, but $G^{(k)}$ is a $B F C$-group, where $1 \leq k \leq n-1$ and $G^{(0)}=$ G. Proposition 1.4 implies that $G^{(k-1)}=G^{(k)} U$ for some polycyclic subgroup U. By Lemma $1.5 \bar{U} \triangleleft \bar{G}^{(k-1)}$, where $\bar{G}^{(k-1)}=G^{(k-1)} / \tau\left(G^{(k)}\right)=$ $\bar{G}^{(k)} \bar{U}$, and so $\bar{U}=\bar{G}^{(k-1)}$. This means that $G^{(k-1)}=\tau\left(G^{(k)}\right) U$. We denote $\tau\left(G^{(k)}\right)$ by B.
(a) First we assume that G is not a finitely generated group. Clearly that there is an element u of U such that $H_{1}=G^{(k)}\langle u\rangle$ is a non-BFC group. We would like to prove that $H=B\langle u\rangle$ is the ones. Indeed, if H is a $B F C$-group, then the quotient group $H_{1} / H^{\prime} G^{(k+1)}$ is a nilpotent group and by Theorem 2.26 of $[\mathbf{1 0}]$ and Proposition 1.4 it is finitely generated. But then H_{1} (and consequently G) is also a finitely generated group, a contradiction. Hence H is a non- $B F C$ group.
(1) Assume that B is an abelian π-subgroup for some set π of primes. If $B=B_{1} \times B_{2}$ is a direct product of an infinite π_{1}-subgroup B_{1} and an infinite π_{2}-subgroup B_{2}, where π_{1} and π_{2} are the disjoint subsets of π such that $\pi=\pi_{1} \cup \pi_{2}$, then it is not difficulty to prove that H is a $B F C$-group, a contradiction. Thus π is a finite set and $B=P \times S$, where P is an infinite p-subgroup for some prime $p \in \pi$ and S is a finite p^{\prime}-subgroup. Moreover $P\langle u\rangle$ is a non- $B F C$ group.
(2) If B is not necessary an abelian subgroup, then from the line (1) it follows that B / T is a divisible abelian p-group for some finite H-invariant subgroup T. By Theorem 1.16 of $[7]$ there exists a divisible abelian p-subgroup D of B such that $D \leq Z(B)$ and $B=D T$. Thus $G=D V$, where V is a polycyclic subgroup.
(b) Now let G be a finitely generated group. Then $G=B U$ for some polycyclic subgroup U. Suppose that $B\langle x\rangle$ is not a $B F C$-group for some $x \in U$. If $B\langle x\rangle$ is not finitely generated, then, as in the line (1) and (2), we can prove that $B\langle x\rangle=D_{1} V_{1}$, where D_{1} is a normal divisible p-subgroup, V_{1} is a polycyclic subgroup and $D_{1} \leq B$. By Theorem of $[\mathbf{2}] B\langle x\rangle$ contains a proper non- $B F C$ subgroup K. Since $\overline{D_{1} K}=$ $D_{1} K /\left(D_{1} \cap K\right)=\bar{D}_{1} \rtimes \bar{K}$ and \bar{D}_{1} is a non-trivial divisible p-subgroup, we conclude that $D_{1} K$ (and consequently G) contains an infinite properly ascending series of type

$$
K<K_{1}<\cdots<K_{n}<\cdots
$$

a contradiction. This means that $B\langle x\rangle$ is a finitely generated subgroup. The lemma is proved.

Example 1.7. If $G=A \rtimes\langle t\rangle$, where $\langle t\rangle$ is an infinite cyclic subgroup, $A \cong \mathbb{C}_{p \infty}$ and $a^{t}=a^{1+p}(a \in A)$, then G satisfies Max- $\overline{B F C}$.

If D is a commutative Dedekind domain, A right D-module, $\operatorname{Spec}(D)$ the set of non-trivial prime ideals of D and $P \in \operatorname{Spec}(D)$, then
$A_{P}=\left\{a \in A \mid a P^{n}=\{0\}\right.$ for some positive integer $\left.n=n(a) \in \mathbb{N}\right\}$
is said to be the P-component of A, and A is said to be a D-torsion module if

$$
A=\{a \in A \mid \operatorname{Ann}(a) \neq\{0\}\} .
$$

Lemma 1.8. Let $G=A \rtimes\langle x\rangle$ be a semidirect product of a normal abelian subgroup A of exponent p and an infinite cyclic subgroup $\langle x\rangle$. If G satisfies Max- $\overline{B F C}$, then it is either a finitely generated group or a BFC-group.

Proof: It is clear that A is a right $\mathbb{F}_{p}\langle x\rangle$-module with the action determined by the conjugation of x on A. Assume that G is not neither a finitely generated group nor a $B F C$-group. Then A is a $\mathbb{F}_{p}\langle x\rangle$-torsion module and by Proposition 2.4 of $[8, \S 8.2]$

$$
A=\sum_{P \in \operatorname{Spec}\left(\mathbb{F}_{p}\langle x\rangle\right)}^{\oplus} A_{P}
$$

is a module direct sum of its P-component A_{P}. Without loss of generality we can suppose that $\left|A: A_{Q}\right|<\infty$ for some $Q \in \operatorname{Spec}\left(\mathbb{F}_{p}\langle x\rangle\right)$. Let B be a basic submodule of A_{Q}. By our hypothesis $B=A_{Q}$. Since B can be written as a direct product of two infinite G-invariant subgroup of infinite index, we obtain that $B \rtimes\langle x\rangle$ (and consequently G) is a $B F C$-group, a contradiction. The lemma is proved.

Proposition 1.9. If G is a non-"finitely generated" non-BFC solvable group satisfying Max- $\overline{B F C}$, then:
(1) G is a locally nilpotent-by-finite group;
(2) $G=B U$ is a product of a normal divisible abelian p-subgroup B and a polycyclic subgroup U;
(3) $B\langle u\rangle$ is a BFC-subgroup for an element $u \in U$ if and only if $u \in C_{U}(B)$;
(4) if $B\langle u\rangle$ is a non-BFC subgroup for some element $u \in U$, then $[B,\langle u\rangle]=B ;$
(5) if $B\langle u\rangle$ is a non-BFC subgroup for some element $u \in U$, then B is an indecomposable injective $\mathbb{Q}\langle u\rangle$-module;
(6) if $B\langle u\rangle$ is a non-BFC subgroup for some $u \in U$, then $A\langle u\rangle$ is a BFC-subgroup for every proper $\mathbb{Z}\langle u\rangle$-submodule A of B, where the action is induced by the conjugation of u on B;
(7) G contains a normal subgroup H of finite index in which every non-BFC subgroup is subnormal;
(8) G^{\prime} is a torsion subgroup of G.

Proof: (1) Is obvious.
(2) Follows from Lemma 1.6.
(3) Assume that $H=B\langle u\rangle$ is a BFC-subgroup for some element $u \in$ U. If u has a finite order, then $H / H^{\prime}\langle u\rangle$ is a divisible group and by Theorem 1.16 of $[\mathbf{7}] H=Z(H) H^{\prime}\langle u\rangle$. Consequently $Z(H)$ is a subgroup of finite index in H and H is an abelian group.

Let u be an element of infinite order. Since the subgroup $H^{\prime}\left\langle u^{s}\right\rangle$ and the quotient group $B\left\langle u^{s}\right\rangle /\left(H^{\prime}\left\langle u^{s}\right\rangle\right)^{\prime}$ are nilpotent for some integer s, $B\left\langle u^{s}\right\rangle$ is a nilpotent group by Hall theorem [16, Theorem 2.27]. But then $B\left\langle u^{s}\right\rangle$ is an abelian group and therefore as proved above $H /(Z(H) \cap\langle u\rangle)$ is abelian. This yields that H is an abelian group.
(4) If $B\langle u\rangle$ is a non- $B F C$ subgroup for some element u of U and $[B,\langle u\rangle] \neq B$, then $T=[B,\langle u\rangle]\langle u\rangle$ is a $B F C$-subgroup. Since $B\langle u\rangle / T^{\prime}$ is a nilpotent group, it is abelian, a contradiction.
(5) It is clear that B is a right $\mathbb{Q}\langle u\rangle$-module with the action induced by the conjugation of u on B. Furthermore, B is a divisible $\mathbb{Q}\langle u\rangle$-module and therefore it is injective (see e.g. [11, Theorem 5.28]). By Theorem 2.5 of [15] B has a decomposition as a module direct sum of indecomposable injective $\mathbb{Q}\langle u\rangle$-submodules. Since $B\langle u\rangle$ satisfies Max- $\overline{B F C}, B$ is an indecomposable module.
(6) Let $B\langle u\rangle$ be a non- $B F C$ group and A a proper submodule of a right $\mathbb{Z}\langle u\rangle$-module B, where the action is induced by the conjugation of u on B. By F we denote a basic subgroup of A. If $A=F$, then $A\langle u\rangle$ is either a polycyclic group or a $B F C$-group in view of Lemmas 1.8 and 1.5. Therefore we assume that $F \neq A$. Since B is an indecomposable $\mathbb{Q}\langle u\rangle$-module, we conclude that F is an infinite group. But then A / A^{p} is also infinite and so $A\langle u\rangle / A^{p}$ is a $B F C$-group by Lemma 1.8. This yields that $A\langle u\rangle$ is the ones.
(7) If V is a nilpotent subgroup of finite index in U and K is any non$B F C$ subgroup of $D V$, then $D \leq K$. Hence K is a subnormal subgroup of $D V$.
(8) Is obvious. The proposition is proved.

Proof of Theorem 1: (\Rightarrow) Follows from Proposition 1.9.
(\Leftarrow) Suppose that K is a non- $B F C$ subgroup of a non- $B F C$ group G.
Let G be a group of type (ii) and $\overline{B K}=B K / B^{\prime}(B \cap K)=\bar{B} \rtimes \bar{K}$.
Since $B K$ is a finitely generated subgroup, $\bar{S}=(\bar{B} \cap \bar{S}) \rtimes \bar{K}$, where \bar{S} is a subgroup of $\overline{B K}$ which contains \bar{K}, and $\overline{B K}$ satisfies the maximal condition on normal subgroups by Theorem 5.34 of $[\mathbf{1 0}]$, we conclude that every properly ascending series of type $\bar{K}<\bar{K}_{1}<\cdots<\bar{K}_{n}<\cdots$ is finite. This means that $B K$ (and consequently G) satisfies Max- $\overline{B F C}$.

If G is a group of type (iii), then it is clear that $K=(K \cap D) F$, where $F=\left\langle u_{1}, \ldots, u_{t}\right\rangle$ is some finitely generated subgroup. Assume that $K_{i}=(K \cap D)\left\langle u_{i}\right\rangle$ has the finite commutator subgroup $K_{i}{ }^{\prime}$ for all i $(1 \leq i \leq t)$. Since the subgroup $\left\langle K_{1}{ }^{\prime}, \ldots, K_{t}{ }^{\prime}, F\right\rangle$ is a finitely generated and $\left\langle K_{1}{ }^{\prime}, \ldots, K_{t}{ }^{\prime}, F\right\rangle=K_{0} F$ for some finite F-invariant subgroup $K_{0} \leq$ $K \cap D,\left(K / K_{0}\right)^{\prime}=\left(F K_{0} / K_{0}\right)^{\prime}$ is a finite subgroup and therefore K is a $B F C$-subgroup, a contradiction. Hence $(K \cap D)\langle u\rangle$ is non- $B F C$ subgroup for some $u \in F$ and by our hypothesis $D=K \cap D \leq K$. The theorem is proved.

Corollary 1.10. A solvable group G satisfies $\operatorname{Max}-\overline{B F C}$ if and only if it is of one of the following types:
(i) G is a BFC-group;
(ii) $G=B U$ is a finitely generated group, where B is a proper torsion normal subgroup of G, U its polycyclic subgroup and $B\langle x\rangle$ is either a BFC-subgroup or a finitely generated subgroup for every element x of U;
(iii) $G=D U$ is a product of a normal divisible abelian p-subgroup D and a polycyclic subgroup U with $D \leq \bigcap\{H \mid H$ is a non-BFC subgroup of G \}.

2. Groups with Min- $\overline{B F C}$

In this section we prove that a group which have a descending series with abelian or finite factors and satisfying Min- $\overline{B F C}$ is either a $B F C$-group or a Černikov group.
Lemma 2.1. If G is a non-perfect group in which every proper normal subgroup is a BFC-subgroup, then G is a BFC-group or $G=G^{\prime}\langle x\rangle$, where $x^{p^{n}} \in G^{\prime}$ for some prime p and some positive integer n.

Proof: By Theorem 21.3 of $[\mathbf{1 0}] \bar{G}=G / G^{\prime}=\bar{D} \times \bar{S}$ is a direct product of the divisible part \bar{D} and a reducible subgroup \bar{S}. Let \bar{B} be a p-basic subgroup of \bar{S}. If \bar{B} is not a finitely generated subgroup, then by Lemma 26.1 and Proposition 27.1 of $[\mathbf{1 0}] \bar{S} / \bar{B}^{p}=B_{1} \times S_{1}$ is a direct product of an infinite abelian subgroup B_{1} of exponent p and a p-divisible subgroup S_{1}. By Corollary 2.1 of $[\mathbf{2}] G$ is a $B F C$-group.

Let \bar{B} be a finitely generated subgroup. If \bar{D} is a non-trivial subgroup or $\bar{B}=\bar{S}$, then Lemma 26.1, Proposition 27.1 of $[\mathbf{1 0}]$ and Lemma 2.2 of [2] yield that G is a $B F C$-group. Finally, from $\bar{B}=\bar{S}$ and $\bar{D}=\overline{1}$ in view of Corollary 2.1 of [2] it follows that G is a $B F C$-group or G / G^{\prime} is a cyclic p-group for some prime p, as desired.

Proof of Theorem 2: Assume that G is neither a $B F C$-group nor a Černikov group. Since G satisfies Min- $\overline{B F C}$, we may invoke [9, Theorem 2.2] and obtain in this way that G is an $F C$-group. Choose

$$
G=G_{0} \geq G_{1} \geq \cdots \geq G_{n}
$$

such that every G_{i} is not a $B F C$-subgroup $(i=0, \ldots, k-1$), while every proper normal subgroup of G_{n} is a $B F C$-group. Since G has a descending series whose factors are finite or abelian, there exists a normal subgroup N in G_{n} such that G_{n} / N is finite or abelian. From Lemma 2.1, the quotient G_{n} / N is finite in both cases. Hence there exists a finite subset F of G_{n} such that $G_{n}=N F$, and every element in G_{n} is of the form $h f$ for suitable $h \in N, f \in F$. Howewer, since G is an $F C$-group, every $f \in F$ has just finitely many conjugates in G_{n}. And for $h \in N$ the number of conjugates of h in G_{n} is bounded by $\left|G_{n}: N \| N: C_{N}(h)\right|$ (note that N is a $B F C$-group). Hence G_{n} itself becomes a $B F C$-group. This contradiction shows that G must be a $B F C$-group or a Černikov group.
Acknowledgements. I am grateful to the referee whose remarks helped me to improve the exposition of this paper.

References

[1] A. O. Asar, Barely transitive locally nilpotent p-groups, J. London Math. Soc. (2) 55(2) (1997), 357-362.
[2] V. V. Belyaev and N. F. Sesekin, Infinite groups of Miller-Moreno type, Acta Math. Acad. Sci. Hungar. 26(3-4) (1975), 369-376.
[3] V. V. Belyaev, Groups of Miller-Moreno type, Siberian Math. J. 19 (1978), 350-360.
[4] B. Bruno and R. E. Phillips, Minimal non- $F C$ groups, Abstracts Amer. Math. Soc. 2 (1980), 565.
[5] B. Bruno and R. E. Phillips, On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova 69 (1983), 153-168.
[6] S. N. Černikov, Addendum to the paper "On the theory of complete groups.", Mat. Sbornik N.S. 22(64) (1948), 455-456 (Russian).
[7] S. N. Černikov, "Groups with the prescribed properties of systems of subgroups", Nauka, Moskow, 1984 (Russian).
[8] P. M. Cohn, "Free rings and their relations", London Mathematical Society Monographs 2, Academic Press, London, 1971.
[9] S. Franciosi, F. de Giovanni and Y. P. Sysak, Groups with many FC-subgroups, J. Algebra 218(1) (1999), 165-182.
[10] L. Fuchs, "Infinite abelian groups. Vol. II", Pure and Applied Mathematics 36-II, Academic Press, New York, 1973.
[11] L. A. Kurdachenko and I. Y. Subbotin, Modules over Dedekind domains, National University of Los Angeles, 1996.
[12] M. Kuzucuoğlu and R. E. Phillips, Locally finite minimal non-FC-groups, Math. Proc. Cambridge Philos. Soc. 105(3) (1989), 417-420.
[13] F. Leinen and O. Puglisi, Unipotent finitary linear groups, J. London Math. Soc. (2) 48(1) (1993), 59-76.
[14] F. Leinen, A reduction theorem for perfect locally finite minimal non-FC groups, Glasg. Math. J. 41(1) (1999), 81-83.
[15] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
[16] D. J. S. Robinson, "Finiteness conditions and generalized soluble groups. Part 1", Ergebnisse der Mathematik und ihrer Grenzgebiete 62, Springer-Verlag, New York, 1972.

Department of Algebra and Topology
Faculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
University St 1
79000 Lviv
Ukraine
E-mail address: topos@prima.franko.lviv.ua

[^0]: 2000 Mathematics Subject Classification. 20E15, 20F16, 20 F 24.
 Key words. BFC-group, minimal non-BFC group, maximal condition, minimal condition, solvable group.

