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RESIDUE CURRENTS
OF THE BOCHNER-MARTINELLI TYPE

Mikael Passare, August Tsikh and Alain Yger

Abstract
Our objective is to construct residue currents from Bochner-Marti-
nelli type kernels; the computations hold in the non complete in-
tersection case and provide a new and more direct approach of
the residue of Coleff-Herrera in the complete intersection case;
computations involve crucial relations with toroidal varieties and
multivariate integrals of the Mellin-Barnes type.

1. Introduction

Of the great number of integral representation formulas for holomor-
phic functions in several variables, there are two that are particularly
simple and useful, namely those given by the Cauchy kernel and by the
Bochner-Martinelli kernel. It is well known, see [18], that these kernels
correspond to each other via the Dolbeault isomorphism. Moreover, it
is an elementary observation that the Bochner-Martinelli representation
formula can be obtained by averaging the Cauchy formula over a simplex.
More precisely, taking the mean value over the simplex

Σp(η) = {s ∈ Rn
+; s1 + · · ·+ sp = η}

of both sides in the Cauchy formula

h(0) =
1

(2πi)p

∫
|wj |2=sj

h(w) dw1 ∧ · · · ∧ dwp
w1 · · ·wp

,
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one arrives at the Bochner-Martinelli formula

h(0) = cp
∫
‖w‖2=η

h(w) Ω(w) ∧ dw1 ∧ · · · ∧ dwp,

where cp = (−1)p(p−1)/2(p− 1)!/(2πi)p is a constant depending only on
the number of variables, and the kernel Ω is given by

Ω(w) =
1
‖w‖2p

p∑
k=1

(−1)k−1w̄k dw̄1 ∧ · · · d̂w̄k · · · ∧ dw̄p.

The simplicity of the Cauchy kernel makes it a natural candidate
in the definition of multidimensional residues. For instance, there is
an elegant integral interpretation of the Grothendieck residue based on
this kernel, see [19]. In 1978 the Cauchy kernel was used by Coleff
and Herrera [14] in their definition of residue currents, which goes as
follows: Let f1, . . . , fp be a system of p holomorphic functions in some
domain V ⊂ Cn. For every smooth, compactly supported test form
ϕ ∈ Dn,n−p(V ) one considers the integral

I(ε) = I(ε;ϕ) =
1

(2πi)p

∫
|fj |2=εj

ϕ

f1 · · · fp
,(1.1)

where the real-analytic chain {|f1|2 = ε1, . . . , |fp|2 = εp} is oriented
as the distinguished boundary of the corresponding polyhedron. It is
easy to see that, when the common zero set f−1(0) of the system f =
(f1, . . . , fp) has codimension less than p (that is, when f is not a com-
plete intersection), then the function I(ε) given by (1.1) does not have
a limit as ε → 0. However, Coleff and Herrera showed that this limit
does exist if one lets ε approach the origin along a special path ε(δ) =
(ε1(δ), . . . , εp(δ)), a so-called admissible trajectory, for which each coor-
dinate tends to zero quicker than any power of the subsequent coordi-
nate. In the case of a complete intersection this limit is independent of
the ordering of the functions, and it seemed reasonable to expect, in this
case, the existence of an unconditional limit of the function I(ε) at the
origin. This turned out not to be the case, and the counterexamples of
[25] and [12] show that the behaviour of the integral (1.1) near ε = 0
can be quite intricate. We have therefore found it natural to consider
the residue current, associated with the mapping f : V → Cp, as a limit
of certain averages of the residue function I(ε).
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The aim of the present paper is to study residue currents of the
Bochner-Martinelli type, which may be viewed as limits of mean val-
ues of I(ε) over the simplex Σp(η) and which can in fact be written
as

Tf (ϕ) = lim
η→0
cp

∫
‖f‖2=η

Ω(f) ∧ ϕ.(1.2)

In particular, our Theorem 1.1 says that such a limit always exists and
defines a (0, p)-current Tf , which annihilates the integral closure of the
p-th power of the ideal generated by f1, . . . , fp in the space of holomor-
phic functions in V , and which also annihilates the conjugate of any
function from the radical of this ideal. In the complete intersection case
Tf coincides with the Coleff-Herrera current, see Theorem 4.1, and with
the currents considered in the papers [23], [5], [24], so there is the nat-
ural notation

Tf = ∂̄
1
f1
∧ · · · ∧ ∂̄ 1

fp
.

As a consequence we obtain in Theorem 2.1 the alternative representa-
tion

Tf (ϕ) = lim
τ→0
p cp

∫
V

τ∂f ∧ ϕ
(‖f‖2 + τ)p+1

,(1.3)

where ∂f = ∂f1 ∧ · · · ∧ ∂fp, for the current ∂̄(1/f1)∧ · · · ∧ ∂̄(1/fp). This
latter limit agrees with a more classical approach to particularly simple
residue currents (with measure coefficients), which was used in [3] for
obtaining interpolation and division formulas.

We feel that our results are of a certain interest already in the case of a
complete intersection f . Indeed, a big draw-back in the theory of residue
currents has always been the difficulty (for p > 1) in giving a concise
definition of them, and the above limits (1.2) and (1.3) certainly provide
much more appealing definitions of Tf than the previously existing ones.
(We must admit though that we had to do some work in order to prove
their equivalence.)

We shall however not restrict ourselves to the complete intersection
case. This is partly because in our existence proof we do not need this
assumption, but more importantly since there is already some recent
work (see for example [30], [9]), where some questions related to residue
theory in the non-complete intersection case are studied.

Here is the exact formulation of our main result:
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Theorem 1.1. Let f1, . . . , fm, be m holomorphic functions defined in
some open set V of Cn. Then, for any ordered subset I ⊂ {1, . . . ,m}
of cardinality p ≤ min(m,n), and for any test form ϕ ∈ Dn,n−p(V ), the
limit

lim
η→0

cp
ηp

∫
{‖f‖2=η}

 p∑
k=1

(−1)k−1fik
∧
l �=k
dfil

 ∧ ϕ(1.4)

exists and defines the action of a (0, p) current Tf,I with the following
vanishing properties:

(i) hTf,I = 0 for any h ∈ O(V ) which vanishes on the common zero
set {f1 = · · · = fm = 0};

(ii) hTf,I = 0 for any h ∈ O(V ) which is locally in the integral closure
of the ideal (f1, . . . , fm)p;

(iii) Tf,I = 0 if p < codim{f1 = · · · = fm = 0}.
Moreover, Tf,I depends in an alternating way on the ordering of the
elements in I.

Since the currents we introduce here are similar to those introduced in
[15, Section 5], it seems reasonable to expect that the constructions we
propose in this paper might give some further insight regarding explicit
formulations of the Ehrenpreis-Palamodov fundamental principle in the
non complete intersection case (in the spirit of the formulation in [13]).

Finally, we will also explain in our paper how explicit computations
involving Bochner-Martinelli currents (in the case of normal crossings,
when the fj are monomials) provide interesting connections with multi-
dimensional Mellin-Barnes integrals (see [27]).

2. Residue currents of the Bochner-Martinelli type

In this section we give a proof of Theorem 1.1. First a piece of no-
tation: Throughout this paper cp will denote the numerical constant
(−1)p(p−1)/2(p − 1)!/(2πi)p. Consider an open set V in Cn and let
f1, . . . , fm be elements in the algebra O(V ) of holomorphic functions
in V . It follows from Sard’s theorem that there is a negligible set Ef ,
such that for each η ∈ R+ \ Ef the equation

‖f(ζ)‖2 :=
m∑
k=1

|fk(ζ)|2 = η
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defines a smooth real hypersurface in V , which inherits the standard
orientation of V ⊂ Cn. We denote by Γf (η) the corresponding real
analytic (2n − 1)-chain. Let further I = {i1, . . . , ip} be an arbitrary
ordered subset of {1, . . . ,m}, whose number of elements p is at most
min(n,m). For any test form ϕ ∈ Dn,n−p(V ) and for each η ∈ R+ \Ef ,
we then write

Jf,I(ϕ, η) :=
cp
ηp

∫
{‖f‖2=η}

 p∑
k=1

(−1)k−1fik
∧
l �=k
dfil

 ∧ ϕ.(2.1)

It follows from the co-area formula ([16, Theorem 3.2.11, p. 248]) that
the almost everywhere defined map

R+ � η �→ Jf,I(ϕ, η)

defines a compactly supported element in the weighted space L1(R+, t
p dt).

Therefore, its Mellin transform

C � λ �→Mf,I(ϕ, λ) := λ
∫ ∞

0

Jf,I(ϕ, η)ηλ−1 dη

is a holomorphic function in the half-plane Reλ > p.

Lemma 2.1. For Reλ > p, the above Mellin transform may be repre-
sented as

(2.2) Mf,I(ϕ, λ)

= cp
∫
V

λ‖f‖2(λ−p−1)∂‖f‖2 ∧

 p∑
k=1

(−1)k−1fik
∧
l �=k
dfil

 ∧ ϕ.
Proof: Let Ef (ϕ) denote the set of critical values for the mapping ζ →
‖f(ζ)‖2 restricted to Suppϕ. It is a closed subset of R+ contained in
the negligible set Ef . If ]α, β[ is any open interval in R+ \Ef (ϕ), we get
from Fubini’s theorem that, for any λ ∈ C,∫ β

α

λJf,I(ϕ, η)ηλ−1 dη

=
∫
Vαβ

λ‖f‖2(λ−p−1)∂‖f‖2 ∧

 p∑
k=1

(−1)k−1fik
∧
l �=k
dfil

 ∧ ϕ,
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where Vαβ denotes the set {ζ ∈ V ; α < ‖f‖2 < β}. The set R+ \Ef (ϕ)
is a countable union of such disjoint intervals ]α, β[, so it follows from
Lebesgue’s theorem and from the co-aerea formula that the equality (2.2)
holds for all λ with Reλ > p.

Our second lemma gives the existence of a meromorphic continuation
of the Mellin transform Mf,I which is in fact holomorphic across the
imaginary axis. Its value at the origin is of particular interest to us.

Lemma 2.2. The function λ �→ Mf,I(ϕ, λ) can be meromorphically
continued to the whole complex plane, and the poles of the extended func-
tion are strictly negative rational numbers. Moreover, the map

Dn,n−p � ϕ �→Mf,I(ϕ, 0)

defines the action of a (0, p)-current Tf,I on V such that hTf,I = 0 for
any h ∈ O(V ) which vanishes on the common zero set

Z(f) := {ζ ∈ V ; f1 = · · · = fm = 0}.

The current Tf,I is hence supported by Z(f), and moreover, one has

Tf,I = 0(2.3)

when p < codimZ(f).

Proof: Clearly one can reduce the problem to the case where the support
of the test form is an arbitrarily small neighborhood of a point z0 in Z(f),
and for the sake of simplicity we will reduce ourselves, via a change of
variables, to the case z0 = 0. We will therefore assume that Suppϕ ⊂
W , where W is a neighborhood of the origin such that there exists a
desingularisation (X ,Π), X being a n-dimensional complex manifold and
Π a proper holomorphic map X →W , such that

(i) the hypersurface Π∗({f1 · · · fm = 0}) has normal crossings in X ;

(ii) the map π is a biholomorphic map between X \Π∗({f1 · · · fm = 0})
and W \ {f1 · · · fm = 0}.

The existence of such a pair (X ,Π) follows from Hironaka’s theorem [20].
For Reλ sufficiently large, one can write Mf,I(ϕ, λ) as a finite sum of
terms ∫

ω

λ‖Π∗f‖2λΠ∗Θf,I ∧ ρΠ∗ϕ,(2.4)
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where

Θf,I := cp
∂‖f‖2 ∧

(∑p
k=1(−1)k−1fik

∧
l �=k dfil

)
‖f‖2(p+1)

,

ω is a local chart on X , coming from a finite covering of the compact
subset π∗(Suppϕ), and ρ is the function from the partition of unity
(subordinate to the covering) which corresponds to the local chart ω.
Thanks to the normal crossing condition (i), one can assume that in a
system of local coordinates on ω centered at the origin,

Π∗fj(t) = uj(t)
n∏
k=1

t
αjk

k = uj(t)mj(t), j = 1, . . . ,m,

where the uj are invertible elements in O(ω) and the αjk are positive
integers. If one of the vectors αj := (αj1, . . . , αjn), j = 1, . . . ,m, is zero,
the corresponding function of λ in (2.4) is entire as λ �→ ‖Π∗f‖2λ is. So
that the interesting case occurs when all the αj are nonzero.

In order to study such a term, we use an idea that has already been
extensively developed in [4]. Let ∆ be the closed convex hull (in Rn

+) of
m⋃
j=1

{αj + Rn
+}

and ∆∼ the corresponding equivalence relation between elements in Rn
+:

ξ
∆∼ξ′ if and only if Tr∆(ξ) = Tr∆(ξ′), where

Tr∆(ξ) :=
{
δ ∈ ∆, 〈ξ, δ〉 = min

x∈∆
〈ξ, x〉

}
.

(The brackets here stand for the usual scalar product in the affine
space Rn.) The set of all closures of the equivalence classes for this
relation is a fan Σ(∆) (see [1] and [17]). Such a fan can be refined ([22])
in order that all cones are simple ones, so that the corresponding toric
variety X̃ is a n-dimensional complex manifold; local charts correspond
to different copies of Cn which are glued together via invertible monoidal
transformations from the n-dimensional torus Tn into itself. Since the
union of the cones in this fan is Rn

+, the projection map Π̃: X̃ → Cn

(which is monoidal when expressed in local coordinates in each chart)
is a proper map. Moreover, Π̃ is invertible from X̃ \ Π̃∗{t1 · · · tn = 0}
to Cn \ {t1 · · · tn = 0}. In each chart + on X̃ (the coordinates being
τ1, . . . , τn), one can write

Π̃∗Π∗fj(τ1, . . . , τn) = (Π̃∗uj(τ1, . . . , τn))µj(τ), j = 1, . . . ,m,
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where µj = Π̃∗mj is also a monomial. Moreover, since the toric variety X̃
is associated with the Newton polyedron ∆ attached to α1, . . . , αm, there
exists an index j� ∈ {1, . . . ,m} such that µ� divides all monomials µj ,
j = 1, . . . ,m (see [1]). This implies that

Π̃∗Π∗‖f‖2(τ) = ũ(τ)|µj� (τ)|2, τ ∈ +,(2.5)

where ũ is a non-vanishing positive real analytic function in +. Since
Π̃∗ and Π∗ commute with ∂ and ∂, one has

(2.6) λ

∫
ω

‖Π∗f‖2λΠ∗Θf,I ∧ ρΠ∗ϕ

= λ
∑
�

∫
�

|uµj� |2λ
µpj�

(
θ̃�,1 + θ̃�,2 ∧

dµj�
µj�

)
∧ ξρ,�Π̃∗(ρΠ∗ϕ),

where the (ξρ,�)� correspond to a smooth partition of unity subordinate
to Π̃∗(Supp ρ) and θ̃�,1 and θ̃�,2 are smooth forms of bidegree (0, p) and
(0, p− 1) respectively.

For any smooth functions ψ ∈ D(Ω) and υ ∈ C∞(Ω), where Ω ⊂ C,
such that υ > 0 on Suppψ, one can see immediately, just integrating by
parts, that the maps defined for Reλ > p by

λ �→ λ

∫
Ω

υλ|s|2λψ(s)
ds

s
∧ ds
sp

λ �→ λ

∫
Ω

υλ|s|2λψ(s)
ds ∧ ds
sp

extend to meromorphic maps with poles in {r ∈ Q, r < 0}. The value
at λ = 0 corresponds to the action of a distribution (with support at the
origin) on the test function ψ in the first case; the value at λ = 0 is 0
in the second case. Moreover, the distribution that appears in the first
case is annihilated by s.

It follows from the above remark that each term in the right hand
side of (2.6) can be meromorphically continued as a function of λ with
poles in {r ∈ Q, r < 0}. The value at the origin of the meromorphic
continuation of any function of the form (2.6) corresponds to the action of
a (0, p)-current in V . Summing up all functions of λ of the form (2.6), we
find that the function λ �→Mf,I(ϕ, λ) can be meromorphically continued
to the whole plane, with strictly negative rational poles. The value at
λ = 0 corresponds to the action of a (0, p)-current Tf,I .
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Suppose that h ∈ O(V ), h = 0 on V . It follows from the Nullstel-
lensatz that for any ϕ ∈ Dn,n−p(V ), one has hN(ϕ) ∈ (f1, . . . , fm)loc

for some integer N(ϕ). For any Π and Π̃ involved in the resolutions of
singularities used in the proof, and for any ρ, +, ξρ,� as before, we have
the estimate

|Π̃∗Π∗(h)(τ)|N(ϕ) ≤ C(ξρ,�)Π̃∗Π∗‖f‖2(τ) ≤ C̃(ξρ,�)|µj� (τ)|, τ ∈ +,
which implies that any τk, k = 1, . . . , n, which divides µj� also divides
Π̃∗Π∗h. This means that, for any ϕ ∈ D(V ),[

λ
∑
�

∫
�

|ũµj� |2λ
µpj�

(
θ̃�,1 + θ̃�,2 ∧

dµj�
µj�

)
∧ ξρ,�Π̃∗(ρΠ∗hϕ)

]
λ=0

=

[
λ

∑
�

∫
�

|ũµj� |2λ
µpj�

θ̃�,2 ∧
(Π̃∗Π∗h) dµj�

µj�

)
∧ ξρ,�Π̃∗(ρΠ∗ϕ)

]
λ=0

= 0

because the differential form

(Π̃∗Π∗h) dµj�
µj�

is nonsingular.

In order to prove the last assertion in the statement of Lemma 2.2,
assume p < codim{f1 = · · · = fm = 0} and take a test form ϕ ∈
Dn,n−p(V ). One can rewrite ϕ as

ϕ =
∑

1≤i1<···<in−p≤n
ϕi1,...,in−p

dζ1 ∧ · · · ∧ dζn ∧
n−p∧
l=1

dζil .

Each differential form
∧n−p
l=1 dζil is zero when restricted to the analytic

variety V ∩{f1 = · · · = fm = 0}. This implies that, given a local chart +
on any toric manifold such as X̃ , the differential form Π̃∗Π∗ ∧n−p

l=1 dζil
(which has antiholomorphic functions as coefficients) vanishes on the an-
alytic variety {µj� (τ) = 0}, where µj� is the distinguished monomial
corresponding to the local chart +. Every conjugate coordinate τk, such
that τk is involved in µj� then divides each coefficient of Π̃∗Π∗ ∧n−p

l=1 dζil ,
which does not contain dτk. This implies that for any local chart +, the
integrand in (2.5) does not contain antiholomorphic singularities (such
singularities come from logarithmic derivatives and therefore are can-
celled by the corresponding term Π̃∗Π∗ϕ). The proof of our Lemma 2.2
is complete.
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Let us recall the definition of the integral closure of an ideal A in
the ring nOz0 of germs of holomorphic functions of n variables at a
point z0 ∈ Cn. A germ h at z0 is in the integral closure of A if and only
if it satisfies a relation of integral dependency

hN +
N∑
k=1

akh
N−k = 0,(2.7)

where ak ∈ Ak for each k ∈ {1, . . . , N}. If V is an open set in Cn and A
an ideal in O(V ), an element h ∈ O(V ) is locally in the integral closure
of A if and only if, at any point z0 ∈ V , the germ hz0 belongs to the
integral closure (in nOz0) of the ideal Az0 generated by the germs at z0
of all elements in A.

Lemma 2.3. Let Tf,I be the current occurring in the preceeding
lemma. For any h ∈ O(V ) which is locally in the integral closure of
the ideal (f1, . . . , fm)p we then have

hTf,I = 0.(2.8)

Proof: Replacing ϕ by hϕ and arguing as in the proof of Lemma 2.2, we
decompose the function λ �→Mf,I(hϕ, λ) into a finite sum of expressions
of the type (2.5) (modulo an entire function which vanishes at the origin).
The only thing we have to show is that, for any h which locally belongs
to the integral closure of (f1, . . . , fm)p in O(V ), the value at λ = 0 of
the analytic continuation of

λ �→
∫
�

|ũµj� |2λ
µpj�

(
θ̃�,1 + θ̃�,2 ∧

dµj�
µj�

)
∧ ξρ,�Π̃∗(ρΠ∗hϕ)

equals zero. (The notations are those from the proof of Lemma 2.2.)
Since h is locally in the integral closure of (f1, . . . , fm)p, it follows, from
the existence of local relations of algebraic dependency (2.7) of h over the
ideal (f1, . . . , fm)p, that near any point z0 ∈ V , one has a local estimate

|h(ζ)| ≤ Cz0( max
1≤j≤m

|fj(ζ)|)p.

Such local estimates imply that in any local chart + involved in (2.5),
one has, on the support of ξρ,�

|Π̃∗Π∗h| ≤ Cρ,�Π̃∗Π∗‖f‖p ≤ C̃ρ,�|µj� |p.
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This implies that the monomial µj� divides Π̃∗Π∗h. We now make
the following observation: for any domain Ω ⊂ C, and any smooth
functions ψ ∈ D(Ω) and υ ∈ C∞(Ω), such that υ > 0 on Suppψ, explicit
integration by parts provides meromorphic continuations of the maps
defined for Reλ > p by

λ �→ λ

∫
Ω

υλ|s|2λψ(s) ds ∧ ds

λ �→ λ

∫
Ω

υλ|s|2λψ(s)
ds ∧ ds
s
.

Their poles are again strictly negative rational numbers, and they both
vanish for λ = 0. This shows that the value at λ = 0 of the analytic
continuation of any of the functions

λ �→
∫
�

ũ|µj� |2λ
µpj�

(
θ̃�,1 + θ̃�,2 ∧

dµj�
µj�

)
∧ ξρ,�Π̃∗(ρΠ∗hϕ)

is also equal to zero. Since our original function of λ (as in (2.2), but
with hϕ instead of ϕ) is a combination of such expressions, its analytic
continuation also vanishes at the origin. This proves our result.

The last lemma that we will need in order to conclude the proof of our
Theorem 1.1 is concerned with rapid decrease in imaginary directions.

Lemma 2.4. Let V be an open set in Cn and let f1, . . . , fm be elements
in O(V ). Let θ be any test form in V of maximal bidegree (n, n) and
denote by λθ,0 > λθ,1 > . . . the sequence of all poles (necessarily in
{r ∈ Q, r < 0}) of the meromorphic continuation Fθ of

λ �→
∫
V

(
|f1|2 + · · ·+ |fm|2

)λ
θ.

Then, for any natural number k and any real numbers α, β, such that
λθ,j+1 < α < β < λθ,j, j ∈ N∗ or λθ,0 < α < β, there is a con-
stant γ(k, α, β) such that

sup
α≤Reλ≤β

|(1 + |λ|)kFθ(λ)| ≤ γ(k, α, β).(2.9)

(In other words, the function Fθ is rapidly decreasing at infinity in any
closed vertical strip which is free of poles.)
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Proof: Our proof was inpired by an argument used in [2]. Let G be the
holomorphic function in V × V defined as

G(z, w) :=
m∑
j=1

fj(z)fj(w).

Consider a point z0 in V where fj(z0) = 0, j = 1, . . . ,m. By Corol-
lary 9.10 in Chapter 5 of [10], there exists a neighborhood V(z0) of
(z0, z0) in V ×V such that V(z0)∩{dG = 0} ⊂ V(z0)∩{G = 0}. As was
proved in [21, Section 6], there is then an operator Pz0(λ, z, w, ∂/∂z, ∂/∂w)
in D(z0,z0)[λ], where D(z0,z0) denotes the ring of holomorphic differential
operators in 2n complex variables with coefficients in the ring 2nO(z0,z0)

of germs of holomorphic functions at the point (z0, w0), such that

Pz0(λ, z, w, ∂/∂z, ∂/∂w)=λM −
M∑
l=1

λM−lPz0,l(z, w, ∂/∂z, ∂/∂w)(2.10)

and

Pz0(λ, z, w, ∂/∂z, ∂/∂w)[Gλ] = 0.(2.11)

If we now make the substitution w = z, and use the fact that the op-
erators ∂/∂zl and ∂/∂zl commute with multiplication by zk and zk,
respectively, we find that in a neighborhood V (z0) of z0, there holds the
identity (in the sense of distributions)

Pz0(λ, z, z, ∂/∂z, ∂/∂z)

( m∑
j=1

|fj |2
)λ = 0.(2.12)

This functional equation (2.12), used in the form( m∑
j=1

|fj |2
)λ =

M∑
l=1

Pz0,l(z, z, ∂/∂z, ∂/∂z)
λl

( m∑
j=1

|fj |2
)λ

and then iterated (as in an argument quoted from [2]), provides the
rapid decrease of Fθ on closed vertical strips in the λ-plane which are
pole-free. Notice that the fact that the meromorphic continuation of Fθ
exists (with poles organized as a decreasing sequence of strictly negative
rational numbers) follows (as in our proof of Lemma 2.1) from Hironaka’s
theorem on resolution of singularities. The proof of Lemma 2.3 is thereby
complete.
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Proof of Theorem 1.1: We have now collected all elements for the proof
of our Theorem 1.1. Recall that the Mellin transform of the function η �→
Jf,I(ϕ, η) defined as in (2.1), is equal to the function λ �→ Mf,I(ϕ, λ)
described in Lemma 2.1. The Fourier-Laplace inversion formula then
tells us that, for γ0 > 0 large enough, the identity

Jf,I(ϕ, η) =
1

2πi

∫
γ0+iR

(
Mf,I(ϕ, λ)η−λ dλ

)
/λ

holds for every positive η. We know from Lemma 2.2 that there is a
positive number ε0 such that the only pole of

λ �→ Jf,I(I;ϕ, λ)η−λ
λ

(2.13)

in the closed vertical strip Γ := Reλ ∈ [−ε0, γ0] is the origin, and that the
residue isMf,I(ϕ, 0). It follows from Lemma 2.4 that the function (2.13)
is rapidly decreasing at infinity on the strip Γ. We can apply the residue
formula and get that Jf,I(ϕ, η) is equal to

Mf,I(ϕ, 0) +
1

2πi

∫
−ε0+iR

Mf,I(ϕ, λ)η−λ

λ
dλ =Mf,I(ϕ, 0) +O(ηε0).

We conclude that the limit (1.4) exists and equals Mf,I(ϕ, 0). We get
the conclusions (i) and (iii) of Theorem 1.1 from Lemma 2.2, and con-
clusion (ii) from Lemma 2.3. Our main Theorem 1.1 is thus proved.

One can also realize the action of all the currents Tf,I in Theorem 1.1
as limits of solid volume integrals. More precisely, we have the following
theorem:

Theorem 2.1. Let f1, . . . , fm be holomorphic functions in some
open set V ∈ Cn. For any ordered subset I ⊂ {1, . . . ,m} of cardinality
p ≤ min(m,n), let Tf,I be the current defined in (1.4). Then one has
the representation

Tf,I(ϕ)= lim
τ→0+

cp p

∫
V

τ ∂||f ||2 ∧
[∑p

k=1(−1)k−1fik
∧
l �=k dfil

]
∧ϕ

‖f‖2(‖f‖2 + τ)p+1
.(2.14)

In particular, if m ≤ n and I = {1, . . . ,m}, we have

Tf,I(ϕ) = lim
τ→0+

cmm

∫
V

τ
∧m
k=1 dfk ∧ ϕ

(‖f‖2 + τ)m+1
.(2.15)
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Proof: Notice first that the integral in (2.14) is absolutely convergent,
for the differential form inside the integral has bounded coefficients. Let
us fix τ > 0. If [α, β] denotes any interval in R+ which does not contain
a critical value for the mapping Suppϕ � ζ �→ ‖f(ζ)‖2, it follows from
Fubini’s theorem that

pτ

∫
[α,β]

ηp−1Jf (I;ϕ, η)
(η + τ)p+1

dη

= cp p τ
∫

[α,β]

∫
‖f‖2=η

[ p∑
k=1

(−1)k−1fik
∧
l �=k
dfil

]
∧ ϕ

 dη

η(η + τ)p+1

= cp p τ
∫
V ∩{α≤‖f‖2≤β}

∂||f ||2 ∧
[ ∑p

k=1(−1)k−1fik
∧
l �=k dfil

]
∧ ϕ

‖f‖2(‖f‖2 + τ)p+1
.

Since the critical values for ‖f‖2 which are attained on Suppϕ form a
negligible closed subset of R+, we get from Lebesgue’s theorem and from
the continuity at η = 0 of η �→ Jf,I(ϕ, η) that for any τ > 0

(2.16) pτ

∫ ∞

0

ηp−1Jf,I(ϕ, η)
(η + τ)p+1

dη

= cppτ
∫
V

∂||f ||2 ∧
[ ∑p

k=1(−1)k−1fik
∧
l �=k dfil

]
∧ ϕ

‖f‖2(‖f‖2 + τ)p+1
.

We just note that for τ > 0,

τ

∫ ∞

0

ηp−1 dη

(η + τ)p+1

=
∫ ∞

τ

η−p−1

(
τp−1 +

p−1∑
k=1

(−1)k
(p− 1
k

)
ηkτp−k

)
dη

= 1/p+ ρ(τ)

(2.17)

where lim
τ→0
ρ(τ) = 0. Using the short-hand notation J(η) := Jf,I(ϕ, η)
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we can now rewrite the right hand side of (2.17) as

pτ

∫ ∞

0

ηp−1J(η) dη
(η + τ)p+1

= J(0) + pτ
∫ A

0

ηp−1(J(η)− J(0)) dη
(η + τ)p+1

− pJ(0)
(
ρ(τ) + τ

∫ ∞

A

ηp−1 dt

(η + τ)p+1

)
= J(0) + pτ

∫ ε

0

ηp−1(J(η)− J(0)) dη
(η + τ)p+1

+ pτ
∫ A

ε

ηp−1(J(η)− J(0)) dt
(η + τ)p+1

+ ρ̃ε,A(τ)

= J(0) + pτ
∫ ε

0

ηp−1(J(η)− J(0)) dη
(η + τ)p+1

+ ρ̌ε,A(τ)

(2.18)

for ε < A and ε arbitrary small, with lim
τ→0+

ρ̌ε,A(τ) = 0. Since we can

choose ε arbitrarily small, we have

lim
τ→0+

pτ

∫ ∞

0

ηp−1J(η)
(η + τ)p+1

dη = J(0) = Tf,I(ϕ).(2.19)

The conclusion of our theorem follows from (2.16) and (2.19). The fi-
nal assertion in Theorem 2.1 follows from the fact that, if m ≤ n and
I = {1, . . . ,m}, then

∂||f ||2 ∧

 m∑
k=1

(−1)k−1fk
∧
l �=k
dfl

 = ‖f‖2
m∧
k=1

dfk.

This concludes the proof of Theorem 2.1.

When m ≤ n, it is well known (see [5] or [24]) that for any test
form ϕ ∈ Dn,n−m(V ), the function

(λ1, . . . , λm) := λ �→ Γf (λ, ϕ) :=
cm

(m− 1)!

∫
V

m∏
k=1

|fk|2(λk−1)
m∧
k=1

dfk ∧ ϕ

can be continued from the cone Reλj > 1, 1 ≤ j ≤ n, to a meromor-
phic function in the entire space Cm, with polar set Sing Γf included
in a union of hyperplanes β0 + β1λ1 + · · · + βmλm = 0, where β0 ∈ N,
(β1, . . . , βm) ∈ Nm \{0}. This is obtained immediately using Hironaka’s
theorem [20]. It seems interesting to relate this meromorphic continua-
tion λ �→ Γf (λ, ϕ) to the computation of the residue currents we intro-
duced in Theorem 1.1. We have the following result in this direction.
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Theorem 2.2. Let m ≤ n and take I = {1, . . . ,m}. If Tf,I is the
current defined in Theorem 1.1, then for any test form ϕ ∈ Dn,n−m(V ),
and for any γ = (γ1, . . . , γm) ∈]0, 1[m, one has

(2.20) Tf,I(ϕ)

= lim
τ→0+

1
(2πi)m

∫
γ+iRm

τ−|s|Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s;ϕ) ds,

where |s| := s1 + · · ·+sm. Moreover, if C is any connected component in
Rm of the complement of projRm(Sing(Γf )), then for any fixed τ > 0,
and for any γ ∈ C, the integral

S(C, τ) :=
∫
γ+iRm

τ−|s|Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s;ϕ) ds(2.21)

is absolutely convergent.

Proof: This result was proved in [29] in the complete intersection case.
In fact, this hypothesis is not necessary and the whole proof goes through
as follows. Fix τ > 0. For any ζ in V such that f1 · · · fm(ζ) �= 0, one has,
if γ̃1, . . . , γ̃m are strictly positive numbers with sum strictly less than m,

(2.22)
(
m!τ/(‖f(ζ)‖2 + τ)m+1

)
=

1
(2πi)m

∫
γ̃+iRm

Γ(m+ 1− |s|)
m∏
k=1

Γ(sk)
m∏
k=1

|fk(ζ)|−2skτ |s|−m ds.

This is just a standard iteration of formula 6.422 (3), p. 657 in [18].
Notice that this idea has been extensively used in [6]. If we change sk
into 1 − sk and let γk = 1 − γ̃k, k = 1, . . . ,m, formula (2.22) can be
rewritten as(
m!τ/(‖f(ζ)‖2 + τ)m+1

)
=

1
(2πi)m

∫
γ+iRm

Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)
m∏
k=1

|fk(ζ)|2(sk−1)τ−|s| ds.

If we assume that the γj are all very close to 1, we can apply Lebesgue’s
and Fubini’s theorems in order to get, for such τ ,

(2.23) cmmτ

∫
V

∧m
k=1 dfk ∧ ϕ

(‖f(ζ)‖2 + τ)m+1

=
1

(2πi)m

∫
γ+iRm

Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s, ϕ)τ−|s| ds.
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Using Bernstein-Sato functional identities (see [28]) or resolution of sin-
gularities (which leads us to the normal crossing case) together with
integration by parts, one can see that the function

s ∈ Cm �→ Γf (s, ϕ)

can be estimated by

|Γf (s, ϕ)| ≤ C(Re s)(1 + ‖ Im s‖)N(Re s),

in any vertical strip Re s ∈ K, K ⊂⊂ Rm, which does not intersect
the polar set of this function (in particular when K ⊂]0,∞[m), the con-
stants C(Re s) and N(Re s) being uniform in Re s in this strip. Similar
estimates hold for the function

s �→ Γ(|s|+ 1)Γf (s, ϕ).

Therefore, because of the rapid decrease of the Gamma function on ver-
tical lines, we get the uniform rapid decrease at infinity for the function

s �→ Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s, ϕ)

in any vertical strip Re s ∈ K, K ⊂⊂ Rn which is pole-free (in par-
ticular when K ⊂]0,∞[m). Thus, one can apply Cauchy’s formula and
replace (γ1, . . . , γm) in (2.23) by any element in ]0, 1[m. The first as-
sertion of Theorem 2.2 follows from these computations, together with
Theorem 2.1. The second assertion in the theorem is a consequence (in
view of Cauchy’s theorem) of the uniform rapid decrease at infinity in
vertical strips (which are pole-free) for the function

s �→ Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s, ϕ).

Remark 2.1. Using the second part of this statement, it would be inter-
esting to analyze how S(C, τ) changes when one moves from the original
cell ]0, 1[m into the contiguous ones. The difference between S(C1, τ)
and S(C2, τ) should appear (at least formally) as a (finite or infinite)
sum of iterated residues for the function

s �→ τ−|s|Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s;ϕ)
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relatively to collections of m independent affine polar divisors. We will
elaborate this idea somewhat in our computations in Section 3. Our
assumption is motivated by the fact that for any τ > 0, for γ > 0 very
close to 0

(2.24) cmmτ

∫
V

∧m
k=1 dfk ∧ ϕ

(‖f(ζ)‖2 + τ)m+1

=
1

2πi

∫
−γ+iR

Γ(s)Γ(m+ 1− s)F (s, ϕ)τ−m−s ds

where

F (s, ϕ) :=
cm

(m− 1)!

∫
V

‖f‖2s
m∧
k=1

dfk ∧ ϕ(2.25)

(this is proved as formula (2.23), just using formula 6.422 (3), p. 657 in
[18] this time without iterating it). Thanks to Lemma 2.4, we have the
rapid decrease of F (as a function of s) on vertical strips which are pole
free. Using Cauchy’s formula and moving the integration path in (2.24)
to the left, we deduce from the fact that the poles of F are in ]−∞,−m[
the existence of an asymptotic development for the function

τ �→ cmmτ
∫
V

∧m
k=1 dfk ∧ ϕ

(‖f(ζ)‖2 + τ)m+1

along the basis (1, τα(log τ)µ)α∈Q+, µ∈N. It seems reasonable to think
that the coefficients in this asymptotic development should be expressible
as (infinite or finite) sums of residues corresponding to the meromorphic
differential form

τ−|s|Γ(|s|+ 1)
m∏
k=1

Γ(1− sk)Γf (s;ϕ) ds1 ∧ · · · ∧ dsm.

This is precisely the point we will emphazise in the examples detailed in
the next section.

3. Some computations

In this section, we will compute the action of some of the currents
Tf,I . Our approach is to deal only with the normal crossing case (even, in
order to make things more simple, assume that the fj are all momomials)
and profit (as we already did when we stated Theorem 2.2) from some
combinatorial basic identities which correspond to multivariate analogs
for the integral representation of the beta function as an inverse Mellin
transform.
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3.1. A simple example when m = 2 and f1 divides f2.
Assume that n > 1 and f1 and f2 are defined in a neighborhood V of

the origin in Cn. Let f2 = f1h and ϕ ∈ Dn,n−2(V ). Then

Mf,{1,2}(ϕ, λ) =
λ

4π2

∫
V

|f1|2(λ−2)(1 + |h|2)λ−2f1df1 ∧ dh ∧ ϕ

=
λ

8π2

∫
V

|f2
1 |(λ−2)(1 + |h|2)λ−2df2

1 ∧ dh ∧ ϕ

=Mf2
1 ,{1}

(
(1 + |h|2)λ−2dh ∧ ϕ, λ

2

)
.

We conclude in this case that

Tf,{1,2}(ϕ) =
〈
∂

1
f2
1

∧ dh

(1 + |h|2)2 , ϕ
〉
.

This corresponds to the action of a current whose support is the zero
set of the ideal (f1, f2). Note that, in this case, the essential intersection
(in the sense of [14]) of the divisors {f1 = 0} and {f2 = 0} (in this
order) is empty, so that the Coleff-Herrera current associated to the
sequence (f1, f2) in this order would be zero. On the other hand, the
Coleff-Herrera current associated to the sequence (f2, f1) is the residual
current ∂ 1

h̃
∧ ∂ 1

f1
, where h̃ is the product of irreducible factors in h

which are coprime with f1. In any case, the Coleff-Herrera current for
this example is either 0, either a residual current supported by the origin
and therefore differs from our current Tf,{1,2}.

3.2. The normal crossing case m = n ≥ 2, and relations with
Mellin-Barnes integrals.

In the space Cn we consider a system of monomials

f = (f1, . . . , fn) = (ζα1 , . . . , ζαn),

and the Bochner-Martinelli type current (1.3) corresponding to this sys-
tem. According to Theorem 2.2, this current may be represented as the
limit

Tf (ϕ) = lim
τ→0+

1
(2πi)n

∫
γ+iRn

ωτ (s), γ ∈]0, 1[n,(3.1)

where the integrand is given by the n-form

ωτ (s) = τ−|s|Γ(|s|+ 1)
n∏
k=1

Γ(1− sk)Γf (s;ϕ) ds.(3.2)
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In the monomial case under consideration the possible poles of the func-
tion s �→ Γf (s;ϕ) consist of the n families of hyperplanes

〈αj , s〉 = 0,−1,−2, . . . ; j = 1, . . . , n,

where αj denotes the j’th column vector in the matrix, whose row
vectors are α1, . . . , αn. In other words, if αi = (αi1, . . . , αin), then
αj = (α1j , . . . , αnj).

In the real subspace Rn with variables xj = Re sj , j = 1, . . . , n, we
now introduce the cone

K = {x ∈ Rn; 〈αj , x〉 ≥ 0, j = 1, . . . , n}
and we let K0 denote the intersection of K with the closed halfspace

Π− = {x ∈ Rn; x1 + · · ·+ xn ≤ 0}.
Let us write q for the codimension of K0. It is clear that if q = 0, then
K0 will contain interior points of Π−, whereas in the case q ≥ 1 the
intersection K0 = K ∩ Π− consists of a (n − q)-dimensional face of the
cone K, contained in the hyperplane x1 + · · ·+xn = 0, i.e the boundary
of Π−. Up to a mere re-numbering of the faces, we may suppose that

K0 = Kq0

= {x ∈ Rn; 〈α1, x〉 = · · · = 〈αq, x〉=0, 〈αq+1, x〉≥0, . . . , 〈αn, x〉≥0}.
We have the

Proposition 3.1. If q = 0, then the current Tf , defined by (3.1), is
equal to zero. In case q ≥ 1, it admits the representation

Tf =
q∧
j=1

∂̄

[
1

ζ
|αj |
j

]
·

n∧
k=q+1

(
1

ζ
|αk|
k

· dζk
ζk

)
· F (|ζq+1|2, . . . , |ζn|2),

where |αj | denotes the sum of the components of the vector αj, and F
is a certain hypergeometric function (whose representation as a Mellin-
Barnes integral is given in formula (3.8) below). In particular, if q = n,
then

Tf = ∂̄[1/ζ |α
1|

1 ] ∧ · · · ∧ ∂̄[1/ζ |αn|
n ].

Remark 3.1. The complex codimension of the support of Tf is equal to
q, which is the real codimension of the cone K0.
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Proof of the proposition: First of all we observe that by (the second
statement of) Theorem 2.2 we may enlarge the cube ]0, 1[n, consisting
of admissible values for γ in the integral (3.1), to the convex polyhe-
dron M obtained by intersecting the interior of the cone K with the
open cone {x ∈ Rn; x1 < 1, . . . , xn < 1}.

• If q = 0, i.e dimRnK0 = n, then we can choose the point γ inM so
that |γ| < 0. Therefore, in view of the factor τ−|s|, the restriction
of the form (3.2) to γ + iRn tends to zero as τ → 0+. It then
follows that the limit (3.1) is equal to zero, and hence Tf = 0.

• Assume now that q ≥ 1. Letting Mq denote the relative interior
of the intersection K0 ∩M , we have the following formula which
decreases the number of integrations in (3.1).

Lemma 3.1. The limit of the n-fold integral (3.1) may be written as
the (n− q)-fold integral

Tf (ϕ) =
1

(2πi)n−q

∫
γq+i ImLq

n∏
j=1

Γ(1− sj) · ResLq [Γf (s;ϕ) ds](3.3)

where γq ∈Mq, and ResLq is the q-fold Poincaré-Leray residue class of
the meromorphic form Γf ds, taken with respect to the intersection Lq =
L1 ∩ · · · ∩ Lq of the hyperplanes

Lj = {s ∈ Cn; 〈αj , s〉 = 0}, j = 1, . . . , q.

To prove the lemma we establish first the following asymptotic (as
τ → 0+) formula:

1
(2πi)n

∫
γ+iRn

ωτ (s) =
1

(2πi)n−1

∫
γ1+i ImL1

ResL1 ωτ (s) + o(τ).(3.4)

Here γ1 is a point in the (n−1)-dimensional polyhedronM1, which is the
relative interior of the intersection K1

0 ∩M ⊂ L1. (Notice that L1 = L1.)
To this end we consider the ray

? = γ + {〈α1, x〉 ≤ 0, 〈α2, x〉 = · · · = 〈αn, x〉 = 0},
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emanating from the point γ and parallel to one of the edges of the
cone K. Now, what matters to us is the fact that this ray intersects the
face 〈α1, x〉 = 0 no later than the hyperplane |x| = 0 (the intersections
occur simultaneously when q = 1), and that among the polar hyperplanes
of the form s �→ ωτ (s), the ray ? intersects only L1. Letting γ1 denote
the point of intersection between ? and {x ∈ Rn; 〈α1, x〉 = 0} = ReL1,
we thus see that, for any two points γ and κ of ? lying on different sides
of γ1, the Cauchy formula yields

∫
γ+iRn

ωτ (s) =
∫
κ+iRn

ωτ (s) + 2πi
∫
γ1+i ImL1

ResL1 ωτ (s).(3.5)

Choosing κ lying inside Π−, i.e with the property |κ| < 0, we find, in view
of the presence of the factor τ−|s| in the form ωτ (s), that the integral
over κ+ iRn in (3.6) tends to zero (is o(τ)) as τ → 0+. In this way we
obtain (3.4).

In order to prove formula (3.3) we observe, that the integral in the
right hand side of (3.4) has the same structure, but in the (n−1)-dimen-
sional space L1, so repeating q − 1 times the residue theorem we arrive
at the identity

lim
τ→0+

∫
γ+iRn

ωτ (s) = (2πi)q lim
τ→0+

∫
γq+i ImLq

ResLq ωτ (s) + o(τ).(3.6)

Since we assumed the face K0 is contained in {|x| = 0}, we have Lq ⊂
{s; |s| = 0}, which means that the restriction of s �→ τ−|s|Γ(1+|s|) to Lq

is identically equal to 1. Recalling the expression (3.2) for the form ωτ ,
we may thus conclude that

ResLq ωτ (s) =
n∏
j=1

Γ(1− sj)∣∣
Lq

· ResLq [Γf ds] .

It follows from this that the right hand integral in (3.6) is actually in-
dependent of τ . Hence there is no need to take a limit, and we have
completed the proof of our lemma.
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Before applying formula (3.3) let us compute the iterated residue of
the form Γf ds, where Γf is given, for a monomial mapping f , by the
integral

Γf (s;ϕ) =
δ

(2πi)n

∫
Cn

n∏
j=1

|ζj |2(〈α
j ,s〉−1) ·

Φ(ζ)
∧n
j=1 dζ̄j ∧ dζj∏n
j=1 ζ

|αj |−1
j

,(3.7)

where δ is the determinant of the matrix (αjk), and the function Φ is
related to the test form ϕ by ϕ = Φ(ζ) dζ. In the new coordinates
λ = As, i.e λj = 〈αj , s〉, j = 1, . . . , n, we may represent Γf ds as

Γf ds =
dλ1

λ1
∧ · · · ∧ dλq

λq
∧ (R(λ) dλ′′) + ϑ(λ),

where λ = (λ′, λ′′), with λ′ = (λ1, . . . , λq), λ′′ = (λq+1, . . . , λn), and ϑ
is a meromorphic n-form with poles along fewer (than q) of the hyper-
planes λj = 0, j = 1, . . . , q. Moreover, the form λ′′ �→ R(0′, λ′′) dλ′′

is the desired iterated residue. This representation of Γf ds is achieved
by performing in (3.8) the integrations with respect to ζ ′ = (ζ1, . . . , ζq),
which can be accomplished through ordinary principal value integration
(see [25]), by means of polar coordinates and a Taylor expansion of Φ.

An easy computation now leads to the following expresion:

Γf (A−1(λ);ϕ)

=
δ

(2πi)n−q
· 1
λ1 · · ·λq


∫
Cn

Φα(ζ ′′)·
n∏

j=q+1

|ζj |2(λj−1)

ζ
|αj |−1
j

n∧
j=q+1

dζ̄j∧dζj+ϑ̃(λ)

,
where ζ = (ζ ′, ζ ′′), ϑ̃ is a holomorphic function in a neighborhood of the
origin, belonging to the ideal 〈λ1, . . . , λq〉, and

Φα(ζ ′′) =
1

(|α1| − 1)! · · · (|αq| − 1)!
∂|α

1|+···+|αq|−q

∂ζ
|α1|−1
1 · · · ∂ζ |αq|−1

q

Φ(0′, ζ ′′).

Thus we get

ResLq [Γf ds] = R(0′, λ′′) dλ′′

=
1

(2πi)n−q

∫
Cn−q

Φα(ζ ′′)
n∏

j=q+1

|ζj |2λj

ζ
|αj |
j

n∧
j=q+1

dζ̄j
ζ̄j
∧ dζj .
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Now, applying (3.1), (3.3) together with Fubini’s theorem, we find that
the action of the current Tf may be expressed as

Tf (ϕ)=
1

(2πi)n−q

∫
Cn−q

Φα(ζ ′′)∏n
j=q+1 ζ

|αj |
j

· F (|ζq+1|2, . . . , |ζn|2)
n∧

j=q+1

dζ̄j
ζ̄j
∧ dζj ,

where F is a function of the hypergeometric type, representable as the
Mellin-Barnes integral

(3.8) F (|ζq+1|2, . . . , |ζn|2)

=
1

(2πi)n−q

∫
iRn−q

n∏
j=1

Γ (1− ?j(λ′′)) |ζq+1|2λq+1 · · · |ζn|2λn dλ′′,

where ?j(λ′′) is the j’th component of the vector ?(λ′′) = A−1(0′, λ′′).
The proposition is thereby proved.

Remark 3.2. In case q = 1 it is not hard to actually compute the in-
tegral (3.8) by using the methods of [27] and [26]. The result of this
computation then gives a rational function.

4. The complete intersection case

In this section, we consider m ≤ n holomorphic functions f1, . . . , fm
defining a complete intersection in a domain V ⊂ Cn. It follows from
Theorem 1.1 (iii) that {1, . . . ,m} is the only subset I that can give a non-
zero current Tf,I . We use the simpler notation Tf for the corresponding
current Tf,{1,...,m}. We shall now prove that Tf in fact coincides with
the residue current in the sense of Coleff-Herrera ([14]).

Theorem 4.1. Let f1, . . . , fm, be holomorphic functions defined in some
open set V ∈ Cn. Assume that f1, . . . , fm define a complete intersection
in V (in particular that m ≤ n). Then

Tf =
m∧
k=1

∂
1
fk
.

Proof: As mentioned in the introduction (see formula (1.2)), the actions
of the two currents Tf and

∧m
k=1 ∂

1
fk

on test forms which are ∂-closed
in a neighborhood of {f1 = · · · = fm = 0} coincide. The problem is
to show this remains true for any test form. For this, we will need two
preparatory lemmas.
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Lemma 4.1 ([4], [24]). Let p ≥ 2 and g1, . . . , gp be p holomorphic func-
tions of n variables defining a complete intersection in an open subset V
of Cn. Then, for any test form ϕ ∈ Dn,n−p+1(V ), the function of two
complex variables

(λ1, λ2) �→ λp−1
2

∫
V

|g1|2λ1 |g2 · · · gp|2(λ2−1)

p∧
k=2

dgk ∧ ϕ(4.1)

can be continued from {Reλ1 > 0, Reλ2 > 1} as a meromorphic func-
tion in two complex variables. Moreover, this meromorphic continuation
Mg(λ;ϕ) can be written near the origin in C2 as

Mg(λ;ϕ) = k0(λ) + λp−1
2

 N∑
j=1

kj(λ)∏p−2
l=1 (ρjlλ1 + σjlλ2)

(4.2)

where k0, . . . , kN are holomorphic near the origin and the ρjl (resp. σjl)
are constants in N (resp. in N∗).

Proof: The fact that the function (4.1) can be meromorphically con-
tinued to C2 and that its continuation has the form (4.2) near the
origin is proved in details in [4, p. 70-72], from formula (3.34) up to
formula (3.40). To be more precise, in the mentioned reference, only the
meromorphic continuation of

(λ1, λ2) �→ λp−1
1

∫
V

|g1|2λ1 |g2 · · · gp|2(λ2−1)

p∧
k=2

dgk ∧ ∂ψ

(for some test form ψ ∈ Dn,n−p(V )) was expressed in the form (4.2), but
in fact the argument does not use at all the fact that the test form is
the ∂ of another one; therefore one could replace ∂ψ by any test form ϕ
and get the same result.

Lemma 4.2. Let p ≥ 2 and g1, . . . , gp be p holomorphic functions of n
variables defining a complete intersection in an open subset V of Cn.
Let g′ := (g2, . . . , gp). Then, for any test form ϕ ∈ Dn,n−p+1(V ), the
function of two complex variables

(λ1, λ2) �→ λ2

∫
V

|g1|2λ1‖g′‖2λ2

∧p
k=2 dgk ∧ ϕ

(|g2|2 + · · ·+ |gp|2)p−1
(4.3)

can be continued from {Reλ1 > 0, Reλ2 > 1} as a meromorphic func-
tion in two complex variables. Moreover, this meromorphic continuation
Ng(λ;ϕ) is holomorphic in a product of halfplanes {Reλ1 > −η1} ×
{Reλ2 > −η2}.
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Proof: Although implicitly given in [6] and [4, Section 5], the proof of
this lemma is there more suggested than detailed, so we will write it
out here completely following the basic ideas one can find for example
in [7, proof of Proposition 9] or in Section 2 above. We first localize
the problem and use a resolution of singularities (X ,Π) for the hyper-
surface {g1 = g2 = · · · = gp = 0}, so that, in the local chart ω, we have
in local coordinates t1, . . . , tn,

Π∗gk(t) = uk(t)tαk1
1 · · · tαkn

n , k = 1, . . . , n

where the uk are invertible holomorphic functions on the local chart ω
and the αkl are positive integers. Then, as in Section 2, our analytic
function λ �→ N (λ, ϕ) appears as the sum of terms

λ2

∫
ω

|u1m1|λ1
‖Π∗g′‖2λ2

(
∑p
k=2 |ukmk|2)

p−1

m∧
k=2

∂ukmk ∧ ρΠ∗ϕ(4.4)

where ρ = ρω is the function associated to the local chart in some par-
tition of unity subordonned to Supp Π∗ϕ. In order to decompose an
integral of the form (4.4), we use the toric variety X̃ (together with the
projection proper map Π̃: X̃ �→ Cn) corresponding to the closed convex
hull (in Rn

+) of
p⋃
j=2

{(αj1, . . . , αjn) + Rn
+}

(see the proof of Lemma 2.2 in Section 2 above). This introduces a new
decomposition of (4.4), with expressions of the form

λ2

∫
�

|Π̃∗u1m1|λ1 |µj� |2λ2

∧m
k=2 ∂υkµω ∧ ξρ,�Π̃∗(ρΠ∗ϕ)

|µj� |2(p−1) (
∑m
k=2 |υk|2)

p−1−λ2
(4.5)

where µ� is the distinguished monomial among the µj = Π̃∗mj , j =
2, . . . , p, the υk are the holomorphic functions defined as Π̃∗(ukmk) =
υkµj� (note that υj� is invertible in +) and ξρ,� comes from a partition
of unity related to a covering of Π̃∗ Supp ρ. Such an expression (4.5) can
be written as

λ2

∑
�

∫
�

|Π̃∗u1m1|λ1 |µj� |2λ2

µp−1
j�

(
θ̃�,1,λ2 + θ̃�,2,λ2∧

dµj�
µj�

)
∧Π̃∗Π∗ϕ,(4.6)

where θ̃�,1,λ2 and θ�,2,λ2 are smooth forms with respective types (0, p)
and (0, p−1) depending holomorphically on the parameter λ2. It is now
immediate that the meromorphic continuation of λ �→ N (λ, ϕ) exists
and that its polar set is included in a collection of hyperplanes β0 +
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β1λ1 + β2λ2 = 0, where β0 ∈ N and (β1, β2) ∈ N2 \ {0}. In order to
see that there are no polar hyperplanes with β = 0 (and then we will
be done), we need to look more carefully at the analytic continuation of
expressions of the form

λ2

∑
�

∫
�

|Π̃∗u1m1|λ1 |µj� |2λ2

µp−1
j�

θ̃�,2,λ2 ∧
dτ

τ
∧ Π̃∗Π∗ϕ,(4.7)

where τ is among the coordinates that divide the distinguished mono-
mial µj� . If τ does not appear in the decomposition of Π̃∗m1, then the
integration by parts which is necessary in order to raise the singularity
τ implies just a division of the expression by λ2 (instead of a combi-
nation of λ1 and λ2 as it should be if the hypothesis was not fulfilled).
Since λ2 was in the numerator, the new expression (after integration
by parts with respect to τ) is holomorphic near the origin in C2. If τ
appears in the decomposition of Π̃∗m1, it means that Π ◦ Π̃{τ = 0} is
included in the n − p dimensional analytic set {g1 = · · · = gp = 0}.
This implies (for dimension reasons) that any antiholomorphic differen-
tial form Π̃∗Π∗ ∧

j∈I dζj , when I ⊂ {1, . . . , n}, #I = n− p+ 1, vanishes
identically on τ = 0, which means that all its coefficients have τ as a
factor. In such a case,

λ2

∑
�

∫
�

|Π̃∗u1m1|λ1 |µj� |2λ2

µp−1
j�

θ̃�,2,λ2 ∧
dτ

τ
∧ Π̃∗Π∗ϕ

has only holomorphic singularities and therefore defines a holomorphic
function of λ at the origin. This completes the proof of Lemma 4.2.

Proof of Theorem 4.1: We now follow the proof given in [4, Section 5].
We will prove our theorem by induction on the number n −m. When
n = m, we are in the discrete situation, so we know that the two cur-
rents Tf and

∧m
k=1 ∂

1
fk

act in the same way on (n, 0) test forms which
are holomorphic near the set {f1 = · · · = fn = 0} and are both killed by
all antiholomorphic functions which vanish on this set (see Theorem 1
for this property for the current Tf and [14] for the analogous property
for the Coleff-Herrera current). This implies that the action of the two
currents coincide when n−m = 0. We will assume from now on that the
inductive hypothesis holds when 0 ≤ nb variables-nb functions ≤ k − 1
and we want to prove our result when we take p− 1 functions g2, . . . , gn
in n variables, defining a complete intersection in V ⊂ Cn, and such
that n− (p− 1) = k. There is no restriction if we suppose V is a poly-
disk centered at the origin in Cn (since our problem is a local one).
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Let ϕ be a (n, n − p + 1) test form in V or the form ϕI dζ ∧ dζJ ,
#J = n − p + 1. It follows from the Noether Normalisation lemma
(see for example [10]) that (with V eventually restricted) one can find
convenient coordinates —also denoted as (ζ1, . . . , ζn) = (ζ1, ζ ′)— so that
ϕ contains dζ1, dim{ζ1 = g2 = · · · = gp = 0} = n−p and, for any generic
choice of ζ01 ,

dimζ′{g2(ζ01 , ζ ′) = · · · = gp(ζ01 , ζ ′) = 0} ≤ n− p.
We will work from now on in such a domain V = D(0, r1) × D′, with
these coordinates. Let ϕ = dζ1 ∧ dζ1 ∧ ψ. Let us fix λ1 = λ0

1 with
Reλ0

1 # 0 and consider λ2 with Reλ2 > 1. It follows from Fubini’s
theorem that, if g = (ζ1, g2, . . . , gp) = (ζ1, g′),

(4.8) Mg(λ, ϕ)

=± λ
p−1
2

(p− 1)!

∫
D(0,r1)

|ζ1|2λ
0
1dζ1∧dζ1∧

(∫
D′
|g2 · · · gp|2(λ2−1)

p∧
k=2

∂ζ′gk ∧ ψ
)
.

If Reλ2 > p− 1, we have also, for the same λ0
2,

(4.9) Ng(λ, ϕ)

=±λ2

∫
D(0,r1)

|ζ1|2λ
0
1dζ1∧dζ1∧

(∫
D′
‖g′‖2λ2

∧p
k=2 ∂ζ′gk ∧ ψ

(|g2|2 + · · ·+ |gp|2)p−1

)
.

For ζ01 fixed (in a generic way), we know from Theorem 1.1 that the
function Nζ01 ,g′ of one variable λ2, defined as

Nζ01 ,g′(λ2, ψ) := λ2

∫
D′
‖g′(ζ01 , ζ ′)‖2λ2

∧p
k=2 ∂ζ′gk(ζ

0
1 , ζ

′) ∧ ψ(ζ01 , ζ
′)

(
∑p
k=2 |gk(ζ01 , ζ ′)|2)

p−1

(for Reλ2 large enough) can be continued as a meromorphic function in
C (with poles in {r ∈ Q, r < 0}.) Moreover, we have

Nζ01 ,g′(0, ψ)=
(2πi)p−1(−1)

(p−1)(p−2)
2

(p− 1)!
Tg′(ζ01 ,ζ′),{1,...,p−1}(ψ(ζ01 , ζ

′))(4.10)

(see Lemma 2.2). The same is true for the function of the complex
variable λ2 defined (also for Reλ2 large enough) by

Mζ01 ,g
′(λ2, ψ)

:= λp−1
2

∫
D′
|g2 · · · gp(ζ01 , ζ ′)|2(λ2−1)

p∧
k=2

∂ζ′gk(ζ01 , ζ ′) ∧ ψ(ζ01 , ζ
′)
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as known from [4]. Moreover, one can see in [23] or in [12, Theo-
rem 6.2.1, p. 107], that

Mζ01 ,g
′(0, ψ) = (2πi)p−1(−1)

(p−1)(p−2)
2

〈
n∧
k=2

∂
1

gk(ζ01 , ζ ′)
, ψ(ζ01 , ζ

′)

〉
.

Since we are dealing now with p−1 functions of n−1 variables, we have
n− 1− (p− 1) = n− p = k − 1, we can apply the inductive hypothesis
and therefore obtain

(p− 1)!Nζ01 ,g′(0, ψ(ζ01 , ζ
′)) =Mζ01 ,g

′(0, ψ(ζ01 , ζ
′)).

Our final step will be to check that for Reλ0
1 large enough, the analytic

continuation (with respect to λ2) commutes with the integration with
respect to ζ1 in (4.8) and (4.9). We already know (by Lemma 4.1 and
4.2) that the functions

λ1 �→ Mg((λ1, 0), ϕ)
λ1 �→ Ng((λ1, 0), ϕ)

are well defined as meromorphic functions and have no pole at the origin.
Let us assume for the moment that analytic continuation (with respect
to λ2 and up to Reλ2 > 0) and integration with respect to ζ1 commute
when Reλ0

1 # 0. Then we will get that for Reλ0
1 # 0, we have

(p− 1)!Ng((λ0
1, 0), ϕ) = Ng((λ0

1, 0), ϕ).

Following the analytic continuation, this time with respect to λ1, we get
that

(p− 1)!k0(0, 0) = k̃0(0, 0)

which means, if we refer to Lemma 2.2 and to [23] or [12, Theorem 6.2.1,
p. 107], that

Tg,{1,...,p−1}(ϕ) =

〈
p∧
k=2

∂
1
gk
, ϕ

〉
and concludes the proof of our inductive assumption when n− p = k.

It remains to explain why that analytic continuation (with respect
to λ2 up to Reλ2 > −η) and integration with respect to ζ1 commute
when Reλ0

1 # 0 in (4.8) and (4.9). This was already explained in [4].
We will use here a different approach, based on the use of Bernstein-
Sato relations instead of resolution of singularities. Such an approach
seems more natural. It follows from Proposition 3 in [8] that there ex-
ist analytic functions h1 and h2 in one complex variable u, defined in
D(0, r′1), r

′
1 ≤ r1, polynomials b1 and b2 in C[ν, λ2], differential operators
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Q1(ν, λ2; u, ζ, ∂ζ) and Q2(ν, λ2; u, ζ, ζ̃, ∂ζ , ∂ζ̃) (polynomials in ν, λ2, ∂

and with analytic coefficients in ζ ∈ W ⊂ V for Q1, in (ζ, ζ̃) ∈ W ×W
for Q2), such that

h1(u)b1(ν, λ2)[(ζ1−u)ν(g2 · · · gp)λ2 ]=Q1[(ζ1−u)ν(g2 · · · gp)λ2+1]

h2(u)b2(ν, λ2)[(ζ1−u)νG(ζ, ζ̃)λ2 ]=Q2[(ζ1−u)νG(ζ, ζ̃)λ2+1]
(4.11)

the above identities being understood as formal identities inD(0, r′1)×W
or in D(0, r′1)×W ×W and

G(ζ, ζ̃) :=
p∑
k=2

g2(ζ)g2(ζ̃).

The second relation provides, if one substitutes ζ̃ = ζ and repeats the
reasoning in Lemma 2.4, the following formal identity in D(0, r′1)× V

h2(u)b2(ν, λ2)[(ζ1 − u)ν‖g′‖2λ2 ] = Q2[(ζ1 − u)ν‖g′‖2(λ2+1)].(4.12)

In order to express the analytic continuations of

λ2 �→ Mζ01 ,g
′(λ2, ψ)

λ2 �→ Nζ01 ,g′(λ2, ψ)

we just use the fact that for a C1 (n − 1, n − 1) form Φ with compact
support in V∫

V ∩{ζ1=ζ01}
Φ = − 1

2πi

∫
V

dζ1 ∧ ∂Φ
ζ1 − ζ01

= − 1
2πi

[∫
V

|ζ1 − ζ01 |2ν
ζ1 − ζ01

dζ1 ∧ ∂Φ
]
ν=0

.

(4.13)

We now express our two functionsMg′,ζ01
(λ2, ψ) and Ng′,ζ01 (λ2, ψ) (when

Reλ2 # 0) using formula (4.13) and then transform the two func-
tions of (ν, λ2) that appear with the help of formula (4.11) (to rewrite
Mg′,ζ01

(λ2, ψ)) or (4.12) (to rewrite Ng′,ζ01 (λ2, ψ)), with u = ζ01 (of course
such h1(u)h2(u) �= 0), as meromorphic expressions of λ2 (in Reλ2 > −η)
with coefficients estimated in C/|h1h2(ζ01 )|M for some very large M and
poles independent of ζ01 . If we reduce r1, then one can assume that on
D(0, r1), h1h2(u) = h̃(u)uK , where h̃ is an invertible holomorphic func-
tion. If Reλ0

1 # 0, all the coefficients in the meromorphic expressions are
integrable (with respect to ζ01 ) when multiplied by |ζ01 |2λ

0
1 . This shows

that the integration with respect to ζ01 and the analytic continuation
with respect to λ2 up to λ2 = −η, η < 0, commute in this case. This
concludes the proof of Theorem 4.1.
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