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Abstract
We establish interpolation formulæ for operator spaces that are
components of a given quasi-normed operator ideal. Sometimes
we assume that one of the couples involved is quasi-linearizable,
some other times we assume injectivity or surjectivity in the ideal.
We also show the necessity of these suppositions.

1. Introduction

Let B = (B0, B1) be a Banach couple. The Peetre K-functional is
defined by

K(t, b) = inf{‖b0‖B0 + t‖b1‖B1 : b = b0 + b1, bi ∈ Bi}
where t > 0 and b ∈ B0 +B1. This function plays a major role in Inter-
polation Theory (see e.g. [15], [1], [21]); it can be computed explicitly
in many concrete cases, and sometimes it coincides with well-known ob-
jects in Analysis. For example, in the case of the couple of Lebesgue
spaces (L1, L∞), one can prove that

K(t, f) =
∫ t

0

f∗(s)ds

where f∗ is the non-increasing rearrangement of f on (0,∞). For the
couple (C0, C1), formed by the space C0 of bounded uniformly con-
tinuous functions on the real line and the space C1 of functions with
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derivatives in C0, it turns out that

K(t, f) ≈ w(t, f),

that is to say, K(t, f) is equivalent to the modulus of continuity w(t, f)
of f .

A Banach couple B = (B0, B1) is said to be quasi-linearizable if for
any b ∈ B0 + B1 one can get in a linear way an optimum decompo-
sition of b for the K-functional. We give the precise definition and
examples in Section 2. This notion was introduced by Peetre in [16]
and [17]. It is rather restrictive, but many interesting couples satisfy
it (see [21]). Moreover, the idea of quasi-linearization is important for
the computation of the K-functional in other special instances (see, for
example, [12]).

Peetre proved in [16] that if B is quasi-linearizable then for any Ba-
nach space A and any positive measurable function f = f(t), the inclu-
sion

L(A,Bf,∞;K) ↪→ (L(A,B0),L(A,B1))f,∞;K(1.1)

is valid, with embedding constant depending only on B. Here the
space Bf,∞;K is defined similarly to the real interpolation space Bθ,∞
realized as a K-space, but replacing the function tθ by a more general
function f(t) (see Section 2 for more details).

The interest of formula (1.1) is due to its being a converse inclusion to
the one given by the interpolation property of the real method, namely

(L(A,B0),L(A,B1))θ,1 ↪→ L(A,Bθ,1).

It turns out that quasi-linearizable couples B can be characterized as
those for which (1.1) holds (see [16]).

The aim of this paper is to continue the research on embedding (1.1)
in several directions. After reviewing some basic notions in Section 2,
we show in Section 3 that (1.1) remains valid if we replace the class of
bounded linear operators by any quasi-normed operator ideal J . It is
also possible to substitute Bf,∞;K by any intermediate space B with
respect to B. In other words, it holds

J (A,B) ↪→ (J (A,B0),J (A,B1))ψ,∞;K .(1.2)

Here ψ = ψ(t) is a function associated in a natural way to B and B. We
study then the “dual” situation in which the couple B is in the front,
and we prove that

J (B,A) ↪→ (J (B0, A),J (B1, A))ρ∗,∞;K(1.3)
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where ρ = ρ(t) is another function naturally associated to B and B
and ρ∗(t) = 1/ρ(t−1). Moreover, the validity of (1.3) implies the quasi-
linearizability of B. Other embeddings that arise interpolating by the
J-method are established in Section 3 as well.

In Section 4 we combine the previous results with some arguments
of bilinear type to identify some interpolation spaces between spaces
of bounded operators, spaces of nuclear operators and spaces of tensor
products. Previous results in this direction are due to Kouba [11] and to
Ovchinnikov [13] and [14]. We also establish some interpolation formulæ
for approximation numbers and some embeddings for operator ideals
defined by approximation numbers.

Finally, in Section 5, we return to the J-formulæ, and we show that
it is possible to dispense with the quasi-linearizability of B provided the
operator ideal J is injective or surjective, and that these conditions on
J are essential for the results.

2. Preliminaries

Let B = (B0, B1) be a Banach couple, that is, B0 and B1 are Ba-
nach spaces continuously embedded in some Hausdorff topological vector
space. We equip B0 + B1 [respectively B0 ∩ B1] with the norm K(1, ·)
[respectively J(1, ·)] where for t > 0

K(t, ·) = K(t, ·;B0, B1) and J(t, ·) = J(t, ·;B0, B1)

are the Peetre functionals, defined by

K(t, b) = inf{‖b0‖B0 + t‖b1‖B1 : b = b0 + b1, bi ∈ Bi}
and

J(t, b) = max{‖b‖B0 , t‖b‖B1}.
A Banach couple B = (B0, B1) is said to be quasi-linearizable if there

exist two families of operators Vj(t) ∈ L(B0 +B1, Bj), j = 0, 1, 0 < t <
∞ and a constant k such that

V0(t) + V1(t) = I (identity mapping in B0 +B1),(2.1)

‖V0(t)b‖B0 ≤ ktj‖b‖Bj , b ∈ Bj (j = 0, 1),(2.2)

‖V1(t)b‖B1 ≤ ktj−1‖b‖Bj
, b ∈ Bj (j = 0, 1),(2.3)

(see [16] or [17]).
For instance, the couples (Lp(w0), Lp(w1)) of weighted Lp-spaces,

or (Lp(Rn),Wp(Rn)) satisfy this condition. More generally, if A is a
Banach space and D(Λ) is the domain of the infinitesimal generator
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of a strongly continuous semi-group of operators in A, then the cou-
ple (A,D(Λ)) is quasi-linearizable. Another example is the couple of
Besov spaces (Bs0p,q(R

n), Bs1p,q(R
n)). On the other hand, if p0 
= p1, the

couple (Lp0 , Lp1) is not quasi-linearizable. See [16] and [21] for more
details.

We say that a Banach space B is intermediate with respect to the
couple B = (B0, B1) if B0 ∩ B1 ↪→ B ↪→ B0 + B1, with continuous
inclusions. The position of B with respect to B can be described by the
functions

ψ(t) = ψ(t, B;B) = sup{K(t, b) : ‖b‖B = 1}(2.4)

and

ρ(t) = ρ(t, B;B) = inf{J(t, b) : b ∈ B0 ∩B1, ‖b‖B = 1}.(2.5)

These functions have been introduced by Cobos, Cwikel and Matos in [2]
and they are variants of functions studied by Dmitriev [5] and Pustyl-
nik [20].

We have 0 < ρ(t), ψ(t) < ∞ for all t > 0; the functions ψ(t) and
ρ(t) being non-decreasing, while ψ(t)/t, ρ(t)/t are non-increasing. As an
example, let B be a rearrangement invariant space on a σ-finite measure
space (Ω, µ) and let ϕB be its fundamental function, i.e. ϕB(t) = ‖χE‖B
where E ⊆ Ω with µ(E) = t. Then B is an intermediate space with
respect to the couple (L1, L∞) and

ψ(t, B;L1, L∞) = ρ(t, B;L1, L∞) = t/ϕB(t) (see [20]).

A class J of bounded linear operators between Banach spaces is said
to be an operator ideal if each component J ∩ L(A,B) = J (A,B) is a
linear subspace of L(A,B) that contains the finite rank operators and
satisfies that STR ∈ J (E,F ) whenever R ∈ L(E,A), T ∈ J (A,B) and
S ∈ L(B,F ).

A non-negative function τ : J −→ [0,∞) is called a quasi-norm on J
if τ has the following properties:

τ(h⊗ b) = ‖h‖A∗‖b‖B for h ∈ A∗ and b ∈ B.(2.6)

τ(S + T ) ≤ c(τ(S) + τ(T )) for S, T ∈ J (A,B),(2.7)
where c = cτ ≥ 1 is a constant.

τ(STR) ≤ ‖S‖B,F τ(T )‖R‖E,A for R ∈ L(E,A),(2.8)

T ∈ J (A,B) and S ∈ L(B,F ).
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It follows from (2.8) that τ(λT ) = |λ|τ(T ), and (2.6) and (2.8) yield
that ‖T‖ ≤ τ(T ) (see [18]). Sometimes we write τ(T ) = τ(TA,B) to
emphasize that T is considered as acting from A into B.

A quasi-normed operator ideal is an operator ideal J equipped with a
quasi-norm τ so that all components J (A,B) are complete with respect
to the induced metric. If cτ = 1, then [J , τ ] is said to be a normed
operator ideal.

Clearly, the class of all bounded linear operators with the operator
norm [L, ‖·‖] is an example of a normed operator ideal. Another example
is the ideal of nuclear operators [N , ‖ · ‖1]. Recall that T ∈ L(A,B) is
said to be nuclear if there are sequences (hn) ⊂ A∗ and (yn) ⊂ B such
that Tx =

∑∞
n=1 hn(x)yn and

∑∞
n=1 ‖hn‖A∗‖yn‖B < ∞. The norm on

N is given by

‖T‖1 = inf

{ ∞∑
n=1

‖hn‖A∗‖yn‖B
}

where the infimum is taken over all representations T =
∑∞
n=1 hn ⊗ yn

as above. More examples will be given in Sections 4 and 5. We refer
to [18] and [4] for other details on operator ideals.

In successive sections we shall interpolate operator spaces that are
components of a given ideal, so they are quasi-Banach spaces. The con-
cept of quasi-Banach couple X = (X0, X1) is analogous to the Banach
case, but replacing Banach spaces by quasi-Banach spaces. The K- and
J-functionals are defined in the same way. Now X0 ∩X1 and X0 +X1

are only quasi-Banach spaces.
If X = (X0, X1) is a quasi-Banach couple, 0 < θ < 1 and 0 < q ≤ ∞,

the real interpolation spaceXθ,q = (X0, X1)θ,q consists of all x ∈ X0+X1

which have a finite quasi-norm

‖x‖θ,q =
(∫ ∞

0

(t−θK(t, x))q
dt

t

)1/q

if 0 < q <∞,

‖x‖θ,q = sup
t>0

{t−θK(t, x)} if q = ∞

(see [1] or [21]).
For some results we shall need to replace in the former definition the

function tθ by a general positive function g : (0,∞) −→ (0,∞). The
space Xg,∞;K = (X0, X1)g,∞;K is formed of all x ∈ X0 +X1 which have
a finite quasi-norm

‖x‖g,∞;K = sup
t>0

{
K(t, x)
g(t)

}
.
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It is clear that Xg,∞;K ↪→ X0 +X1, but it might happen that Xg,∞;K =
{0}. Indeed, for any x ∈ X0 +X1, it follows from min{1, t}‖x‖X0+X1 ≤
K(t, x) that

sup
t>0

{
min{1, t}
g(t)

}
‖x‖X0+X1 ≤ ‖x‖g,∞;K .

Consequently, the space Xg,∞;K reduces to {0} if supt>0

{
min{1, t}
g(t)

}
=

∞. Note that Peetre’s embedding (1.1) is trivial in this case. For this
reason we shall assume in the following that the function g satisfies

sup
t>0

{
min{1, t}
g(t)

}
<∞.(2.9)

This condition guarantees that X0 ∩X1 ↪→ Xg,∞;K because

‖x‖g,∞;K = sup
t>0

{
K(t, x)
g(t)

}
≤ sup

t>0

{
min{1, t}
g(t)

}
‖x‖X0∩X1 .

So (X0, X1)g,∞;K is an intermediate space with respect to X. Note that
the function ψ (see (2.4)) associated to (X0, X1)g,∞;K and X satisfies

ψ(t) = ψ(t,Xg,∞;K ;X) ≤ g(t), t > 0.(2.10)

For g(t) = tθ it holds Xg,∞;K = Xθ,∞.
We shall also work with J-spaces. Let f : (0,∞) −→ (0,∞) be any

positive function. Assume that the constant in the triangle inequality for
Xj is cj . Put c = max{c0, c1} and define p by the equation (2c)p = 2.
If 0 < q ≤ p, the space Xf,q;J = (X0, X1)f,q;J consists of all sums
x =

∑∞
m=−∞ xm (convergence in X0 +X1) where (xm) ⊂ X0 ∩X1 and( ∞∑

m=−∞

(
J(2m, xm)
f(2m)

)q)1/q

<∞.

We put

‖x‖f,q;J = inf




( ∞∑
m=−∞

(
J(2m, xm)
f(2m)

)q) 1
q

: x =
∞∑

m=−∞
xm


 .

The difficulty now is that the functional ‖ · ‖f,q;J is, in general, only a
semi-quasi-norm. Indeed, for any x ∈ X0 ∩X1 and any m ∈ Z, we have

‖x‖f,q;J ≤ J(2m, x)
f(2m)

≤ max{1, 2m}
f(2m)

‖x‖X0∩X1 .
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Hence

‖x‖f,q;J ≤ 1

sup
m∈Z

{
f(2m) min{1, 1

2m
}
}‖x‖X0∩X1 .

In other words, if supt>0{f(t) min{1, 1
t }} = ∞ then ‖x‖f,q;J = 0 for

every x ∈ X0 ∩ X1. To avoid this obstruction we shall assume in the
following that f satisfies

sup
t>0

{
f(t) min{1, 1

t
}
}
<∞.(2.11)

Then it is clear that X0 ∩ X1 is densely and continuously embedded
in Xf,q;J . On the other hand, taking into account that the triangle
inequality is valid in X0 +X1 with the constant c, if x =

∑∞
m=−∞ xm it

follows from [1, Lemma 3.10.2], that

‖x‖X0+X1 ≤ 21/p

( ∞∑
m=−∞

‖xm‖pX0+X1

) 1
p

≤ 21/p

( ∞∑
m=−∞

K(1, xm)q
) 1

q

≤ 21/p

( ∞∑
m=−∞

(
min{1, 1

2m
}J(2m, xm)

)q) 1
q

≤ 21/p sup
m∈Z

{
f(2m) min{1, 1

2m
}
} ( ∞∑

m=−∞

(
J(2m, xm)
f(2m)

)q) 1
q

.

Since the supremum is finite by (2.11) we get that Xf,q;J ↪→ X0 +X1.
Let now ρ(t) = ρ(t,Xf,q;J ;X) be the function ρ associated to the

J-space Xf,q;J and the couple X (see (2.5)). One can check easily that

f(2m) ≤ ρ(2m), m ∈ Z.(2.12)

Moreover, if f is non-decreasing, it follows that

f(t) ≤ 2ρ(t), t > 0.(2.13)

Let us also point out that if f(t) = tθ then the equivalence theorem
(see [1] or [21]) yields that (X0, X1)f,q;J = (X0, X1)θ,q with equivalence
of quasi-norms. The reason for the restriction on q in the definition of
Xf,q;J is that we are working with very general functions f . If we impose
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stronger conditions on f , then Xf,q;J makes sense for 0 < q ≤ ∞ and
still is an intermediate space with respect to X. The same happens with
the K-spaces Xg,q;K (see [15]). We observe that Xg,∞;K and Xf,q;J are
complete.

Given any positive function f , we put f∗(t) = 1/f(t−1). It turns
out that f satisfies (2.9) (resp. (2.11)) if and only if f∗ satisfies (2.11)
(resp. (2.9)). If f(t) = tθ, then f∗(t) = f(t) = tθ.

Observe also that if B is an intermediate space with respect to the
couple B, then both functions ψ(t, B;B) and ρ(t, B;B) satisfy (2.9) and
(2.11).

3. Operator spaces and quasi-linearizable couples

We start with an estimate for the norms of the operators Vj(t) associ-
ated to a quasi-linearizable couple when they are considered as operators
with B as domain or B as target space, where B is any intermediate
space.

Lemma 3.1. Let B = (B0, B1) be a quasi-linearizable couple, let B be
an intermediate space with respect to B and let ψ(t) = ψ(t, B;B) and
ρ(t) = ρ(t, B;B) be the functions associated to B and B. Then
a) ‖Vj(t)‖B,Bj ≤ kt−jψ(t), j = 0, 1, 0 < t <∞;
b) ‖V0(t)‖B1,B ≤ (1 + k) t

ρ(t) , 0 < t <∞,
‖V1(t)‖B0,B ≤ (1 + k) 1

ρ(t) , 0 < t <∞.

Proof: Since Vj(t) ∈ L(B0 + B1, Bj) and B ↪→ B0 + B1, it is clear that
Vj(t) ∈ L(B,Bj). In order to estimate the norm, first note that by (2.2)
and (2.3)

‖Vj(t)b‖Bj
≤ kt−jK(t, b).

So, if b ∈ B with ‖b‖B = 1, ‖Vj(t)b‖Bj
≤ kt−jψ(t).

We go on to establish b). Assume j = 0. By the definition of ρ and
properties (2.1) to (2.3), for b ∈ B1 we obtain

‖V0(t)b‖B ≤ J(t, V0(t)b)
ρ(t)

=
1
ρ(t)

max{‖V0(t)b‖B0 , t‖b− V1(t)b‖B1}

≤ (1 + k)t
‖b‖B1

ρ(t)
.

The case j = 1 can be treated analogously.

We can now extend the result by Peetre [16, Satz 3.1].
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Theorem 3.2. Let B = (B0, B1) be a quasi-linearizable couple, let B
be an intermediate space with respect to B and let ψ(t) be the ψ-function
associated to B and B. Assume [J , τ ] is a quasi-normed operator ideal
and let A be any Banach space. Then

J (A,B) ↪→ (J (A,B0),J (A,B1))ψ,∞;K .

Moreover, there is a constant d depending only on B such that

‖T‖ψ,∞;K ≤ dτ(TA,B).

Proof: Given any T ∈ J (A,B) and any t > 0, we have by (2.1), T =
V0(t)T +V1(t)T with Vj(t)T ∈ J (A,Bj) due to the ideal property of J .
Whence, using Lemma 3.1/a, we derive that

‖T‖ψ,∞;K = sup
t>0

{
K(t, T )
ψ(t)

}

≤ sup
t>0

{
τ([V0(t)T ]A,B0) + tτ([V1(t)T ]A,B1)

ψ(t)

}

≤ sup
t>0

{
τ(TA,B)‖V0(t)‖B,B0 + tτ(TA,B)‖V1(t)‖B,B1

ψ(t)

}
≤ 2kτ(TA,B).

Observe that (J (A,B0),J (A,B1)) is a quasi-Banach couple because
J (A,Bj) ↪→ L(A,B0 +B1), j = 0, 1. When the couple B is in the front,
we need to assume that B is regular, i.e. B0 ∩ B1 is dense in B0 and in
B1, in order to guarantee that (J (B0, A),J (B1, A)) is a quasi-Banach
couple. Indeed, under this extra supposition we have

J (Bj , A) ↪→ L(Bj , A) ↪→ L(B0 ∩B1, A), j = 0, 1.

The next result refers to this “dual” case when B is in the front.

Theorem 3.3. Let B = (B0, B1) be a regular quasi-linearizable couple,
let B be an intermediate space with respect to B with B0 ∩ B1 dense in
B, and let ρ(t) be the ρ-function associated to B and B. Assume [J , τ ]
is a quasi-normed operator ideal and let A be any Banach space. Then

J (B,A) ↪→ (J (B0, A),J (B1, A))ρ∗,∞;K ,

where ρ∗(t) = 1/ρ(t−1). Moreover, there is a constant d depending only
on B such that

‖T‖ρ∗,∞;K ≤ dτ(TB,A).
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Proof: Density of B0∩B1 in B implies that J (B,A) is also continuously
embedded in L(B0 ∩B1, A), so we can compare the space J (B,A) with
(J (B0, A),J (B1, A))ρ∗,∞;K .

Given any T ∈ J (B,A), we can split T as T = TV1(t) + TV0(t)
with TV1(t) ∈ J (B0, A) and TV0(t) ∈ J (B1, A). So, according to
Lemma 3.1/b, we get

‖T‖ρ∗,∞;K = sup
t>0

{ρ(t)K(t−1, T )}

≤ sup
t>0

{ρ(t)[τ(TB,A)‖V1(t)‖B0,B + t−1τ(TB,A)‖V0(t)‖B1,B ]}

≤ 2(1 + k)τ(TB,A).

Assume now that g : (0,∞) −→ (0,∞) is a function satisfying (2.9)
and choose B = (B0, B1)g,∞;K . As we pointed out in (2.10), ψ(t, B;B) ≤
g(t) for t > 0. Hence

(J (A,B0),J (A,B1))ψ,∞;K ↪→ (J (A,B0),J (A,B1))g,∞;K .

This remark allows us to derive from Theorem 3.2 the following conse-
quence:

Corollary 3.4. Let B = (B0, B1) be a quasi-linearizable couple and let
g be a positive function satisfying (2.9). If [J , τ ] is any quasi-normed
operator ideal and A is any Banach space, then

J (A, (B0, B1)g,∞;K) ↪→ (J (A,B0),J (A,B1))g,∞;K .

Moreover, there is a constant d depending only on B such that

‖T‖g,∞;K ≤ dτ(TA,Bg,∞;K
).

On the other hand, Theorem 3.3 and (2.13) yield:

Corollary 3.5. Let B = (B0, B1) be a regular quasi-linearizable couple
and let f be a non-decreasing positive function satisfying (2.11). If [J , τ ]
is any quasi-normed operator ideal and A is any Banach space, then

J ((B0, B1)f,1;J , A) ↪→ (J (B0, A),J (B1, A))f∗,∞;K .

Moreover, there exists a constant d depending only on B such that

‖T‖f∗,∞;K ≤ dτ(TBf,1;J ,A
).

Writing down Corollary 3.4 for the ideal J = L of all bounded lin-
ear operators we recover Peetre’s result [16, Satz 3.1] (recall that, as we
pointed out in Section 2, the embedding (1.1) is trivial if condition (2.9) is
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not satisfied). Peetre proved in [16, Satz 3.2], that the validity of Corol-
lary 3.4 for J = L forces B to be quasi-linearizable. Hence without this
assumption Theorem 3.2 and Corollary 3.4 are not true in general. Next
we show that the same happens with Theorem 3.3 and Corollary 3.5.

Theorem 3.6. Let B = (B0, B1) be a regular Banach couple. If there is
a constant d such that for any Banach space A and any non-decreasing
positive function f satisfying (2.11) it holds

L((B0, B1)f,1;J , A) ↪→ (L(B0, A),L(B1, A))f∗,∞;K

with

‖T‖f∗,∞;K ≤ d‖T‖Bf,1;J ,A
,

then B must be quasi-linearizable.

Proof: Fix s > 0 and put f(t) = min{1, ts}. Then f is non-decreasing,
satisfies (2.11) and Bf,1;J = (B0 ∩B1, J(s, ·)) with

J(s, b) ≤ ‖b‖f,1;J ≤ 2J(s, b).(3.1)

Indeed, if b =
∑∞
m=−∞ bm is any J-representation of b, we have

J(s, b) ≤
∞∑

m=−∞
J(s, bm)

≤
∞∑

m=−∞
max{1, s

2m
}J(2m, bm) =

∞∑
m=−∞

J(2m, bm)
f(2m)

.

This gives the first inequality in (3.1). The second one follows from the
choice

bm =

{
0, if m 
= n

b, if m = n,

where 2n ≤ s < 2n+1, because

‖b‖f,1;J ≤ J(2n, b)
f(2n)

≤ s

2n
J(s, b) ≤ 2J(s, b).

Take next A = Bf,1;J and T = IBf,1;J
the identity mapping of Bf,1;J .

According to our assumption, there are operators V1(s) ∈ L(B0, Bf,1;J)
and V0(s) ∈ L(B1, Bf,1;J) such that

V0(s) + V1(s) = T = IB0∩B1
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and

‖V1(s)‖B0,Bf,1;J
+ s−1‖V0(s)‖B1,Bf,1;J

< 2K(s−1, T ) ≤ 2 sup
t>0

K(t, T )
f∗(t)

≤ 2d‖T‖Bf,1;J ,Bf,1;J
= 2d.

Therefore

‖V0(s)b‖B0 ≤ J(s, V0(s)b) ≤ 2ds‖b‖B1 , b ∈ B1,

‖V0(s)b‖B1 ≤ s−1J(s, V0(s)b) ≤ 2d‖b‖B1 , b ∈ B1,

and similarly

‖V1(s)b‖B1 ≤ 2ds−1‖b‖B0 , b ∈ B0,

‖V1(s)b‖B0 ≤ 2d‖b‖B0 , b ∈ B0.

Thus, if b ∈ B0 ∩B1, we obtain

‖V0(s)b‖B0 ≤ ‖b‖B0 + ‖V1(s)b‖B0 ≤ (1 + 2d)‖b‖B0(3.2)

and in the same way

‖V1(s)b‖B1 ≤ (1 + 2d)‖b‖B1 .(3.3)

Taking into account that B is regular, and so B0 ∩ B1 is dense in
B0 +B1, as well, it is not hard to check that the operators Vj(s) can be
extended boundedly to operators (denoted by the same letters) Vj(s) ∈
L(B0 +B1, Bj) such that (3.2) holds for any b ∈ B0, (3.3) for any b ∈ B1

and V0(s) + V1(s) = I in B0 +B1. The proof is complete.

The remainder of this section is devoted to interpolation by the J-me-
thod. We denote by cτ the constant in the quasi-triangle inequality (2.7).

Theorem 3.7. Let B = (B0, B1) be a quasi-linearizable couple, let B
be an intermediate space with respect to B and let ρ(t) be the ρ-functi-
on associated to B and B. Assume that A is any Banach space, that
[J , τ ] is a quasi-normed operator ideal and let q be defined by the equa-
tion (2cτ )q = 2. Then

(J (A,B0),J (A,B1))ρ,q;J ↪→ J (A,B).

Proof: Let T ∈ J (A,B0) ∩ J (A,B1). The decomposition

T = V1(t)T + V0(t)T
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yields that T ∈ J (A,B) with

τ(TA,B) ≤ cτ (‖V1(t)‖B0,Bτ(TA,B0) + ‖V0(t)‖B1,Bτ(TA,B1))

≤ cτ (1 + k)
1
ρ(t)

(τ(TA,B0) + tτ(TA,B1))

≤ 2cτ (1 + k)
1
ρ(t)

J(t, T ),

where we have used again Lemma 3.1 to estimate ‖V1(t)‖B0,B and
‖V0(t)‖B1,B . Suppose now that T ∈ (J (A,B0), J (A,B1))ρ,q;J and let
T =

∑∞
m=−∞ Tm be any J-representation of T . Using [1, Lemma 3.10.2]

and the previous estimates, we obtain that

τ(TA,B) ≤ 2
1
q

( ∞∑
m=−∞

(τ(Tm))q
) 1

q

≤ 2
1
q 2cτ (1 + k)

( ∞∑
m=−∞

(
J(2m, Tm)
ρ(2m)

)q
) 1

q

.

Consequently, T ∈ J (A,B) with τ(TA,B) ≤ 2
1
q 2cτ (1 + k)‖T‖ρ,q;J .

Theorem 3.8. Let B = (B0, B1) be a regular quasi-linearizable couple,
let B be an intermediate space with respect to B with B0 ∩ B1 dense in
B and let ψ(t) be the ψ-function associated to B and B. If A is any
Banach space, [J , τ ] is a quasi-normed operator ideal and q is defined
by (2cτ )q = 2, then

(J (B0, A),J (B1, A))ψ∗,q;J ↪→ J (B,A).

Proof: Let T ∈ J (B0, A) ∩ J (B1, A) and decompose it in the way T =
TV0(t) + TV1(t). It is clear that T ∈ J (B,A) with

τ(TB,A) ≤ cτ [τ(TB0,A)‖V0(t)‖B,B0 + τ(TB1,A)‖V1(t)‖B,B1 ]

≤ cτkψ(t)
[
τ(TB0,A) +

1
t
τ(TB1,A)

]
≤ 2cτk

J(t−1, T )
ψ∗(t−1)

.

Now the result follows by combining this estimate with [1, Lemma 3.10.2]
as we did in Theorem 3.7.

The next result follows from Theorems 3.7 and 3.8 by using (2.10)
and (2.12). We put (B0, B1)og,∞;K for the clousure of B0 ∩ B1 in
(B0, B1)g,∞;K .
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Corollary 3.9. Let B = (B0, B1) be a quasi-linearizable couple and let
A be a Banach space. Suppose that [J , τ ] is a quasi-normed operator
ideal and defined q by (2cτ )q = 2.

a) If f satisfies (2.11), then

(J (A,B0),J (A,B1))f,q;J ↪→ J (A, (B0, B1)f,1;J).

b) If B is regular and g satisfies (2.9), then

(J (B0, A),J (B1, A))g∗,q;J ↪→ J ((B0, B1)og,∞;K , A).

4. Some applications

We begin identifying some interpolation spaces.

Theorem 4.1. Let B = (B0, B1) be a quasi-linearizable couple and let
A be a Banach space.

a) If g is positive and satisfies (2.9), then

L(A, (B0, B1)g,∞;K) = (L(A,B0),L(A,B1))g,∞;K

(equivalent norms).
b) If B is regular and f is a non-decreasing positive function satisfying

(2.11) then

L((B0, B1)f,1;J , A) = (L(B0, A),L(B1, A))f∗,∞;K

(equivalent norms).

Proof: First we prove b). By Corollary 3.5, we have that L(Bf,1;J , A) ↪→
(L(B0, A),L(B1, A))f∗,∞;K . In order to establish the converse inclusion
let T ∈ (L(B0, A),L(B1, A))f∗,∞;K and m ∈ Z. Since K(2m, T ) ≤
f∗(2m)‖T‖f∗,∞;K we can find a decomposition T = Tm0 + Tm1 of T with
Tmj ∈ L(Bj , A) and

‖Tm0 ‖B0,A + 2m‖Tm1 ‖B1,A ≤ 2f∗(2m)‖T‖f∗,∞;K .

Then, for any b ∈ B0 ∩B1, it follows that

‖Tb‖A ≤ ‖Tm0 b‖A + ‖Tm1 b‖A ≤ ‖Tm0 ‖B0,A‖b‖B0 + 2m‖Tm1 ‖B1,A
‖b‖B1

2m

≤ (‖Tm0 ‖B0,A + 2m‖Tm1 ‖B1,A)J(2−m, b)

≤ 2f∗(2m)‖T‖f∗,∞;KJ(2−m, b) = 2‖T‖f∗,∞;K
J(2−m, b)
f(2−m)

.
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If now b ∈ Bf,1;J and b =
∑∞
m=−∞ bm is a J-representation of b, we get

‖Tb‖A ≤
∞∑

m=−∞
‖Tbm‖A ≤ 2‖T‖f∗,∞;K

∞∑
m=−∞

J(2m, bm)
f(2m)

.

This implies ‖T‖Bf,1;J ,A
≤ 2‖T‖f∗,∞;K and ends the proof of b). The

proof of a) is more easy. The inclusion (L(A,B0),L(A,B1))g,∞;K ↪→
L(A, (B0, B1)g,∞;K) follows from a similar argument to the one given
before, but that now can be simplified because we work with K-spaces
only. The converse inclusion follows from Corollary 3.4.

Our next result deals with nuclear operators.

Theorem 4.2. Let B = (B0, B1) be a quasi-linearizable couple, let A
be a Banach space and assume that f is a positive function satisfying
(2.11). Then

N (A, (B0, B1)f,1;J) = (N (A,B0),N (A,B1))f,1;J

(equivalent norms).

Proof: As we pointed out in Section 2, [N , ‖ · ‖1] is a normed operator
ideal so we can apply Corollary 3.9/a with q = 1. We obtain that

(N (A,B0),N (A,B1))f,1;J ↪→ N (A, (B0, B1)f,1;J).

Conversely, let T ∈ N (A,Bf,1;J). We can find sequences (hn) ⊂ A∗ and
(bn) ⊂ Bf,1;J such that

T =
∞∑
n=1

hn ⊗ bn and
∞∑
n=1

‖hn‖A∗‖bn‖f,1;J ≤ 2‖T‖1.

On the other hand, each bn can be written as bn =
∑∞
m=−∞ bnm with

(bnm) ⊂ B0 ∩B1 and

∞∑
m=−∞

J(2m, bnm)
f(2m)

≤ 2‖bn‖f,1;J .

Put Sn =
∑∞
m=−∞ hn⊗ bnm. For each n ∈ N, the operator Sn belongs to

the space (N (A,B0),N (A,B1)f,1;J , because

∞∑
m=−∞

J(2m, hn ⊗ bnm)
f(2m)

≤ 2‖hn‖A∗‖bn‖f,1;J .
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Since T =
∑∞
n=1 Sn, we conclude that T ∈ (N (A,B0),N (A,B1))f,1;J

with

‖T‖f,1;J ≤
∞∑
n=1

‖Sn‖f,1;J ≤ 2
∞∑
n=1

‖hn‖A∗‖bn‖f,1;J ≤ 4‖T‖1.

The proof is complete.

Assume next that the function g belongs to the class P+− (see [10]).
This means that g(t) is non-decreasing, g(t)/t is non-increasing with
g(t) = sups>0{g(ts)/g(s)} finite for every t > 0 and g(t) = o(max{1, t})
as t→ 0 and t→ ∞. Then it is well-known that the spaces (B0, B1)g,q;K
and (B0, B1)g,q;J coincide, and that for regular couples the following
duality formula holds

((B0, B1)og,∞;K)∗ = (B∗
0 , B

∗
1)g∗,1;J .

Arguing as in Theorem 4.2 but using Corollary 3.9/b, we obtain

Theorem 4.3. Let B = (B0, B1) be a regular quasi-linearizable couple,
let A be a Banach space and assume that g ∈ P+−. Then

N ((B0, B1)og,∞;K , A) = (N (B0, A),N (B1, A))g∗,1;J

(equivalent norms).

Previous results in this direction are due to Ovchinnikov [13] and
[14]. His approach works for regular couples of Hilbert spaces (H0, H1),
(G0, G1) and gives that

(L(H0, G0),L(H1, G1))θ,∞ = L((H0, H1)θ,1, (G0, G1)θ,∞),

(N (H0, G0),N (H1, G1))θ,1 = N ((H0, H1)oθ,∞, (G0, G1)θ,1).

Note that each one of the couples (H0, H1), (G0, G1) is quasi-linearizable.
The reason is that any regular couple of Hilbert spaces is isomorphic to a
couple (42(Gm), 42(2−mGm)) formed by vector valued 42-spaces (see [6]),
so the quasi-linearizability follows from the next result.

Lemma 4.4. Let 1 ≤ p ≤ ∞ and let (Gm)m∈Z be a sequence of Banach
spaces. Then the couple (4p(Gm), 4p(2−mGm)) is quasi-linearizable.
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Proof: Let x = (xm)m∈Z ∈ 4p(Gm) + 4p(2−mGm). Then

K(t, x)p ≈ inf

{ ∞∑
m=−∞

‖ym‖pGm
+ tp

∞∑
m=−∞

2−mp‖zm‖pGm
:

x = y + z, y ∈ 4p(Gm), z ∈ 4p(2−mGm)

}

=
∞∑

m=−∞
min{1, tp2−mp}‖xm‖pGm

=
∑
m∈Z1

‖xm‖pGm
+ tp

∑
m∈Z2

2−mp‖xm‖pGm

where Z1 = {m ∈ Z : 2m ≤ t} and Z2 = Z \ Z1. This suggest to define
for each t > 0

V0(t)x = (vm), V1(t)x = (wm)

where

vm =

{
xm if m ∈ Z1

0 otherwise
, wm =

{
0 if m ∈ Z1

xm otherwise
.

A direct computation shows that conditions (2.1), (2.2) and (2.3) are
fulfilled with k = 1.

It is well-known the relationship between N (A,B) and the projective
tensor product A∗⊗̂B, so one may guess that the results of Section 3 are
also useful to interpolate projective tensor products, or even injective
tensor products A⊗̌B. In fact, by means of similar arguments to those
described in Theorems 3.2 and 4.1, one can establish

Theorem 4.5. Let B = (B0, B1) be a regular quasi-linearizable couple,
let A be a Banach space and assume that g ∈ P+−. Then

A⊗̌(B0, B1)og,∞;K = (A⊗̌B0, A⊗̌B1)og,∞;K

(equivalent norms).

The result for the projective tensor product reads

Theorem 4.6. Let B = (B0, B1) be a regular quasi-linearizable couple
and let A be a Banach space such that (A⊗̂B0, A⊗̂B1) is also a Banach
couple. If f is any positive function satisfying (2.11), then

A⊗̂(B0, B1)f,1;J = (A⊗̂B0, A⊗̂B1)f,1;J
(equivalent norms).
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The proof follows similar lines to those in Theorem 4.2.
Previous results on interpolation of tensor products are due to

Kouba [11]. He found conditions on the regular Banach couples (A0, A1)
and (B0, B1) so that the following complex interpolation formulæ

[A0, A1]θ⊗̌[B0, B1]θ = [A0⊗̌B0, A1⊗̌B1]θ,

[A0, A1]θ⊗̂[B0, B1]θ = [A0⊗̂B0, A1⊗̂B1]θ

are valid. His conditions has nothing to be with the quasi-linearizability,
but they refers to the notions of type 2 and 2-convexity.

Next we focus our attention on operator ideals defined by approxima-
tion numbers. Recall that for T ∈ L(A,B) and n = 1, 2, . . . , the n-th
approximation number is given by

an(T ) = an(TA,B) = inf{‖T − L‖ : L ∈ L(A,B), rank L < n}.

For 0 < p <∞, the quasi-normed operator ideals [L(a)
p , σp] generated by

the approximation numbers and the sequence space 4p are defined by

L(a)
p (A,B) =


T ∈ L(A,B) : σp(T ) =

( ∞∑
n=1

an(T )p
) 1

p

<∞




(see [18] and [19]).
It follows from [8, Theorem 3.3.4], that approximation numbers have

no unrestricted interpolation properties. However, working with quasi-
linearizable couples, we can use ideas of Section 3 to establish the follo-
wing formulæ:

Lemma 4.7. Let A be a Banach space, let B = (B0, B1) be a quasi-
linearizable couple, let B be an intermediate space with respect to B and
let ψ(t) and ρ(t) be the functions associated to B and B.

a) If T ∈ L(A,B0 ∩B1) and n0, n1 ∈ N, then

an0+n1−1(TA,B) ≤ 2(1 + k)an0(TA,B0)ρ
∗
(
an1(TA,B1)
an0(TA,B0)

)
.

b) If B is regular, T ∈ L(B0 +B1, A) and n0, n1 ∈ N, then

an0+n1−1(TB,A) ≤ 2kan0(TB0,A)ψ
(
an1(TB1,A)
an0(TB0,A)

)
.
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Proof: Let T ∈ L(A,B0∩B1). Splitting T as T = V1(t)T+V0(t)T , using
Lemma 3.1 and additivity of approximation numbers, we get that

an0+n1−1(TA,B) ≤ an0([V1(t)T ]A,B) + an1([V0(t)T ]A,B)

≤ ‖V1(t)‖B0,Ban0(TA,B0) + ‖V0(t)‖B1,Ban1(TA,B1)

≤ (1 + k)
[
an0(TA,B0)

ρ(t)
+
tan1(TA,B1)

ρ(t)

]
.

If anj (TA,Bj ) 
= 0, for j = 0, 1, then the choice t = an0(TA,B0)/an1(TA,B1)
yields a). If anj (TA,Bj ) = 0, for j = 0 or j = 1, then an0+n1−1(TA,B) = 0
as well, because rank T < nj . The proof of b) is similar, using now the
splitting T = TV0(t) + TV1(t).

See [7] for some remarks on the connection between this result and
the study of approximation numbers of embeddings from Besov spaces
into spaces of Lipschitz type.

We are now ready to establish embedding formulæ for L(a)
p -ideals.

Theorem 4.8. Let A be a Banach space and let B = (B0, B1) be a
quasi-linearizable couple. Assume that 0 < p0, p1 < ∞, 0 < θ < 1,
1
p = 1−θ

p0
+ θ

p1
and 1

q = max{1, 1
p} + 1

p . Then the following holds:

a) (L(a)
p0 (A,B0),L(a)

p1 (A,B1))θ,q ↪→ L(a)
p (A, (B0, B1)θ,1).

b) Moreover, if B is regular,

(L(a)
p0 (B0, A),L(a)

p1 (B1, A))θ,q ↪→ L(a)
p ((B0, B1)oθ,∞, A).

Proof: Let T ∈ L(a)
p0 (A,B0) ∩ L(a)

p1 (A,B1). Using Lemma 4.7/a with
B = (B0, B1)θ,1 = (B0, B1)f,1;J where f(t) = tθ, we have that

a2n−1(TA,(B0,B1)θ,1) ≤ 21+θ(1 + k)an(TA,B0)
1−θan(TA,B1)

θ
.

Whence

σp(TA,(B0,B1)θ,1) ≤ 2
1
p

( ∞∑
n=1

a2n−1(TA,(B0,B1)θ,1)
p

) 1
p

≤ 2
θp+p+1

p (1 + k)

( ∞∑
n=1

an(TA,B0)
(1−θ)pan(TA,B1)

θp

) 1
p

≤ 2
θp+p+1

p (1 + k)σp0(TA,B0)
1−θσp1(TA,B1)

θ

≤ 2
θp+p+1

p (1 + k)2−θmJ(2m, T )

where m ∈ Z is arbitrary.
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Take now T ∈ (L(a)
p0 (A,B0),L(a)

p1 (A,B1))θ,q and let T =
∑∞
m=−∞ Tm

be any J-representation of T with (Tm) ⊂ L(a)
p0 (A,B0) ∩ L(a)

p1 (A,B1).
Since the constant in the triangle inequality for σp is 2

1
p max{2 1

p−1, 1}
and (2 ·21/p max{21/p−1, 1})q = 2, we derive from our previous estimates
that

σp(TA,(B0,B1)θ,1) ≤ 2
1
q

( ∞∑
m=−∞

σp(Tm)q
) 1

q

≤ C

( ∞∑
m=−∞

(
J(2m, Tm)

2θm

)q) 1
q

.

This implies a).
A similar argument, but using Lemma 4.7/b and (2.10), proves b).

Remark 4.9. In fact, Lemma 4.7 is valid for any additive s function s in
the sense of Pietsch [18] and [19], and Theorem 4.8 works for operator
ideals generated by any additive s-function.

5. Injectivity and surjectivity

Let [J , τ ] be a quasi-normed operator ideal. An operator S ∈ L(A,B)
belongs to the surjective hull J sur if there are a Banach space E and an
operator T ∈ J (E,B) so that S(UA) ⊆ T (UE) where UA and UE stand
for the closed unit balls of A and E, respectively. The function

τ sur(S) = inf{τ(T ) : S(UA) ⊆ T (UE)}
defines a quasi-norm in J sur and [J sur, τ sur] turns out to be a quasi-
normed operator ideal (see [18]). It is clear that cτsur ≤ cτ .

An operator S ∈ L(A,B) is said to belong to the injective hull J inj

if there are a Banach space F and an operator T ∈ J (A,F ) such that

‖Sx‖B ≤ ‖Tx‖F for all x ∈ A.
The quasi-norm on J inj is given by

τ inj(S) = inf{τ(T ) : ‖Sx‖B ≤ ‖Tx‖F , x ∈ A}
and [J inj, τ inj] is a quasi-normed operator ideal (see [18]). Again cτ inj ≤
cτ .

If [J , τ ] = [J sur, τ sur] (resp. [J , τ ] = [J inj, τ inj]), then the quasi-
normed operator ideal J is called surjective (resp. injective). Of course
[L, ‖ · ‖] satisfies these two conditions. Other examples are compact op-
erators [K, ‖ · ‖] and weakly compact operators [W, ‖ · ‖]. A normed op-
erator ideal which is injective but fails to be surjective is the ideal [Π, π]
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of all absolutely summing operators. Recall that T ∈ L(A,B) is ab-
solutely summing if there is a constant c > 0 such that for every finite
set {aj}nj=1 ⊆ A

n∑
j=1

‖Taj‖B ≤ c sup
{ n∑
j=1

|f(aj)| : f ∈ UA∗

}
.

We write π(T ) for the least constant c for which the above inequality
holds. We refer to [18] and [4] for more details on these notions.

Given two Banach spaces E, F , we denote by E ⊕ F the direct sum
of E and F , normed by ‖(x, y)‖ = max{‖x‖E , ‖y‖F }.

We shall use some ideas developed in [3] to establish the following
theorems.

Theorem 5.1. Let B = (B0, B1) be a regular Banach couple, let B be
an intermediate space with respect to B with B0 ∩B1 dense in B and let
ψ(t) be the ψ-function associated to B and B. If A is any Banach space,
[J , τ ] is a quasi-normed operator ideal and q is defined by (2cτ )q = 2,
then

(J sur(B0, A),J sur(B1, A))ψ∗,q;J ↪→ J sur(B,A).

Proof: Let T ∈ J sur(B0, A) ∩ J sur(B1, A). Take any ε > 0, and let
Ej (j = 0, 1) be Banach spaces and Rj ∈ J (Ej , A) so that T (UBj

) ⊆
Rj(UEj ) and τ(Rj) ≤ (1 + ε)τ sur(TBj ,A).

Given any b ∈ UB , we can find bj ∈ Bj such that b = b0 + b1 and
‖b0‖B0 + t‖b1‖B1 ≤ (1 + ε)ψ(t). Hence

UB ⊆ (1 + ε)ψ(t)UB0 + (1 + ε)
ψ(t)
t

UB1 .

Consider the Banach space E0 ⊕ E1 and the operator

R(x, y) = (1 + ε)ψ(t)R0x+ (1 + ε)
ψ(t)
t
R1y.

Then R ∈ J (E0 ⊕ E1, A) and

T (UB) ⊆ (1 + ε)ψ(t)R0(UE0) + (1 + ε)
ψ(t)
t
R1(UE1) ⊆ R(UE0⊕E1).

Consequently,

τ sur(TB,A) ≤ τ(R) ≤ cτ (1 + ε)2ψ(t)[τ sur(TB0,A) +
1
t
τ sur(TB1,A)]

≤ 2cτ (1 + ε)2
J(t−1, T )
ψ∗(t−1)

.

Combining this estimate with [1, Lemma 3.10.2], the result follows.
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Since [J , τ ] ↪→ [J sur, τ sur], we also have that

(J (B0, A),J (B1, A))ψ∗,q;J ↪→ J sur(B,A).

This means that the assumption that B is quasi-linearizable in Theo-
rem 3.8 and Corollary 3.9/b can be eliminated, provided we take
[J sur, τ sur] as the last operator space.

Writing down Theorem 5.1 for B = (B0, B1)oθ,∞ and J surjective we
conclude:

Corollary 5.2. Let B = (B0, B1) be a regular Banach couple and let A
be a Banach space. If [J , τ ] is a surjective quasi-normed operator ideal,
(2cτ )q = 2 and 0 < θ < 1, then

(J (B0, A),J (B1, A))θ,q ↪→ J ((B0, B1)oθ,∞, A).

Next we show by means of an example that surjectivity is essential in
the former result. We shall use the norm ideal Π which is not surjective.

Example 5.3. Let Ω = c0 ⊕ 41 ⊕ 41 and let A = (A0, A1) be the Ba-
nach couple constructed by Garling and Montgomery-Smith in [9, The-
orem 2]. Then Aj is isometric to 41; the projection P : Ω −→ c0 given
by P (x, y, z) = x belongs to L(A

o

θ,∞, c0) and the embedding J : c0 −→ Ω
given by Jx = (x, 0, 0) belongs to L(c0, A

o

θ,∞). Moreover, it is easy to
check that A is regular.

Let now R ∈ L(c0, 42) be the operator defined by R(ζn) = (ζn/n). A
direct computation shows that R /∈ Π(c0, 42). Put T = RP . Since Aj is
isometric to 41, Grothendieck’s theorem implies that

T ∈ Π(A0, 42) ∩ Π(A1, 42).

However, T does not belongs to Π(A
o

θ,∞, 42) because TJ = RPJ = R
which is not absolutely summing.

We consider now the injective hull.
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Theorem 5.4. Let B = (B0, B1) be a Banach couple, let B be an inter-
mediate space with respect to B and let ρ(t) be the ρ-function associated
to B and B. Assume that A is any Banach space, that [J , τ ] is a quasi-
normed operator ideal and let q be defined by (2cτ )q = 2. Then

(J inj(A,B0),J inj(A,B1))ρ,q;J ↪→ J inj(A,B).

Proof: Let T ∈ J inj(A,B0) ∩ J inj(A,B1). Given any ε > 0 we can
find Banach spaces Fj (j = 0, 1) and operators Rj ∈ J (A,Fj) with
‖Tx‖Bj

≤ ‖Rjx‖Fj
for all x ∈ A, and τ(Rj) ≤ (1 + ε)τ inj(TA,Bj

). Given
t > 0, put Rx = (R0x, tR1x). Then R ∈ J (A,F0 ⊕ F1). It follows from

‖T (x)‖B ≤ J(t, Tx)
ρ(t)

≤ 1
ρ(t)

max{‖R0x‖F0 , t‖R1x‖F1}=
1
ρ(t)

‖Rx‖F0⊕F1

that T ∈ J inj(A,B) with

τ inj(TA,B) ≤ 1
ρ(t)

τ(R) ≤ cτ
ρ(t)

(τ(R0) + tτ(R1)) ≤
2cτ (1 + ε)
ρ(t)

J(t, T ).

Now we conclude the result by appealing to [1, Lemma 3.10.2].

Since [J , τ ] ↪→ [J inj, τ inj], Theorem 5.4 shows that we can elimi-
nate the assumption of quasi-linearizability in Theorem 3.7 and Corol-
lary 3.9/a provided we take J inj(A,B) as the last operator space. In
particular, we have

Corollary 5.5. Let B = (B0, B1) be a Banach couple and let A be
a Banach space. If [J , τ ] is an injective quasi-normed operator ideal,
(2cτ )q = 2 and 0 < θ < 1, then

(J (A,B0),J (A,B1))θ,q ↪→ J (A, (B0, B1)θ,1).

Working with the dual ideal [Πd, πd] of absolutely summing operators,
it is not hard to derive from Example 5.3 that injectivity is essential in
Corollary 5.5.
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[1] J. Bergh and J. Löfström, “Interpolation spaces. An intro-
duction”, Grundlehren der Mathematischen Wissenschaften 223,
Springer-Verlag, Berlin, 1976.



480 F. Cobos, T. Signes

[2] F. Cobos, M. Cwikel and P. Matos, Best possible compact-
ness result of Lions-Peetre type, Proc. Edinburgh Math. Soc. (2) (to
appear).

[3] F. Cobos, A. Manzano and A. Mart́ınez, Interpolation theory
and measures related to operator ideals, Quart. J. Math. Oxford
Ser. (2) 50(200) (1999), 401–416.

[4] J. Diestel, H. Jarchow and A. Tonge, “Absolutely summing
operators”, Cambridge Studies in Advanced Mathematics 43, Cam-
bridge University Press, Cambridge, 1995.

[5] A. A. Dmitriev, The interpolation of one-dimensional operators,
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