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BIFURCATIONS OF LIMIT CYCLES FROM CUBIC
HAMILTONIAN SYSTEMS WITH A CENTER AND A

HOMOCLINIC SADDLE-LOOP

Yulin Zhao and Zhifen Zhang

Abstract
It is proved in this paper that the maximum number of limit cycles
of system{

dx
dt

= y,

dy
dt

= kx − (k + 1)x2 + x3 + ε(α + βx + γx2)y

is equal to two in the finite plane, where k > 11+
√

33
4

, 0 < |ε| � 1,

|α| + |β| + |γ| �= 0. This is partial answer to the seventh question
in [2], posed by Arnold.

1. Introduction

Consider the Abelian integral

I(h) =
∮

Γh

Y (x, y) dx−X(x, y) dy, h ∈ Σ,(1.1)

where H(x, y), X(x, y) and Y (x, y) are real polynomial of x and y, Γh

is the compact component of H(x, y) = h, Σ is the maximal interval of
existence of Γh. Finding the lowest upper bound for the number of zeros
of I(h) is called the weakend Hilber-16th problem [1], which is closed
related to determining the number of limit cycles of perturbed system

dx

dt
=

∂H

∂y
+ εX(x, y),

dy

dt
= −∂H

∂x
+ εY (x, y),

(1.2)

where 0 < |ε| � 1.

This work was done in 1995–1998, when the first author was a Ph.D. student in
Peking University.
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In particular, suppose

H(x, y) =
1
2
y2 + U(x) = h,(1.3)

where U(x) is a real polynomial of x with degree n. In this case, finding
the number of zeros of I(h) is one of the ten problems in [2]. When
n = 3, this problem was investigated by many authors (e.g. [7], [8], [10],
[11]). When n = 4, some results were given by [5], [12], [13], [16], [17],
but this case is far from complete solving. In this paper, we study the
case n = 4 and the Hamiltonian vector field dH = 0 possesses one center
and one homoclinic saddle-loop, which has the following normal form

dx

dt
= y,

dy

dt
= kx− (k + 1)x2 + x3,

(1.4)

where k > 2.
The system (1.4) has the first integral

H(x, y) =
1
2
y2 − 1

2
kx2 +

1
3
(k + 1)x3 − 1

4
x4 = h,(1.5)

and the phase portrait is shown in Figure 1.1. The closed ovals Γh

are defined for Hamiltonian values h ∈ (−2k+1
12 , 0). H(x, y) = −2k+1

12
corresponds the center (1, 0), Γ0 = {(x, y) | H(x, y) = 0, 0 < x < x1 =
2(k+1)−

√
2(k−2)(2k−1)

3 } corresponds the saddle point (0, 0) and homoclinic
loop. The critical point (k, 0) is a saddle.

y

Γh

O (k, 0)
x

Figure 1.1
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Denote

Ii(h) =
∮

Γh

xiy dx, i = 0, 1, 2,(1.6)

I(h) = αI0(h) + βI1(h) + γI2(h),(1.7)

where the ovals Γh, h ∈ (−2k+1
12 , 0), has negative (clockwise) orientation

coinciding with the orientation of the vector field (1.4), α, β and γ are
arbitrary constants. The central result of this paper is the following
theorem:

Theorem 1.1. The maximum number of limit cycles of the perturbed
system 

dx

dt
= y,

dy

dt
= kx− (k + 1)x2 + x3 + ε(α + βx + γx2)y,

(1.8)ε

is equal to two in the finite plane, where k > 11+
√

33
4 , 0 < |ε| � 1,

|α| + |β| + |γ| �= 0.

Corollary 1.2. For k > 11+
√

33
4 , either I(h) vanishes identically or its

lowest upper bound of the number of zeros is equal to two, which is partial
answer to the seventh problem in [2].

The paper is organized as follows: In section 2, Picard-Fuchs equa-
tion satisfied by I0(h), I1(h) and I2(h) is derived and the expansions of
I(h) near its endpoints are given, the latter results reveal the connection
between the Abelian integrals I(h) and the limit cycles of system (1.8)ε

which tend to the center (1, 0) or homoclinic loop of (1.4) as ε → 0. In
section 3, instead of estimating the number of zeros of I(h), we will prove
that I ′′(h) has at most two zeros, i.e., I(h) has at most two inflection
points in (−2k+1

12 , 0), which implies the lowest upper bound of the num-
ber of zeros of I(h) does not exceed three in the same interval. Using the
fact ω(h) = I′′

1 (h)
I′′
0 (h) satisfies a Riccati equation, we get ω′(h) > 0. Hence,

the curve Ω̃ = {(ω, ν) | ω = I′′
1 (h)

I′′
0 (h) , ν = I′′

2 (h)
I′′
0 (h) , h ∈ (−2k+1

12 , 0)} can be
defined. It is readily seen that the intersection points of line α + βω +
γν = 0 with Ω̃ in ων-plane correspond the zeros of I ′′(h), which shows
that the convexity of Ω̃ determinates the number of the zeros of I ′′(h).
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In section 4, we make precise connection between the intersection points
of L : α + βP + γQ = 0 with the centroid curve Ω = {(P,Q) | P =
I1(h)
I0(h) , Q = I2(h)

I1(h)} on one hand and the zeros of Abelian integral I(h)
on the other hand. Finally, the main results of this paper are proved in
section 5. Some techniques in section 4 and section 5 are borrowed from
[4].

Remark. Unfortunately, the techniques we use in this present paper do
not fit for the case of 2 < k < 11+

√
33

4 . Therefore, throughout this paper,
we suppose k > 11+

√
33

4 > 4 unless the opposite is claimed. Some com-
putation in this paper is done by the computer program “Mathematica”.

2. Picard-Fuchs equation and the asymptotic
expansions of I(h) near its endpoints

In this section we shall derive Picard-Fuchs equation satisfied by Ii(h)
and describe the behaviours of I(h) near h = 0 and h = −2k+1

12 .

Lemma 2.1. I0(h), I1(h) and I2(h) satisfy the following Picard-Fuchs
equation

(4hE + S)J′ = NJ,(2.1)

which is equivalent to

G(h)J′ = RJ,(2.2)

where E is an unit matrix of order 3, J = col(I0, I1, I2), and

S =

0 1
3k(k + 1) 1

3 (−k2 + k − 1)
0 1

3k(k2 − k + 1) − 1
3 (k + 1)(k − 1)2

0 1
3k(k + 1)(k − 1)2 1

3 (−k4 + k3 + k2 + k − 1)

 ,

N =

 3 0 0
− 1

3 (k + 1) 4 0
1
3 (−k2 + k − 1) − 2

3 (k + 1) 5

 ,

R =

a00(h) a01(h) a02(h)
a10(h) a11(h) a12(h)
a20(h) a21(h) a22(h)

 ,
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G(h) = 192h
(
h− −2k + 1

12

) (
h− k3(k − 2)

12

)
,

a00(h) = 144h2 +
4
3
(−10k4 + 21k3 − k2 + 21k − 10)h

− 4
3
k3(2k − 1)(k − 2),

a01(h) = −8
3
(k + 1)(k2 + 5k + 1)h +

14
9

k2(k + 1)(2k − 1)(k − 2),

a02(h) = 20(k2 − k + 1)h− 5
3
k2(k − 2)(2k − 1),

a10(h) = −16(k + 1)h2 +
4
3
k(k + 1)(2k − 1)(k − 2)h,

a11(h) = 192h2 +
8
3
(−7k4 + 6k3 + 8k2 + 6k − 7)h,

a12(h) = 20(k + 1)(k − 1)2h,

a20(h) = 16(−k2 + k − 1)h2 +
4
3
k2(k − 2)(2k − 1)h,

a21(h) = −32(k + 1)h2 − 8
3
k(k + 1)(7k2 − 13k + 7)h,

a22(h) = 240h2 + 20k(k2 − k + 1)h.

Proof: It follows from (1.5) that

∂y

∂h
=

1
y

(2.3)

and

y
∂y

∂x
= kx− (k + 1)x2 + x3.(2.4)

Obviously, (2.3) implies that

I ′i(h) =
∮

Γh

xi

y
dx.(2.5)

Mutiplying (2.4) by y and integrating over Γh give

I3 = −kI1 + (k + 1)I2.(2.6)
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Use (1.5) and (2.5) to get

Ii(h) =
∮

Γh

xiy2

y
dx

=
∮

Γh

xi(2h + kx2 − 2
3 (k + 1)x3 + 1

2x
4)

y
dx

= 2hI ′i + kI ′i+2 −
2
3
(k + 1)I ′i+3 +

1
2
I ′i+4.

(2.7)

On the other hand, using (2.3), (2.4) and integrating by parts, we have

Ii(h) = − 1
i + 1

∮
Γh

xi+1 dy

= − 1
i + 1

∮
Γh

xi+1(kx− (k + 1)x2 + x3)
y

dx

= − 1
i + 1

(kI ′i+2 − (k + 1)I ′i+3 + I ′i+4).

(2.8)

Eliminating I ′i+4 from (2.7) and (2.8) yields

(i + 3)Ii = 4hI ′i + kI ′i+2 −
1
3
(k + 1)I ′i+3.(2.9)

This gives

3I0 = 4hI ′0 + kI ′2 −
1
3
(k + 1)I ′3,(2.10)

4I1 = 4hI ′1 + kI ′3 −
1
3
(k + 1)I ′4,(2.11)

5I2 = 4hI ′2 + kI ′4 −
1
3
(k + 1)I ′5.(2.12)

Substituting (2.6) into (2.10), we obtain the first equation of (2.1). The
formula (2.8) implies

I ′i+4 = −(i + 1)Ii(h) − kI ′i+2 + (k + 1)I ′i+3.(2.13)

Taking i = 0 in (2.13) and using (2.6), the formula (2.11) give the second
equation of (2.1).

Repeating the same arguments, we obtain the third equation. The
lemma has been proved.

Denote

P (h) =
I1(h)
I0(h)

, Q(h) =
I2(h)
I0(h)

,(2.14)

where h ∈ [−2k+1
12 , 0].



Bifurcations of limit cycles 211

Proposition 2.2. P (h), Q(h) are analytic function for h ∈ [−2k+1
12 , 0),

and

Ii

(−2k + 1
12

)
= 0, Ii(h) > 0, i = 0, 1, 2,i)

P

(−2k + 1
12

)
= Q

(−2k + 1
12

)
= 1, P (h) > 0, Q(h) > 0,ii)

P ′
(−2k + 1

12

)
= − k − 2

2(k − 1)2
, Q′

(−2k + 1
12

)
= − k − 3

2(k − 1)2
,iii)

P ′′
(−2k + 1

12

)
=

(k − 2)(−257 + 257k − 110k2)
72(k − 1)5

,

Q′′
(−2k + 1

12

)
=

651 − 788k + 467k2 − 110k3

72(k − 1)5
.

iv)

Proof: The results i) and ii) follows from Green’s formula. P (−2k+1
12 ) =

Q(−2k+1
12 ) = 1 imply that

P (h) =
1 + o(h− −2k+1

12 )
1 + o(h− −2k+1

12 )
, Q(h) =

1 + o(h− −2k+1
12 )

1 + o(h− −2k+1
12 )

(2.15)

as h → −2k+1
12 . Noting Ii(h) is analytic at h = −2k+1

12 (see [15]) and
I0(h) > 0 for h ∈ (−2k+1

12 , 0), the formula (2.15) implies that P (h) and
Q(h) are analytic functions for h ∈ [−2k+1

12 , 0).
Using

P ′ =
I ′1I0 − I ′0I1

I2
0

, Q′ =
I ′2I0 − I ′0I2

I2
0

and system (2.2) give{
GP ′ = a10 + (a11 − a00)P + a12Q− a01P

2 − a02PQ,

GQ′ = a20 + a21P + (a22 − a00)Q− a01PQ− a02Q
2.

(2.16)

Differentiating (2.16) once (resp. twice) yields iii) (resp. iv)).

It is well known that I(h) has the expansion near h = −2k+1
12 (see

[15])

I(h) = b1

(
h− −2k + 1

12

)
+ b2

(
h− −2k + 1

12

)2

+ · · · .(2.17)
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Theorem 2.3.

i)

b1 = (α + β + γ)I ′0

(−2k + 1
12

)
,

b2 = − (k − 2)β + (k − 3)γ
2(k − 1)2

I ′0

(−2k + 1
12

)
if b1 = 0,

b3 =
5(k − 2)β

6(k − 1)3(k − 3)
I ′0

(−2k + 1
12

)
if b1 = b2 = 0.

ii) If b1 = 0 (resp. b1 = b2 = 0), b2 �= 0 (resp. b3 �= 0), then there
exists one (resp. two) zero of I(h) tend to h = −2k+1

12 , i.e., sys-
tem (1.8)ε has at most one (resp. two) limit cycle tend to (1, 0).

iii) The conditions b1 = b2 = b3 = 0 hold if and only if I(h) ≡ 0.

Proof: (i) It follows from (1.7) and (2.14) that

I(h) = I0(h)(α + βP (h) + γQ(h)),(2.18)

which gives

bm =
1
m!


m∑

j=1

(
m
j

)
I
(m−j)
0 (h)[α+βP (h)+γQ(h)](j)


∣∣∣∣∣∣
h=−2k+1

12

.(2.19)

Therefore, the result i) follows from Proposition 2.2 and above equality.

(ii) In a neighbourhood of (1, 0), The Poincare map is

P (h) = εI(h) + o(ε),

which yields ii).

(iii) The conditions b1 = b2 = b3 = 0 hold if and only if
α + β + γ = 0,
(k − 2)β + (k − 3)γ = 0,
β = 0,

which implies α = β = γ = 0. Hence, I(h) ≡ 0.
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Rewrite (1.5) in the form

1
2
y2 + Φ(x) = h,(2.20)

where Φ(x) = − 1
2kx

2 + 1
3 (k + 1)x3 − 1

4x
4 satisfying

Φ′(x)(x− 1) > 0 for x ∈ (0, 1) ∪ (1, x1).(2.21)

For any x ∈ (0, 1), there is an unique x̃ ∈ (1, x1), such that

Φ(x) = Φ(x̃), 0 < x < 1 < x̃ < x1.(2.22)

Therefore, we can define a function x̃ = x̃(x) for 0 < x < 1 satisfying
(2.22). By (2.21) and (2.22), we have

dx̃

dx
=

Φ′(x)
Φ′(x̃)

< 0.(2.23)

Lemma 2.4. x1 < x + x̃ < 2, xx̃ < 1.

Proof: Let

a = x + x̃, and b = xx̃.(2.24)

The equality (2.22) implies that

1
2
ka− 1

3
(k + 1)a2 +

1
4
a3 + b

[
1
3
(k + 1) − 1

2
a

]
= 0.(2.25)

Taking a = 2
3 (k + 1) into (2.25), we have − 1

18 (2k− 1)(k− 2) = 0, which
contradicts the assumption k > 2. This shows a �= 2

3 (k + 1). Hence

b =
6ka− 4(k + 1)a2 + 3a3

6a− 4(k + 1)
.(2.26)

To find the maximal or minimal value of a(x), we consider the equa-
tion da(x)

dx = 0, which is equivalent to

Φ′(x) + Φ′(x̃) = 0.(2.27)

The relationship

x2 + x̃ = a2 − 2b

and (2.26) yield

Φ′(x) + Φ′(x̃) =
1
2
a(a− 2)(a− 2k).(2.28)
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The inequality 0 < x < 1 < x̃ < k implies 0 < a < 2k, hence a = 2 is
the unique root of the equation (2.27). Noting x ∈ [0, 1] and a(0) = x1,
a(1) = 2, we have

x1 < a = x + x̃ < 2,

which implies that xx̃ < x(2 − x) ≤ 1.

Near the value h = 0 corresponding to a saddle-loop Γ0, Abelian
integral I(h) has the expansion [14]

I(h) = c0 + c1hln|h| + c2h + · · ·(2.29)

with c0 = I(0), c1 = c̃div(X,Y )|(0,0), c2 = I
′
(0) if c1 = 0, where c̃ is a

constant. Using this formula, we obtain

I0(h) = I0(0) + c01hln|h| + c02h + · · · ,
I1(h) = I1(0) + I

′

1(0)h + · · · ,
I2(h) = I2(0) + I

′

2(0)h + · · · .
(2.30)

It follows from (1.7) and (2.30) that

c0 = αI0(0) + βI1(0) + γI2(0),
c1 = αc01, c01 �= 0,

c2 = βI
′

1(0) + γI
′

2(0) if α = 0.

(2.31)

Lemma 2.5.

i) d
dh ( I2(h)

I1(h) ) > 0, h ∈ (−2k+1
12 , 0),

ii) I1(0)I ′2(0) − I ′1(0)I2(0) > 0.

Proof: (i) Denote

ξ(x) =
x2 − x̃2 dx̃

dx

x− x̃dx̃
dx

, x ∈ (0, 1).

It follows from (2.23) that

ξ(x) =
k − xx̃

k + 1 − x− x̃
,

which gives

ξ
′
(x) =

A(x, x̃)
(k + 1 − x− x̃)2

,
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where

A(x, x̃) = −
(
x̃ + x

dx̃

dx

)
(k + 1 − x− x̃) +

(
1 +

dx̃

dx

)
(k − xx̃)

=
1

x̃(x̃− 1)(x̃− k)
[x̃(x̃− 1)2(x̃− k)2 + x(x− 1)2(x− k)2].

Noting 0 < x < 1 < x̃ < k, we have A(x, x̃) < 0, which implies ξ
′
(x) < 0.

Use this result and Theorem 1 of [9], we get i).

(ii) By symmetry and x̃ = x̃(x), z̃ = z̃(z), y(x̃) = y(x), y(z̃) = y(z),
we get

I1(0)I
′

2(0) − I
′

1(0)I2(0)

= 2
∫ x1

0

xy dx · 2
∫ x1

0

z2

y(z)
dz − 2

∫ x1

0

z

y(z)
dz · 2

∫ x1

0

x2y dx

= 2
∫ x1

0

∫ x1

0

[
xy(x)z(z − x)

y(z)
+

xy(z)z(x− z)
y(x)

]
dx dz

= 2
∫ 1

0

∫ 1

0

[y2(x) − y2(z)]
y(x)y(z)

Φ(x, z) dx dz,

where

Φ(x, z) = xz(z − x) − x̃z(z − x̃)
dx̃

dx
− xz̃(z̃ − x)

dz̃

dz
+ x̃z̃(z̃ − x̃)

dx̃

dx

dz̃

dz

=
(
x− x̃

dx̃

dx

) (
z − z̃

dz̃

dz

)
(ξ(z) − ξ(x)),

ξ(x) is defined as above. Since

ξ′(x) < 0,
dx̃

dx
< 0,

dz̃

dz
< 0 and y

′
(x) > 0 for x ∈ (0, 1),

we get I1(0)I
′
2(0) − I ′1(0)I1(0) > 0.

Theorem 2.6. i) If c0 = 0, c1 �= 0 (resp. c0 = c1 = 0), then I(h)
has at most one (resp. two) zero near h = 0, i.e., system (1.8)ε has
at most one (resp. two) limit cycle that tend to the saddle-loop Γ0

of system (1.4).
ii) The condition c0 = c1 = c2 = 0 is equivalent to I(h) ≡ 0.
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Proof: (i) It follows from Theorem C of [14].

(ii) Obviously, c0 = c1 = c2 = 0 if and only if
αI0(0) + βI1(0) + γI2(0) = 0,
α = 0,
βI

′
1(0) + γI

′
2(0) = 0.

Lemma 2.5 implies that∣∣∣∣∣∣
I0(0) I1(0) I2(0)

1 0 0
0 I

′
1(0) I

′
2(0)

∣∣∣∣∣∣ = −[I1(0)I ′2(0) − I ′1(0)I2(0)] < 0.

Thus, c0 = c1 = c2 = 0 if and only if α = β = γ = 0, which implies
I(h) ≡ 0.

We end this section by several inequalities, which are crucial for our
analysis in next two sections.

Lemma 2.7.
i) I1(0) < I2(0) < I0(0),
ii) (k − 2)I2(0) − (k − 3)I1(0) − I0(0) < 0.

Proof: (i) Lemma 2.5 i) and Proposition 2.2 imply that

1 =
I2(−2k+1

12 )
I1(−2k+1

12 )
<

I2(h)
I1(h)

<
I2(0)
I1(0)

for h ∈ (−2k+1
12 , 0), which gives I1(0) < I2(0). On the other hand,

I2(0) − I0(0) = 2
∫ 1

0

(x2 − 1)y dx + 2
∫ x1

1

(x̃− 1)y(x̃) dx̃

= 2
∫ 1

0

y

Φ′(x̃)
(x−1)(x̃−1)(x̃−x)(k−x−x̃−xx̃) dx.

(2.32)

It follows from Lemma 2.4 that k−(x+x̃+xx̃) ≥ k−3 > 0. Hence, appli-
cation of (2.32) yields I2(0) < I0(0). Summing up the above discussion,
we get i).

(ii) Using same arguments as (i), we have

(k − 2)I2(0) − (k − 3)I1(0) − I0(0)

= 2
∫ 1

0

y

Φ′(x̃)
(x− 1)(x̃− 1)(x̃− x)[k − x− x̃− (k − 2)xx̃] dx.

It follows from Lemma 2.4 that k−x−x̃−(k−2)xx̃ > 0. Since Φ′(x) > 0
and 0 < x < 1 < x̃, the above equalities gives ii).
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3. Behaviour of curve ω(h) = I′′
1 (h)

I′′
0 (h)

and relevant results

Lemma 3.1. For h ∈ (−2k+1
12 , 0), I ′′0 (h) > 0.

Proof: Chow [3] and Gavrilov [6] have proved that the period function
of (1.4) is monotonic, i.e., I ′′0 (h) �= 0 for h ∈ (−2k+1

12 , 0). On the other
hand, since I ′0(h) > 0, the formula (2.30) implies c01 < 0. This gives

I ′′0 (h) =
c01
h

+ · · · > 0

as h → 0−, which yields the result.

Define

ω(h) =
I ′′1 (h)
I ′′0 (h)

, h ∈
(−2k + 1

12
, 0

)
.(3.1)

In this section, we shall derive the Riccati equation satisfied by ω(h)
and discuss the behaviour of curve ω(h). The upshot is to prove that
I(h) has at most three zeros in (−2k+1

12 , 0).

Lemma 3.2.

(3.2) I ′′2 (h) =
−12h

(2k − 1)(k − 2)
I ′′0 (h)

+
1

k + 1

[
36h

(k − 2)(2k − 1)
+ k

]
I ′′1 (h).

Proof: Differentiating both sides of (2.1) yields

(4hE + S)J′′ = (N − 4E)J′,(3.3)

where

N − 4E =

 −1 0 0
− 1

3 (k + 1) 0 0
1
3 (−k2 + k − 1) − 2

3 (k + 1) 1

 .

Eliminating I ′0 from the first two equations of (3.3), we get (3.2).
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Lemma 3.3. The integral I0, I1 satisfy the following equation

G(h)
(
I ′′′0

I ′′′1

)
=

(
A(h) B(h)
C(h) D(h)

) (
I ′′0
I ′′1

)
(3.4)

where

A(h) =
48(−7k2 + 22k − 7)

(2k − 1)(k − 2)
h2 +

4
3
(14k4 − 27k3 − 10k2 − 27k + 14)h

+
4
3
k3(2k − 1)(k − 2),

B(h) =
1

k + 1

[−432(k2 − k + 1)
(2k − 1)(k − 2)

h2 +
4
3
(−2k4 + k3 + 60k2 + k − 2)h

−1
9
k2(2k − 1)(k − 2)(10k2 + 11k + 10)

]
,

C(h) =
16(k + 1)(7k2 − 13k + 7)

(2k − 1)(k − 2)
h2 +

4
3
k(k + 1)(2k − 1)(k − 2)h,

D(h) =
−48(17k2 − 38k + 17)

(2k − 1)(k − 2)
h2 +

4
3
(10k4 − 21k3 + 10k2 − 21k + 10)h.

Proof: Differentiate once (3.3), we get

(4hE + S)J′′′ = (N − 8E)J′′.(3.5)

Substituting (3.2) into the first two equations of (3.5), we get (3.4).

Theorem 3.4. The ratio ω(h) satisfies the following Riccati equation

G(h)ω′(h) = C(h) + (D(h) −A(h))ω −B(h)ω2.(3.6)

Proof: Since

ω′ =
I ′′′1 I ′′0 − I ′′1 I

′′′
0

(I ′′0 )2
,

the equation (3.6) follows from Lemma 3.3.

Lemma 3.5. For h ∈ (−2k+1
12 , 0), B(h) < 0, C(h) < 0, which implies

(D(h) −A(h))2 + 4B(h)C(h) > 0.
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Proof: Denote

B1(h) =
4
3
(−2k4 + k3 + 60k2 + k − 2)h

− 1
9
k2(2k − 1)(k − 2)(10k2 + 11k + 10),

C1(h) =
16(k + 1)(7k2 − 13k + 7)

(2k − 1)(k − 2)
h +

4
3
k(k + 1)(2k − 1)(k − 2),

which gives

B(h) =
1

k + 1

[−432(k2 − k + 1)
(2k − 1)(k − 2)

h2 + B1(h)
]
, C(h)=hC1(h).(3.7)

Since B1(h) is linear function of h and

B1(0) = −1
9
k2(2k − 1)(k − 2)(10k2 + 11k + 10) < 0,

B1

(−2k + 1
12

)
= −1

9
(2k − 1)[(k − 2)(10k4 + 9k3

+ 7k2 + 54k + 109) + 216] < 0,

this shows B1(h) < 0. It follows from (3.7) that B(h) < 0.
Similarly, we get C1(h) > 0, which implies C(h) < 0 for h∈(−2k+1

12 , 0).

Proposition 3.6. For h ∈ (−2k+1
12 , 0), ω(h) is analytic and

i) ω′(h) > 0,
ii) − (k+1)(2k−7)

10k2−31k+31 < ω(h) < 0.

Proof: By Theorem 3.4, the curve ω(h) is the trajectory of system{
ḣ = G(h),
ω̇ = C(h) + (D(h) −A(h))ω −B(h)ω2,

(3.8)

which has four critical points in {(h, ω) | −2k+1
12 ≤h≤0}: a stable node at

E1(0, 0), two saddles at J1(−2k+1
12 , (k+1)(2k−7)

10k2−31k+31 ) and E2(0,
12k(k+1)

10k2+11k+10 ),
an unstable node at J2(−2k+1

12 , 1). The isocline ω±(h) is determined by
algebraic curve

C(h) + (D(h) −A(h))ω −B(h)ω2(h) = 0,(3.9)
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where

ω+(h) =
D −A−

√
(D −A)2 + 4BC

2B
,(3.10)

ω−(h) =
D −A +

√
(D −A)2 + 4BC

2B
(3.11)

with

ω−
(−2k + 1

12

)
= − (k + 1)(2k − 7)

10k2 − 31k + 31
, ω−(0) = 0.

Differentiating (3.9) once, we have

(3.12) (ω−)′
(−2k + 1

12

)
=

35(k − 2)(k + 1)(2k − 1)(2k2 − 11k + 11)
(k − 1)2(10k2 − 31k + 31)2

> 0.

Assume dω−

dh = 0 at h = h and (ω−)′(h) > 0 for h ∈ (−2k+1
12 , h), which

implies (ω−)′′(h) < 0. Differentiate (3.9) twice to get

(ω−)′′(h) =
432(k2−k + 1)(ω−− k+1

3 )(ω−− (k+1)(7k2−13k+7)
9(k2−k+1) )

B(h)(k + 1)(2k − 1)(k − 2)(ω− − D−A
2B )

.(3.13)

By Lemma 3.5 and (3.11), we have ω− − D−A
2B < 0, B(h) < 0 and

ω−(h) < 0. Therefore, the formula (3.13) gives (ω−)′′(h) > 0. This
contradicts the assumption, which yields that the isocline ω = ω−(h) is
monotonically increasing function for h ∈ (−2k+1

12 , 0).
Since Ii(h) is analytic at h = −2k+1

12 , it follows from (3.4) that

A

(−2k + 1
12

)
I ′′0

(−2k + 1
12

)
+ B

(−2k + 1
12

)
I ′′2

(−2k + 1
12

)
= 0,

which implies

ω

(−2k + 1
12

)
= − (k + 1)(2k − 7)

10k2 − 31k + 31
.(3.14)

Lemma 3.1 and (3.14) show that ω(h) is analytic for h ∈ [−2k+1
12 , 0). On

the other hand, the formula (2.30) gives

ω(0) = limh→0
I ′′1
I ′′0

= 0.(3.15)
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Hence, ω(h) is the trajectory of (3.13) from J1 to E1. Since (ω−)′(h) > 0,
the graph of ω(h) = I′′

1
I′′
0

must stay in the region {(h, ω) | ω < ω−, h ∈
(−2k+1

12 , 0)}, which implies ω′(h) > 0, see Figure 3.1. The inequality ii)
follows from i), (3.14) and (3.15).

ω

J2

ω+(h)
E2

h
E1

ω−(h)

J1

Figure 3.1

Corollary 3.7. i) If α + 1
3 (γk + βk + β) = 0, γ �= 0, then I ′′(h) has

h = h∗ = − (γk+βk+β)(k−2)(2k−1)
36γ as the unique zero in (−2k+1

12 , 0).
If α + 1

3 (γk + βk + β) �= 0, then h = h∗ is not the zero of I ′′(h).
ii) If α+ 1

3 (γk+βk+β) > 0, −k−2
k−3β < γ < 0, then I ′′(h) has at most

one zero in (−2k+1
12 , 0).

iii) P ′(h) < 0 for h ∈ (−2k+1
12 , 0).

Proof: (i) Lemma 3.2 yields

(3.16) I ′′(h) =
(2k − 1)(k − 2)α− 12γh

(2k − 1)(k − 2)
I ′′0

+
36γh + (γk + βk + β)(2k − 1)(k − 2)

(k + 1)(2k − 1)(k − 2)
I ′′1 .
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If α + 1
3 (γk + βk + β) = 0, then

I ′′(h) =
36γI ′′0 (h)(ω(h) − k+1

3 )(h− h∗)
(k + 1)(2k − 1)(k − 2)

,

which implies that I ′′(h) has h = h∗ as the unique zero. If α + 1
3 (γk +

βk + β) �= 0, then it follows from Lemma 3.1 and (3.16) that

I ′′(h∗) =
[
α +

1
3
(γk + βk + β)

]
I ′′0 (h∗) �= 0.

(ii) In the case of α + 1
3 (γk + βk + β) > 0, −k−2

k−3β < γ < 0, h = h∗ is
not a zero of I ′′(h), and (3.16) is equivalent to

I ′′(h) =
36γ(h− h∗)

(k + 1)(2k − 1)(k − 2)
I ′′0 (h)q(h),(3.17)

where

q(h) = f(h) + ω(h)

and

f(h) =
(k + 1)[(2k − 1)(k − 2)α− 12γh]

36γ(h− h∗)
,(3.18)

which implies

f ′(h) = − (k + 1)(2k − 1)(k − 2)[α + 1
3 (γk + βk + β)]

36γ(h− h∗)2
> 0.(3.19)

Therefore, by Proposition 3.6, we have

q′(h) = f ′(h) + ω′(h) > 0.(3.20)

If −k+1
k β ≤ γ < 0, then h∗ ≥ 0. This and (3.20) imply that q(h) (i.e.,

I ′′(h)) has at most one zero in h ∈ (−2k+1
12 , 0).

On the other hand, if −k−2
k−3β < γ < −k+1

k β < 0, then h∗ ∈ (−2k+1
12 , 0),

α > − 1
3 (γk + βk + β). The inequality (3.19) gives

f(h) < f(0) =
(k + 1)α

γk + βk + β
< 0

for h ∈ (h∗, 0). Hence, Proposition 3.6 yields q(h) < 0 for h∗ < h < 0.
It follows from (3.20) that q(h) has at most one zero in h ∈ (−2k+1

12 , h∗).
We obtain ii) by using i), Lemma 3.1 and (3.17).
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(iii) Consider the Abelian integral

I(h) = αI0(h) + I1(h) = I0(h)(α + P (h)).

If α > 0, then I(h) > 0.
If α < 0, then Lemma 3.1 and Proposition 3.6 show that

I ′′(h) = I ′′0 (h)(α + ω(h)) < 0,

which implies the curve I(h) is concave for h ∈ (−2k+1
12 , 0). Therefore,

noticing I(−2k+1
12 ) = 0 and I0(h) �= 0, α+P (h) has at most one zero for

arbitrary constant α. This yields P (h) is monotonic for h ∈ (−2k+1
12 , 0).

Suppose h = h1 is the zero of I(h), the convexity of I(h) implies I ′(h1) =
I0(h1)P ′(h1) ≤ 0, i.e. P ′(h1) ≤ 0. However, if P ′(h1) = 0, then

I ′′(h1) = I ′′0 (h1)(α + P (h1)) + 2I ′0(h1)P ′(h1) + I0(h1)P ′′(h1)

= I0(h1)P ′′(h1) < 0,

which shows P ′′(h1) < 0, i.e., h = h1 is the maximum point of P (h).
This contradicts P ′(h1) ≤ 0. The proof is finished.

Proposition 3.8. ω′′(h) > 0 for h ∈ (−2k+1
12 , 0).

Proof: We split the proof by several steps.

1) First, V (h, ω) = 2D′ − 2A′ −G′′ − 4B′ω > 0.
It is readily seen

V (h, 0) = − 384
(2k − 1)(k − 2)

[(k − 2)(11k − 1) + 9]h

+
16
3

(4k2 − k + 4)(k − 1)2 > 0,

V

(
h,− (2k − 7)(k + 1)

10k2 − 31k + 31

)
= −384(55k2 − 139k + 139)h

10k2 − 31k + 31

+
16

3(10k2 − 31k + 31)
[k3(k − 4)(40k2 − 58k + 287)(3.21)

+ 582k3 + (211k2 − 414k) + 138] > 0.

Since V (h, ω) is linear function of ω and ω′(h) > 0, − (k+1)(2k−7)
10k2−31k+31 <

ω < 0 (see Proposition 3.6), it follows from (3.21) that V (h, ω) > 0 for
h ∈ (−2k+1

12 , 0).
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2) If h = h1 satisfies ω′′(h1) = 0, then ω′′′(h1) > 0.
Indeed, differentiate (3.6) twice to get

(3.22) G(h1)ω′′′(h1) = C ′′(h1) + (D′′(h1) −A′′(h1))ω(h1) −B′′ω2(h1)

+ V (h1, ω(h1))ω′(h1) − 2B(h1)(ω′)2(h1).

By Lemma 3.5, Proposition 3.6 and step 1),we conclude that

C ′′(h1) + (D′′(h1) −A′′(h1))ω(h1) −B′′(h1)ω2(h1)

=
864(k2 − k + 1)

(k + 1)(2k − 1)(k − 2)

(
ω(h1) −

k + 1
3

)

×
(
ω(h1) −

(k + 1)(7k2 − 13k + 7)
9(k2 − k + 1)

)
> 0,

V (h1, ω(h1))ω′(h1) > 0, −2B(h1)(ω′)2(h1) > 0.(3.23)

Hence, the formulas (3.22) and (3.23) imply ω′′′(h1) > 0.

3) ω′′(−2k+1
12 ) > 0.

To prove it, differentiating (3.6) twice, we get

ω′′
(−2k + 1

12

)
=

35(k − 2)(k + 1)(2k − 1)
72(k − 1)5(10k2 − 31k + 31)3

g(k),(3.24)

where

g(k) = 2200k6 − 24924k5 + 129246k4 − 375481k3

+ 604833k2 − 500511k + 166837.

This gives g(i)(4) > 0, i = 0, 1, 2, . . . , 6, which implies

g(k) =
6∑

i=0

g(i)(4)
i!

(k − 4)i > 0, k ∈ (4,+∞).(3.25)

Hence, the result ω′′(−2k+1
12 ) > 0 follows from (3.24) and (3.25).

4) Finally, we prove ω′′(h) > 0.
By step 3), starting from h = −2k+1

12 , if h = h1 is the first point
satisfying ω′′(h1) = 0, then ω′′′(h1) ≤ 0, which contradicts the result
proved in step 2). This implies that ω′′(h) has no zero. Therefore,
ω′′(h) > 0.

Theorem 3.9. I(h) has at most three zeros (counted with their multi-
plicities) inside the interval (−2k+1

12 , 0).



Bifurcations of limit cycles 225

Proof: This theorem is proved by several parts.

1) We are going to prove that I ′′(h) has at most two zeros (counted
with their multiplicities), i.e., I(h) has at most two inflection points.
Since I(−2k+1

12 ) = 0, this result implies that the maximum number of
zeros of I(h) is at most three on the interval (−2k+1

12 , 0).
It has been proved in Proposition 3.6 that ω′(h) > 0. Therefore, we

can take ω as a new parameter and consider the curve ν = ν(h(ω)),
defined by

Ω̃ =
{

(ω, ν) | ω = ω(h), ν = ν(h) =
I ′′2
I ′′0

, h ∈
(−2k + 1

12
, 0

)}
(3.26)

where h = h(ω) is the inverse function of ω = ω(h). It is easy to get
that

I ′′(h) = I ′′0 (h)(α + βω(h) + γν(h)),

I ′′′(h) = I ′′0 (h)(βω′ + γν′) if I ′′(h) = 0,

I(4)(h) = I ′′0 (h)(βω′′ + γν′′) if I ′′(h) = I ′′′(h) = 0,

which implies that Ω̃ has the following properties:
i) The intersection points of the lines l : α + βω + γν = 0 with the

curve Ω̃ in ων-plane correspond to the zeros of I ′′(h).
ii) I ′′(h0) = I ′′′(h0) = 0 hold if and only if l is tangent to the Ω̃ at

the point (ω(h0), ν(h0)).
iii) If (ν′′ω′ − ν′γ′′)|h=h0 �= 0, then I ′′(h0) = I ′′′(h0) = I(4)(h0) = 0

hold if and only if α = β = γ = 0, i.e, I(h) ≡ 0.
Lemma 3.2 gives

ν(h) = − 12h
(2k − 1)(k − 2)

+
[

36h
(k + 1)(2k − 1)(k − 2)

+
k

k + 1

]
ω,

which yields

ν′′ω′ − ω′′ν′=
12

(k + 1)(k − 2)(2k − 1)
[6(ω′)2 + (k + 1 − 3ω)ω′′].(3.27)

It follows from Proposition 3.6, Proposition 3.8 and (3.27) that

d2ν

dω2
=

ν′′ω′ − ω′′ν′

(ω′)3
> 0.

This implies that Ω̃ is convex in ων-plane. Therefore, the maximum
number of intersection points of the line l : α + βω + γν = 0 with Ω̃ is
at most two. By the properties i)–iii) of Ω̃, I ′′(h) has at most two zeros
(counted with their multiplicities).
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2) The multiplicity of zero of I(h) is at most three. If h = h0 is the
zero of multiplicity 3, then h = h0 is an unique zero of I(h).

Otherwise, suppose the multiplicity of h = h0 is great than 3, i.e.,
I(h0) = I ′(h0) = I ′′(h0) = I ′′′(h0). By step 1), I ′′(h) has at most two
zeros (counted with their multiplicities) in h ∈ (−2k+1

12 , 0), which implies
I(4)(h0) �= 0. Without loss of generality, assume I(4)(h) > 0. Hence,
I(h) is convex in the neighbourhood of h = h0. Noting I(−2k+1

12 ) = 0,
there must exist one inflection point h = h1, h1 ∈ (−2k+1

12 , h0), see
Figure 3.2(a). Thus, I ′′(h) has two zeros, one is simple and another is
multiplicity two. This contradicts the conclusion proved in step 1).

Suppose h = h0 is the zero with multiplicity 3, i.e., I(h0) = I ′(h0) =
I ′′(h0) = 0, I ′′′(h0) �= 0. Without loss of generality, assume I ′′′(h0) > 0.
Hence, the graph of I(h) is convex for h > h0 and concave for h < h0,
|h− h0| � 0. Since I(−2k+1

12 ) = 0, I(h) has another inflection point h =
h1 between h = −2k+1

12 and h = h0, see Figure 3.2(b). By step 1),
I(h) has no other inflection point except h = hi, i = 0, 1, which implies
h = h0 is an unique zero of I(h).

3) If h = h0 is the zero of multiplicity two of I(h), then another
zero h = h1 (if there exists) must be simple.

Obviously, h = h0 satisfies I(h0) = I ′(h0) = 0, I ′′(h0) �= 0. Without
loss of generality, suppose I ′′(h0) > 0, i.e., h = h0 is minimal point of
I(h). Suppose h1 > h0. Then there must exist two inflection points
between −2k+1

12 and h1. Hence, it follows from step 1) that h = h1 must
be simple zero of I(h). In the case of h1 < h0, we can get the result by
the same arguments as above.

Summing up above discussion, we get the theorem.

I

−2k+1
12

h1 h0
h

(a) (b)

h

I

−2k+1
12 h1

h0

Figure 3.2
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4. The geometry of the centriod curve

Definition 4.1. In PQ-plane, the curve

Ω =
{

(P,Q) | P = P (h), Q = Q(h), h ∈
[−2k + 1

12
, 0

]}
(4.1)

is called centroid curve.

It has been proved in Corollary 3.7 that P ′(h) < 0. Therefore, P can
be taken as a new parameter and denote Ω as

Q = Q(h(p)),

where h(P ) is the inverse function of P = P (h).
The importance of concept of the centroid curve lies in the fact that

its geometry contains the complete information of I(h) although the
definition of Ω depends only on H(x, y) = h.

From this section, denoted by Ls and by Lc the tangents to Ω at
(P (0), Q(0)) and (1, 1), i.e., at the endpoints of Ω. L denotes the line α+
βP + γQ = 0, |β| + |γ| �= 0.

Using same arguments as [4], we have

Theorem 4.2. i) For any h0 ∈ (−2k+1
12 , 0), the equality I(h0) = 0

holds if and only if the line L passes through the point (P (h0), Q(h0)).
ii) The equalities I(h0) = I ′(h0) = 0 hold if and only if L is tangent

to the centroid curve Ω at the point (P (h0), Q(h0)).
iii) If I(h0) = I ′(h0) = 0, then I ′′(h0) = 0 holds if and only if

P ′(h0)Q′′(h0) − P ′′(h0)Q′(h0) = 0, i.e., the curvature of Ω at
(P (h0), Q(h0)) is zero.

Proof: (i) Part i) of the statement follows from (2.19).

(ii) The equation of the tangent line is

Q′(h0)P − P ′(h0)Q + Q(h0)P ′(h0) −Q′(h0)P (h0) = 0.(4.2)

By (2.19), I(h0) = I ′(h0) = 0 is equivalent to{
α + βP (h0) + γQ(h0) = 0,
βP ′(h0) + γQ′(h0) = 0.

(4.3)
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Solving (4.3) for α and β, we obtain that

α =
P (h0)Q′(h0) − P ′(h0)Q(h0)

P ′(h0)
γ, β = −Q′(h0)

P ′(h0)
γ.

Hence, the equation L : α + βP + γQ = 0 is (4.2).

(iii) The condition I ′′(h0) = 0 when I(h0) = I ′(h0) = 0 is equivalent
to

βP ′′(h0) + γQ′′(h0) = 0.

This and (4.3) imply the result.

Theorem 4.3. i) The equation of Lc is

−1 − (k − 3)P + (k − 2)Q = 0.(4.4)

ii) The coefficient b1 = 0 if and only if L passes through (1, 1).
iii) The conditions b1 = b2 = 0 hold if and only if L = Lc, where b1

and b2 are defined as Theorem 2.3.

Proof: (i) Part i) of the statement follows from Proposition 2.2.

(ii) By Theorem 2.3, b1 = I ′0(
−2k+1

12 )(α + β + γ), which implies ii).

(iii) Theorem 2.3 shows that b1 = b2 = 0 if and only if{
α + β + γ = 0,
(k − 2)β + (k − 3)γ = 0.

Solving this system for α and β, we obtain α = − 1
k−2γ, β = −k−3

k−2γ,
which implies that the equation of L is (4.4).

Theorem 4.4. i) The equation of Ls is

Q

P
=

Q(0)
P (0)

.(4.5)

ii) The coefficient c0 is zero if and only if L passes through (P (0), Q(0)).
iii) The coefficient c0 = c1 = 0 is equivalent to L = Ls, where c0, c1 is

defined as (2.31).

Proof: (i) By (2.30) and Lemma 3.1, limh→0 I ′0(h)=+∞, limh→0 I ′1(h)=
I ′1(0), limh→0 I ′2(h) = I ′2(0), limh→0 Ii(h) = Ii(0), i = 0, 1, 2. Therefore,

dQ

dP

∣∣∣∣
h=0

=
dQ

dh

dh

dP

∣∣∣∣
h=0

=limh→0
I ′2I0 − I ′0I2
I ′1I0 − I ′0I1

= limh→0

I′
2I0
I′
0

− I2
I′
1I0

I′
0

− I1
=

Q(0)
P (0)

,

which yields that the equation of Ls is (4.5).
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(ii) By (2.31), the condition c0 = 0 is equivalent to α + βP (0) +
γQ(0) = 0, which implies ii).

(iii) It follows from (2.31) that c0 = c1 = 0 if and only if{
α + βP (0) + γQ(0) = 0,
α = 0,

which implies α = 0, β = −Q(0)
P (0)γ. Therefore, the equation of L is (4.5).

The result follows.

Proposition 4.5. Lcs doesn’t intersect Ω for h ∈ (−2k+1
12 , 0), where Lcs

is the line passing through both (1, 1) and (P (0), Q(0)).

Proof: By the definition of Lcs and Theorem 4.3, Theorem 4.4, we have{
α + β + γ = 0,
αI0(0) + βI1(0) + γI2(0) = 0,

which implies

α =
I1(0) − I2(0)
I2(0) − I0(0)

β, γ =
I0(0) − I1(0)
I2(0) − I0(0)

β.(4.6)

If β = 0, then γ = 0, which contradicts the assumption |β| + |γ| �=
0. Without loss of generality, suppose β > 0. The formula (4.6) and
Lemma 2.7 give that γ < 0 and

α +
1
3
(γk + βk + β) =

β

3[I2(0) − I1(0)]
[(k − 2)I2(0) − (k − 3)I1(0) − I0(0)] > 0,

γ +
k − 2
k − 3

β =
β

(k − 3)[I2(0) − I0(0)]
[(k − 2)I2(0) − (k − 3)I1(0) − I0(0)] > 0.

Corollary 3.7 yields that I(h) has at most one inflection point. Since
I(0) = I(−2k+1

12 ) = I ′(−2k+1
12 ) = 0 (cf. Theorem 2.3), I(h) has no zero in

(−2k+1
12 , 0). The result follows from Theorem 4.2.
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Proposition 4.6. i) Ls doesn’t intersect Ω for h ∈ [−2k+1
12 , 0).

ii) Lc doesn’t intersect Ω except the endpoint (1, 1).
iii) The centroid curve Ω is concave near its endpoints (1, 1) and

(P (0), Q(0)).

Proof: (i) Denoted by Q(h) and by Q the ordinates of the points on Ω
and Ls respectively. By Theorem 4.4 i), we have

Q(h) −Q = Q(h) − Q(0)
P (0)

P (h) = P (h)
[
I2(h)
I1(h)

− I2(0)
I1(0)

]
.

Lemma 2.5 implies that I2(h)
I1(h) < I2(0)

I1(0)
for h ∈ (−2k+1

12 , 0), which yields
Q(h) < Q, i.e., Ls doesn’t intersect Ω except h = 0.

(ii) By Theorem 4.3 iii), Lc is tangent to Ω at (1, 1) if and only if
b1 = b2 = 0, i.e., γ = −k−2

k−3 , α = β
k−3 . This gives α + 1

3 (γk + βk +
β) = 0. It follows from Corollary 3.7 that h = h∗ = −2k+1

12 is an
unique zero of I ′′(h), which shows that I(h) has no inflection point for
h ∈ (−2k+1

12 , 0). Since the curve I(h) is tangent to h-axis at h = −2k+1
12

(cf. Theorem 2.3 and Theorem 4.3) and I(−2k+1
12 ) = 0, I(h) has no zero

in the interval (−2k+1
12 , 0). By Theorem 4.2, Lc does not intersect Ω

for h ∈ (−2k+1
12 , 0). Since Proposition 4.5 shows that Lc doesn’t pass

through (P (0), Q(0)), we get ii).

(iii) Proposition 2.2 gives

d2Q

dP 2

∣∣∣∣
(1,1)

=
Q′′P ′ − P ′′Q′

(P ′)3

∣∣∣∣
h=−2k+1

12

= −20(k − 1)
3(k − 2)2

< 0,

which shows that Ω is concave near the endpoint (1, 1).
From (2.30), near h = 0, we have

d2Q

dP 2
=

1
(P ′(h))3

{
c01

hI3
0 (0)

(I1(0)I ′2(0) − I ′1(0)I2(0) + o(h−1)
}

.

In the proof of Lemma 3.1, one gets c01 < 0. It follows from Lemma 2.5
and Lemma 2.7 iii) that d2Q

dP 2 < 0 as h → 0−, i.e., Ω is cancave near the
endpoint (P (0), Q(0)).
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The analysis we have done shows that

Corollary 4.7. The centriod curve Ω is entirely placed in the triangle
formed by Ls, Lc and Lcs, see Figure 4.1.

Ls

Lc

(P (0), Q(0))
Lcs

(1, 1)

Figure 4.1

5. Proof of main theorem

Theorem 4.2–4.4 reduce the proof of Theorem 1.1 to showing that
each line L : α+βP + γQ = 0 intersects the centriod curve Ω in at most
two points, which implies Ω is a strictly concave curve.

As a sequence of Theorem 3.9 and Theorem 4.2, the following assertion
holds:

Lemma 5.1. If the line L does not pass through (1, 1) or (P (0), Q(0)),
then L intersects Ω in at most three points (counted with their multiplic-
ities).

Lemma 5.2. Each line L intersects the centriod curve Ω in at most two
points (counted with their multiplicities).

Proof: We split the proof in several steps.

1) Each line L, passing through (1, 1) or (P (0), Q(0)), intersects Ω in
at most two points (counted with their multiplicities).

For L = Lc, Ls or Lcs, we have proved the conclusion in Proposi-
tion 4.5 and Proposition 4.6. Suppose now that L is a line through
(1, 1), L �= Lc, L �= Lcs, which has another common point M with Ω,
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M �= (1, 1) and (P (0), Q(0)). Then obviously the points of Ω near (1, 1)
and those near (P (0), Q(0)) lie on different side of L (cf. Corollary 4.7),
which yields that either L has no other common point with Ω than (1, 1)
and M (M is simple), or the total number of intersection points is at
least 3 except (1, 1) (see Figure 5.1(a)). Now we prove the latter case is
impossible.

Indeed, by the conclusion proved in step 1) of the proof of Theo-
rem 3.9, we know that I(h) has at most two inflection points in (−2k+1

12 , 0).
Since I(−2k+1

12 ) = I ′(−2k+1
12 ) = 0 when L passes through (1, 1) (cf. Theo-

rem 2.3 and Theorem 4.3), I(h) has at most two zeros except h = −2k+1
12 ,

see Figure 5.1(b), i.e., L has at most two common points with Ω except
(1, 1), which contradicts the latter case.

If L is a line through (P (0), Q(0)) and L �= Ls, L �= Lcs, then
I(−2k+1

12 ) = I(0) = 0. Using the result proved in step 1) of the proof
of Theorem 3.9 again, we have that I(h) has at most two zeros except
h = 0 and h = −2k+1

12 . Using the same arguments as above, we get that
L intersects Ω in at most two points including (P (0), Q(0)).

2) Each tangent L(h), h ∈ (−2k+1
12 , 0), to Ω at point (P (h), Q(h)) has

exactly one common double point with Ω (the point of tangence).
Indeed, starting from (P (0), Q(0)), suppose that M0 =(P (h0), Q(h0)),

h0 ∈ (−2k+1
12 , 0) is the first point for which L(h0) has another common

point M1 with Ω (i.e., M1 = (P (h1), Q(h1), h �= h0). By the result
proved in step 1), M1 doesn’t coincide with (1, 1) and (P (0), Q(0)). The
choice of M1 being the first such point implies L(h0) is tangent to Ω also
at M1 (see Figure 5.2), which contradicts Lemma 5.1. Consequently,
there is no h1 ∈ [−2k+1

12 , 0], for which L(h0) has another common point
with Ω except the tangency point. To prove that is a double intersection
point, assume the contrary. Then by Lemma 5.1 the point (P (h0), Q(h0))
is a triple point of intersection. Theorem 4.2 yields I(h0) = I ′(h0) =
I ′′(h0) = 0. Slightly moving the tangent L(h0), we find suitable h1, h2

near h0, for which I(h1) = I ′(h1) = 0, I(h2) = 0. Then accordingly to
Theorem 4.2, L(h1) is tangent to Ω at (P (h1), Q(h1)), which intersects
Ω in another point (P (h2), Q(h2)). This contradicts the fact we proved
above.

3) Suppose that L is not a tangent to Ω at any point, L �= Lc, Ls and
Lcs. By step 2), Ω is placed entirely on one side of each of its tangents,
otherwise the number of the intersection points would be at least 3. This
implies Ω is strictly concave. Therefore, L intersects Ω in at most two
simple points. Lemma is proved.
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L

Lcs

Ω (1, 1)

(P (0), Q(0)) Lc

Ls

−2k+1
12

I

h

(a) (b)

Figure 5.1

M0

M1

L(h0)

Figure 5.2

Proof of Theorem 1.1: For a given perturbation (1.8)ε, if β = γ = 0,
then either the divergenve in (1.8)ε vanishes identically or it is nowhere
zero. In the first case, (1.8)ε is a Hamiltonian system and in second one
no limit cycle can appear in (1.8)ε. Suppose |β| + |γ| �= 0, which means
that the line L is defined. By Lemma 5.2, Theorem 2.3, Theorem 2.6
and Theorem 4.2–4.4, the theorem follows.
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