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FLUCTUATIONS OF BROWNIAN MOTION
WITH DRIFT

Joseph G. Conlon∗ and Peder Olsen∗∗

Abstract
Consider 3 dimensional Brownian motion started on the unit
sphere {|x| = 1} with initial density ρ. Let ρt be the first hit-
ting density on the sphere {|x| = t + 1}, t > 0. Then the linear
operators Tt defined by Tt ρ = ρt form a semigroup with an in-
finitesimal generator which is approximately the square root of the
Laplacian. This paper studies the analogous situation for Brow-
nian motion with a drift b, where b is small in a suitable scale
invariant norm.

Chapter 1. Introduction

In two previous papers [CR], [CO] we studied the Dirichlet problem
for an elliptic equation on a domain in R

3. Let BR be the ball of radius R
in R

3 centered at the origin, 0 < R < ∞. Consider the problem

(1.1)
(−∆ − b(x) · ∇)u(x) = f(x), x ∈ BR,

u(x) = 0, x ∈ ∂BR.

A function g : R
3 → C is said to be in the Morrey space Mq

p ,
1 ≤ p ≤ q < ∞, if |g|p is locally integrable and there is a constant C
such that

(1.2)
∫
Q

|g|p dx ≤ Cp|Q|1−p/q,

for all cubes Q ⊂ R
3. Here |Q| denotes the volume of Q. The norm of

g, ‖g‖q,p is defined as the minimum C for which (1.2) holds. In [CR] we
proved the following:
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Theorem 1.1. Suppose 1 < r < p ≤ q, 1 < p ≤ 3, and |b| ∈ M3
p ,

f ∈ Mq
r , for some q with q > 3/2. Then there exists ε > 0 depending

only on r, p, q such that if ‖b‖3,p < ε then the Dirichlet problem (1.1) is
solvable. Further, there is a constant C depending only on r, p, q such
that the solution u of (1.1) satisfies the inequality,

‖u‖∞ ≤ CR2−3/q‖f‖q,r.

The condition ‖b‖3,p small for some p, 1 < p ≤ 3, includes the two
important cases when |b(x)| = ε/|x| and |b| ∈ L3(R3), ‖b‖3 = ε,
ε � 1. Theorem 1.1 is a perturbative result. Writing the solution of
(1.1) as a perturbation series in b one can show that the series converges
if ‖b‖3,p � 1. Observe also that Theorem 1.1 is a scale invariant the-
orem. The result for general R can be obtained by a scaling argument
from the result for a particular value of R. Since all the results in this
paper have the same scaling property we shall take R = 1/4 from here
on.

It is well known [SV] that the solution of the Dirichlet problem (1.1)
has a representation as an expectation value with respect to Brownian
motion with drift b. Let Xb(t), t ≥ 0, denote the drift process started
at time 0. If Xb(0) ∈ B1/4 let τ be the minimum time t such that
Xb(t) ∈ ∂B1/4. Then the solution u of (1.1) is given by

u(x) = Ex

[∫ τ

0

f(Xb(t)) dt
]
, x ∈ B1/4,

where Ex denotes that the expectation value is taken conditioned on
Xb(0) = x. Theorem 1.1 tells us therefore something about the behavior
of the diffusion process Xb(t) when ‖b‖3,p � 1. It gives us similar
estimates on the expected time the diffusion spends in a subset of B1/4

before exiting ∂B1/4 to those one has for standard Brownian motion.

In [CO] we proved a nonperturbative version of Theorem 1.1, allowing
b to be only locally in a Morrey space M3

p with small norm. A key
ingredient in the proof of this theorem was the fact that the fluctuations
of Xb(t) did not increase as t increases, provided ‖b‖3,p � 1. To be
specific, suppose 0 < ρ ≤ 1/2, and the process Xb(t) starts on the
sphere ∂B(1−ρ)/4 with initial density function f , and fρ,b is the first
hitting density on the sphere ∂B1/4. It is evident, by conservation of
probability, that the average value of f is the same as the average value
of fρ,b, Avf = Avfρ,b. In [CO] we proved the following:
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Theorem 1.2. Suppose 0 < ρ ≤ 1/2 and 1 < p ≤ 3. Consider f
and fρ,b to be functions on the unit sphere S, with f ∈ L2(S). Then for
δ > 0 there exists ε, depending only on p, ρ, δ such that, if ‖b‖3,p < ε
and ‖f −Avf‖2 ≤ δ|Avf |, one has fρ,b ∈ L2(S) and ‖fρ,b−Avfρ,b‖2 ≤
δ|Avfρ,b|.

It is easy to see that Theorem 1.2 holds uniformly in ρ as ρ → 0 for the
case of Brownian motion, b ≡ 0. Since b with ‖b‖3,p � 1 is perturbative
to Brownian motion it is natural to expect a similar uniformity when
‖b‖3,p is small. In this paper we prove a uniform version of Theorem 1.2.
We cannot however use the L2 norm to measure the oscillation of f and
fρ,b. We must use a finer norm which weights high Fourier modes more
than low Fourier modes. This subtlety is closely related to the extra
complication in the proof of Theorem 1.2 over Theorem 1.1. To prove
Theorem 1.1 one shows that a certain integral operator is bounded on
Morrey spaces. To prove Theorem 1.2 one needs to know that this same
integral operator is bounded on a weighted Morrey space, where the
weight of a point x ∈ B1/4 decreases as x gets close to ∂B1/4.

To define our new norm on functions f with domain S, let ∆S be
the Laplace operator on the unit sphere. For k = 1, 2, . . . , let Ek be
the L2 projection operator onto the space spanned by the eigenfunctions
of −∆S with eigenvalues λ2 satisfying 2k−1 < λ ≤ 2k. Let E0 be the
projection onto the constant function. For f : S → C and ν > 0 we
define ‖f‖2,ν by

‖f‖2,ν = sup
k≥0

2νk‖Ekf‖2.

We then have the following:

Theorem 1.3. Suppose 0 < ρ ≤ 1/2, 1 < p ≤ 3, and ν > 0 is
sufficiently small, depending only on p. Then for δ > 0 there exists ε > 0
depending only on p, δ such that if ‖b‖3,p < ε and ‖f−Avf‖2,ν ≤ δ|Avf |,
one has ‖fρ,b −Avfρ,b‖2,ν ≤ δ|Avfρ,b|.

We consider the relationship between the proof of Theorem 1.1 and
the proof of Theorem 1.2. Let GD be the Dirichlet Green’s function for
−∆ on B1/4, whence GD is given explicitly by the formula,

GD(x, y) =
1

4π|x− y| −
1

16π|y|
1

|x− ȳ| ,

where ȳ is the reflection of y in ∂B1/4. Let T be the integral operator
on functions with domain B1/4 given by

(1.3) T f(x) =
∫
B1/4

b(x) · ∇xGD(x, y) f(y) dy, x ∈ B1/4.
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It was shown in [CR] that Theorem 1.1 is a consequence of the fact
that T is a bounded operator on the Morrey space Mq

r with norm,
‖T‖, satisfying ‖T‖ ≤ C‖b‖3,p for some constant C depending only
on p, q, r.

For g a function with domain ∂B1/4 let v(y) = Pg(y), y ∈ B1/4, be
the solution of the Dirichlet problem,

∆v(y) = 0, y ∈ B1/4,

v(y) = g(y), y ∈ ∂B1/4.

The function v is given explicitly by the Poisson formula,

(1.4) Pg(y) =
1
π

∫
∂B1/4

1/16 − |y|2
|y − x|3 g(x) dx, y ∈ B1/4.

We can formally define an integral operator Q on the functions g by

(1.5) Qg(x) =
∫
B1/4

dy GD(x, y)(I − T )−1b · ∇Pg(y), x ∈ B1/4,

where T is given by (1.3). This operator induces an operator on functions
with domain S as follows: Let f : S → C and denote also by f the
function with domain ∂B1/4 naturally induced by f . Consider now the
function Qρf with domain ∂B(1−ρ)/4 defined by

(1.6) Qρf(x) = Qf(x), x ∈ ∂B(1−ρ)/4.

We can think of Qρf as a function with domain S, whence Qρ is an
operator on functions with domain S. In [CO] we proved that Qρ is a
bounded operator on L2(S), 0 < ρ ≤ 1/2, with norm ‖Qρ‖ satisfying
‖Qρ‖ ≤ C‖b‖3,p for some constant C depending only on ρ, p, provided
‖b‖3,p < ε for some ε depending only on p. Theorem 1.2 is a consequence
of this fact.

Observe that the proof of Theorem 1.2 must be more difficult than
the proof of Theorem 1.1 since in the definition of Qρ one assumes that
the inverse (I−T )−1 exists. To prove Theorem 1.3 we need to know not
only that Qρ is bounded on L2(S) for 0 < ρ ≤ 1/2 but also to have a
bound which is uniform as ρ → 0. Let 〈, 〉 denote the scalar product on
L2(S). In section 2 we prove the following:
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Theorem 1.4. Let 0 < ρ ≤ 1/2, 1 < p ≤ 3. Then there exists C,
ε > 0 depending only on p, such that

|〈f,Qρg〉| ≤ C‖b‖3,p‖f‖2‖g‖2,

provided ‖b‖3,p ≤ ε, f , g ∈ L2(S).

In order to prove Theorem 1.3 we need to know more detailed proper-
ties of Qρ than those given in Theorem 1.4. In particular we must know
that if Qρ acts on a slowly varying function g then the slowly varying
component of Qρg has norm bounded linearly in ρ as ρ → 0. We also
need to know that if g is highly oscillatory then the slowly varying com-
ponent of Qρg has small norm. These properties of Qρ are summarised
in the following:

Theorem 1.5. Let 0 < ρ ≤ 1/2, 1 < p ≤ 3. Then there exists C, ε,
η > 0 depending only on p such that ‖b‖3,p < ε implies that

|〈Ek′f,QρEkg〉| ≤ C‖b‖3,p‖Ek′f‖2‖Ekg‖2 min[ρ2k, 1] min[2η(k′−k), 1]

0 ≤ k, k′ < ∞.

We prove Theorem 1.5 in section 3. Theorem 1.3 is a simple conse-
quence of Theorems 1.4 and 1.5. It is proved in section 4.

Chapter 2. Configuration Space Localization

To prove Theorem 1.4 we shall modify the proof in [CO] so that the
estimates are uniform in ρ as ρ → 0.

Define an operator A on functions g with domain S1/4 = {|x| = 1/4}
by

(2.1) Ag(y) = |b(y)|1/2Pg(y), |y| < 1/4.

Proposition 2.1. A is a bounded linear operator from L2(S1/4) to
L2(B1/4). There is a constant C depending only on p > 1 such that
‖A‖ ≤ C‖b‖1/2

3,p .
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We shall prove Proposition 2.1 by following the general lines of the
proof of Theorem 1.2 of [CR]. If a function u is defined on the sphere S1/4

then Au is defined on the ballB1/4. LetQ0 be a cube with side of length 1
and for n = 1, 2, . . . let Qn be the dyadic subcubes of Q0 with side of
length 2−n. We define uQn

as follows:

uQn = 0 if Qn ∩ S1/4 is empty,

uQn = |Qn|−2/3

∫
Qn∩S1/4

|u(x)| dx, otherwise.

For ξ ∈ R
3 let Q0(ξ) be the unit cube centered at ξ with corresponding

dyadic subcubes Qn(ξ). We then have the following:

Lemma 2.1. There exists a universal constant C such that

(2.2)
∫
B1/4

|Au(y)|2 dy

≤ C

∫
B1/4

dξ

∞∑
n=0

∑
Qn(ξ)⊂Q0(ξ)

u2
Qn(ξ)

∫
Qn(ξ)

|b(y)| dy.

Proof: We have from the definition (2.1) that

Au(y) = |b(y)|1/2 1
16π

∫
S1/4

1 − 16|y|2
|y − x|3 u(x) dx.

We estimate Au(y) in the annulus

Rm =
{
y :

1
4
(1 − 2−m) ≤ |y| < 1

4
(1 − 2−(m+1))

}
, m = 0, 1, 2, . . . .

Thus

|Au(y)| ≤ C |b(y)|1/2 2−m
m∑

n=0

23n

∫
S1/4∩{|x−y|<2−n−1}

|u(x)| dx,

for some universal constant C. Choosing α > 0 and applying the Schwarz
inequality to the RHS of the previous expression we have

|Au(y)|2

≤ Cα |b(y)| 2−2m(1−α)
m∑

n=0

22(3−α)n

[∫
S1/4∩{|x−y|<2−n−1}

|u(x)| dx
]2

,
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for some constant Cα depending only on α. Thus∫
B1/4

|Au(y)|2 dy =
∞∑

m=0

∫
Rm

|Au(y)|2 dy

≤ Cα

∑
0≤n≤m<∞

2−2m(1−α) 22(3−α)n

∫
Rm

dy|b(y)|

[∫
S1/4∩{|x−y|<2−n−1}

|u(x)| dx
]2

.

Let Un = ∪∞
m=nRm, n ≥ 0. Then it is clear from the previous expression

that if α < 1 there is a constant Cα depending only on α such that∫
B1/4

|Au(y)|2 dy ≤ Cα

∞∑
n=0

an,

where

an =
∫
Un

dy|b(y)|
[
22n

∫
S1/4∩{|x−y|<2−n−1}

|u(x)| dx
]2

.

It is clear now that there exists a universal constant C such that

an ≤ C

∫
B1/4

dξ
∑

Qn(ξ)⊂Q0(ξ)

u2
Qn

(ξ)
∫
Qn(ξ)

|b(y)| dy, n ≥ 0.

The result follows then from the last two inequalities.

Next we shall show that for fixed ξ the RHS of (2.2) is bounded by
the L2 norm of u.

Lemma 2.2. Let Q0 be a cube in R
3 with side of length 1 and dyadic

subcubes Qn with side of length 2−n, n = 1, 2, . . . . Then there is a con-
stant C depending only on p > 1 such that

(2.3)
∞∑
n=0

∑
Qn⊂Q0

u2
Qn

∫
Qn

|b(y)| dy ≤ C ‖b‖3,p ‖u‖2
2.

Evidently Proposition 2.1 follows from Lemma 2.1 and Lemma 2.2.
Observe that for fixed n one has∑

Qn⊂Q0

u2
Qn

∫
Qn

|b(y)| dy ≤
∑

Qn⊂Q0

u2
Qn

‖b‖3,p 2−2n

≤ C ‖b‖3,p

∑
Qn⊂Q0

∫
Qn∩S1/4

|u(x)|2 dx

≤ C ‖b‖3,p ‖u‖2
2,
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for some universal constant C. In order to do the summation with respect
to n in (2.3) we need to resort to a Calderon-Zygmund decomposition.
First we have

Lemma 2.3. Let Q′ be a cube in R
3 with side of length 2−nQ′ , where

nQ′ is a nonnegative integer. Suppose for some ε > 0 one has |Q|ε uQ ≤
|Q′|ε uQ′ for all dyadic subcubes Q of Q′. Then if ε is sufficiently small
there exists a constant C depending only on p > 1 such that

∑
Q⊂Q′

u2
Q

∫
Q

|b(y)| dy ≤ C ‖b‖3,p |Q′|2/3 u2
Q′ .

Proof: We have for fixed n ≥ nQ′ ,

∑
Qn⊂Q′

u2
Qn

∫
Qn

|b(y)| dy

≤ 26(n−nQ′ )εu2
Q′

∑
{Qn:Qn⊂Q′, Qn∩S1/4 �=∅}

∫
Qn

|b(y)| dy

≤ 26(n−nQ′ )ε u2
Q′

∫
Q′∩{y:1>|y|>1−2−n

√
3}

|b(y)| dy

≤ 26(n−nQ′ )εu2
Q′ meas

(
Q′ ∩ {y : 1 > |y| > 1 − 2−n

√
3}

)1−1/p

[∫
Q′

|b(y)|p dy
]1/p

≤ C 26(n−nQ′ )ε u2
Q′

(
2−2nQ′ 2−n

)1−1/p

‖b‖3,p |Q′|1/p−1/3

= C ‖b‖3,p |Q′|2/3 u2
Q′ 2(n−nQ′ )(6ε+1/p−1),

where C is a universal constant.
If we now choose ε to satisfy ε < (1 − 1/p)/6, then we have

∑
Q⊂Q′

u2
Q

∫
Q

|b(y)| dy ≤ C ‖b‖3,p |Q′|2/3 u2
Q′

∞∑
n=nQ′

2(n−nQ′ )(6ε+1/p−1)

≤ Cp ‖b‖3,p |Q′|2/3 u2
Q′ ,

where the constant Cp depends only on p > 1.
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Let Q0 be a unit cube in R
3. We make a Calderon-Zygmund decom-

position of Q0 based on the criterion in Lemma 2.3. In particular we
define a sequence of families Fj of dyadic subcubes of Q0, j = 0, 1, 2, . . .
as follows: F0 = {Q0}. Let G1 ⊂ Q0 be defined as

G1 = {x ∈ Q0 : |Q|εuQ ≤ |Q0|ε uQ0

for all dyadic subcubes Q of Q0 with x ∈ Q}.

Then there is a unique finite family F1 of disjoint dyadic subcubes of Q0

such that ⋃
Q∈F1

Q = Q0\G1.

Proceeding by induction as in section 2 of [CR], we can construct sets
Gj and families Fj , j ≥ 1, with the properties

(a)
⋃∞

j=1 Gj = Q0.

(b)
⋃

Q∈Fk
Q = Q0\

⋃k
j=1 Gj .

(c) For any Q ∈ Fk let Q̄ ∈ Fk−1 be the unique dyadic subcube
containing Q. Then

|Q|ε uQ > |Q̄|ε uQ̄.

It is clear now from Lemma 2.3 that there is a constant C depending
only on p > 1 such that

∞∑
n=0

∑
Qn⊂Q0

u2
Qn

∫
Qn

|b(y)| dy ≤ C ‖b‖3,p

∞∑
j=0

∑
Q∈Fj

|Q|2/3 u2
Q.

The proof of Lemma 2.2 will be complete if we can show

Lemma 2.4. There exists a constant C depending only on p > 1 such
that

(2.4)
∞∑
j=0

∑
Q∈Fj

|Q|2/3 u2
Q ≤ C‖u‖2

2.
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Proof: We shall assume without lost of generality that ‖u‖∞ < ∞.
Hence there exists an integer t ≥ 1 such that Ft is empty, whence

Q0 =
t⋃

j=1

Gj .

Let us consider a particular Q ∈ Fj , 0 ≤ j ≤ t− 1. It is evident that

Q ⊂
t⋃

m=j+1

Gm.

We wish to estimate the ratio |Q∩Gm ∩S1/4|/|Q|2/3 for m ≥ j + 1. We
have now

|Q|2/3 uQ =
∫
Q∩S1/4

|u(x)| dx ≥
t∑

i=m

∫
Q∩Gi∩S1/4

|u| dx

=
∑

Q̄∈Fm−1,Q̄⊂Q

|Q̄|2/3 uQ̄ ≥
∑

Q̄∈Fm−1,Q̄⊂Q

|Q̄|2/3
( |Q|
|Q̄|

)ε

uQ

≥ 23(m−j−1)ε uQ
∑

Q̄∈Fm−1,Q̄⊂Q

|Q̄|2/3

≥ c 23(m−j−1)ε uQ

∣∣∣∣∣Q ∩
t⋃

i=m

Gi ∩ S1/4

∣∣∣∣∣ ,
for some universal constant c > 0. We conclude therefore that

|Q ∩Gm ∩ S1/4|/|Q|2/3 ≤ c−12−3(m−j−1)ε.

Next we write

|Q|2/3 u2
Q = |Q|−2/3

[∫
Q∩S1/4

|u| dx
]2

= |Q|−2/3


 t∑
m=j+1

∫
Q∩Gm∩S1/4

|u| dx




2

≤ |Q|−2/3


 t∑
m=j+1

a2
m


 t∑

m=j+1

a−2
m

[∫
Q∩Gm∩S1/4

|u| dx
]2

,
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for any positive sequence am. We choose am to be given by

am =
[
(3/2)3(m−j−1)ε |Q ∩Gm ∩ S1/4|/|Q|2/3

]1/2

.

Then, in view of the last two inequalities we have

|Q|2/3 u2
Q ≤ C

t∑
m=j+1

(
2
3

)3(m−j−1)ε

|Q∩Gm∩S1/4|−1

[∫
Q∩Gm∩S1/4

|u| dx
]2

,

for some constant C depending only on ε > 0. We conclude then that

∑
Q∈Fj

|Q|2/3 u2
Q ≤ C

t∑
m=j+1

(
2
3

)3(m−j−1)ε ∫
Gm∩S1/4

|u|2 dx.

Now if we sum this last inequality with respect to j and use the fact that
the sets Gj are disjoint we obtain the inequality (2.4).

We return now to the operator Qρ of (1.6). The proof in section 4 of
[CO] that Qρ is a bounded operator on L2 had three ingredients. The
first stage was to show that the function b ·∇Pg with domain B1/4 is in
an appropriate Morrey space, This Morrey space, M3/2

r (B1/4), is defined
to be the set of functions h : B1/4 → R such that∫

Q∩B1/4

(1/4 − |y|)r|h(y)|r dy ≤ Cr|Q|1−2r/3,

on all cubes Q. The norm of h, ‖h‖3/2,r, is the minimum C satisfying the
previous inequality. It was shown in [CO] that b ·∇Pg is in M

3/2
r (B1/4)

provided r satisfies r/(2 − r) < p. We see now how this follows from
Proposition 2.1. By the Harnack inequality there is a constant C such
that

(1/4 − |y|)|b(y) · ∇Pg(y)| ≤ C |b(y)| |Pg(y)|

= C |b(y)|1/2 |Ag(y)|, |y| < 1/4.

Hence for any cube Q one has∫
Q∩B1/4

(1/4 − |y|)r|b(y) · ∇Pg(y)|r dy

≤ C

[∫
B1/4

|Ag(y)|2 dy
]r/2 [∫

Q

|b(y)|r/(2−r) dy

]1−r/2

≤ C ‖A‖r ‖g‖r2 ‖b‖
r/2
3,p |Q|1−2r/3

≤ C1‖g‖r2 ‖b‖r3,p |Q|1−2r/3.
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If follows that if r/(2−r) < p the function b ·∇Pg is in M
3/2
r (B1/4) and

‖b · ∇Pg‖3/2,r ≤ C ‖b‖3,p ‖g‖2

for some constant C depending only on p > 1.
The second stage was to prove that, for T the integral operator given

by (1.3), the function (I − T )−1b · ∇Pg is also in M
3/2
r (B1/4). Thus

the perturbation due to the integral operator T is small in the sense
that it preserves the space in which b · ∇Pg lies. We shall do something
analagous here. For y ∈ R

3 let us define a vector n(y) by

n(y) = 0 if b(y) = 0.

= b(y)/|b(y)| otherwise.

Evidently one has |n(y)| ≤ 1 for all y ∈ R
3. Let Tsym be the integral

operator on functions with domain B1/4 which has kernel

|b(x)|1/2n(x) · ∇xGD(x, y)|b(y)|1/2, x, y ∈ B1/4.

Then we may formally write

(I−T )−1b·∇Pg(y) = |b(y)|1/2(I−Tsym)−1|b|1/2n·∇Pg(y), y ∈ B1/4.

Let L2
weight(B1/4) be the weighted L2 space of functions h : B1/4 → C

such that

‖h‖2
2,weight =

∫
B1/4

(1/4 − |y|)2 |h(y)|2 dy < ∞.

From Proposition 2.1 and Harnack the function |b|1/2n · ∇Pg is in this
space.

Proposition 2.2. The operator Tsym is bounded on the space
L2

weight(B1/4) and there exists a constant C > 0 depending only on p > 1
such that

‖Tsym‖ ≤ C ‖b‖3,p.

Remark 2.1. It is interesting to compute the information that the
results of Olsen [O] give about the operator Tsym. If we apply Theorem 2
of [O] then

|Tsymh(x)| ≤ Tg f(x), x ∈ B1/4,
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where f(y) = |b(y)|1/2|h(y)| and g(x) = |b(x)|1/2/2π. Then if we assume
h is in L2(B1/4) we have in the notation of Theorem 2 of [O] p = 3/2,
r = 3/2, v = 6, and u, q can be taken slightly larger than 2, 1 respectively.
Hence Tgf ∈ M t

s where

1
t

=
1
v

+
1
r

+
1
p
− 1 =

1
6

+
2
3

+
2
3
− 1 =

1
2
,

1
s

=
1
v

+
1
q

+
1
p
− 1 =

1
6

+
1
q

+
2
3
− 1 =

1
q
− 1

6
.

Now if s = 2 then Tsymh is also in L2(B1/4). Evidently s = 2 implies
q = 3/2 which implies q/(2−q) = 3 whence we need to have b ∈ L3(R3).
We can do better than this by combining various theorems of [O].

Proposition 2.3. The operator Tsym is bounded on the space
L2(B1/4) and there exists a constant C > 0 depending only on p > 1
such that

‖Tsym‖ ≤ C ‖b‖3,p.

Proof: We have

|Tsymh(x)| ≤ |b(x)|1/2
2π

∫
B1/4

|b(y)|1/2|h(y)|
|x− y|2 dy

≤ |b(x)|1/2
2π

[∫
B1/4

|b(x)|q′/2
|x− y|2 dy

]1/q′ [∫
B1/4

|h(y)|q
|x− y|2 dy

]1/q

,

where 1/q + 1/q′ = 1. We choose q′ in the range 2 < q′ < 2p whence
q < 2. Consider now the function g1(x) defined by

g1(x) =
∫
B1/4

|b(x)|q′/2
|x− y|2 dy.

Now |b|q′/2 is in the Morrey space M6/q′

2p/q′ . Hence by Theorem 9 of [O]
g1 is in M t

s where

1/t = q′/6 − 1/3, s = t(2p/q′)/(6/q′) = tp/3,

and ‖g1‖t,s ≤ C‖b‖q
′/2

3,p for some constant C depending only on p, q′.
Next let g(x) be given by

g(x) =
|b(x)|q/2

(2π)q
g1(x)q/q

′
.
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Then

(2.5) |Tsymh(x)| ≤
[
Tg|h|q(x)

]1/q

.

By Holder’s inequality for Morrey spaces, Lemma 11 of [O], we have that
g is in M3

p since

q/6 + q/q′t = q/6 + (q/q′)[q′/6 − 1/3] = 1/3,

q/2p+ q/q′s = q/2p+ (q/q′)(3/p)[q′/6 − 1/3] = 1/p.

Furthermore,

‖g‖3,p ≤ ‖b‖q/23,p ‖g1‖q/q
′

t,s ≤ Cq−1 ‖b‖q3,p.

Now |h|q is in the space L2/q(B1/4). Hence by Corollary 3 of [O] Tg |h|q
is also in the space L2/q(B1/4) provided 2/q < p. Furthermore

‖Tg |h|q‖2/q ≤ C1 ‖g‖3,p‖ |h|q ‖2/q ≤ C1 C
q−1 ‖b‖q3,p ‖h‖q2,

for some constant C1 depending only on q, p. Now from (2.5) and the
previous inequality we conclude that

‖Tsymh‖2 ≤ C
1/q
1 C1/q′ ‖b‖3,p ‖h‖2.

The result follows since if p > 1 the two inequalities 2 < q′ < 2p, 2/q < p
can be simultaneously satisfied. In fact q can be chosen in the range

1
2
<

1
q
< min[p/2, 1 − 1/2p] = 1 − 1/2p.

Remark 2.2. Theorem 9 of [O] was originally proved in [A]. A dif-
ferent proof was given in [CF].

The proof of Proposition 2.3 gives us an important insight into how the
proof of Proposition 2.2 should go. We shall follow the lines of the proof
of Theorem 1.2 of [CR] and Proposition 2.1 of [CO], but the Calderon-
Zygmund decomposition will be based on taking averages of |h(y)|q. Let
Q0 be a unit cube and for n = 1, 2, . . . Qn be the dyadic subcubes of Q0

with side of length 2−n. Let d(Qn) be given by

d(Qn) = sup{d(x, ∂B1/4) : x ∈ Qn}.
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For n = 0, 1, 2, . . . define an operator Sn on functions h with domain
B1/4 by

Snh(x) =
22n

d(Qn)

∫
Qn∩B1/4

(1/4−|y|) |b(y)|1/2 |h(y)| dy, x ∈ Qn∩B1/4.

Let TQ0 be the operator given by

TQ0 h(x) =
∞∑
n=0

|b(x)|1/2 Snh(x), x ∈ B1/4.

Then Jensen’s inequality implies there is a universal constant C such
that if Q0(ξ) is the unit cube centered at ξ,

(2.6)
∫
B1/4

(1/4 − |x|)2|Tsymh(x)|2 dx

≤ C

∫
B1/4

dξ

∫
Q0(ξ)∩B1/4

(1/4 − |x|)2
∣∣∣TQ0(ξ)h(x)

∣∣∣2 dx.
Hence it is sufficient to prove Proposition 2.2 with the operator Tsym

replaced by TQ0 . The key lemma analagous to Lemma 2.4 of [CR] is

Lemma 2.5. Let Q′ ⊂ Q0 be an arbitrary dyadic subcube of Q0 with
side of length 2−nQ′ . Suppose 1 < p ≤ 3 and q > 1 satisfies the inequality
1/2 < 1/q < 1 − 1/2p. For Q a dyadic subcube of Q0 and h a function
with domain B1/4 let hQ be given by

hQ =

[
1
|Q|

∫
Q∩B1/4

(1/4 − |y|)q |h(y)|q dy
]1/q

.

Then there are constants C, ε > 0 depending only on p and q such that

(2.7) |Q|1/6+ε hQ ≤ |Q′|1/6+ε hQ′

for all dyadic subcubes Q of Q′ implies the inequality

∫
Q′∩B1/4

(1/4 − |x|)2

 ∞∑
n=nQ′

|b(x)|1/2 Snh(x)




2

dx ≤ C2‖b‖2
3,p |Q′|h2

Q′ .



100 J. G. Conlon, P. Olsen

Proof: We have
 ∞∑
n=nQ′

Snh(x)




2

≤ 2
∞∑

k=nQ′

Skh(x)
k∑

n=nQ′

Snh(x).

It follows from Holder’s inequality that

Snh(x)≤ 22n

d(Qn)

[∫
Qn∩B1/4

(1/4 − |y|)q |h(y)|q dy
]1/q[∫

Qn

|b(y)|q′/2 dy
]1/q′

,

where 1/q+1/q′ = 1. Since 1/q < 1−1/2p implies q′/2 < p we conclude
that

Snh(x) ≤ ‖b‖1/2
3,p |Qn|1/6 hQn

/
d(Qn), x ∈ Qn,

whence

(2.8) (1/4 − |x|)Snh(x) ≤ ‖b‖1/2
3,p |Qn|1/6 hQn , x ∈ Qn.

Now if we use (2.7) we have from the previous inequality

(1/4 − |x|)
k∑

n=nQ′

Snh(x) ≤ ‖b‖1/2
3,p

k∑
n=nQ′

|Qn|1/6 hQn
,

≤ ‖b‖1/2
3,p |Q′|1/6hQ′

k∑
n=nQ′

23ε(n−nQ′ )

≤ Cε‖b‖1/2
3,p |Q′|1/6 hQ′23ε(k−nQ′ )

for some constant Cε depending only on ε > 0. Hence

(2.9)
∫
Q′∩B1/4

(1/4 − |x|)2

 ∞∑
n=nQ′

|b(x)|1/2 Snh(x)




2

dx

≤2Cε‖b‖1/2
3,p |Q′|1/6hQ′

∞∑
k=nQ′

23ε(k−nQ′ )

∫
Q′∩B1/4

(1/4−|x|) |b(x)|Skh(x) dx.

For m an integer let Em be the set

Em =
{
x ∈ R

3 : 2m−1 < |b(x)| ≤ 2m
}
.
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For m, k integers and k ≥ nQ′ let am,k be given by

am,k =
∑

Qk⊂Q′

|Em ∩Qk|
∫
Qk

(1/4 − |y|)|b(y)|1/2 |h(y)| dy.

Then we have

(2.10)
∞∑

k=nQ′

23ε(k−nQ′ )

∫
Q′∩B1/4

(1/4 − |x|) |b(x)|Skh(x) dx

≤
∞∑

m=−∞

∞∑
k=nQ′

23ε(k−nQ′ )2m+2k am,k.

There are two estimates on am,k which we use. The first follows from
(2.7). Thus from (2.8) we have

am,k ≤
∑

Qk⊂Q′

|Em ∩Qk| ‖b‖1/2
3,p 2−5k/2 hQk

,

and then (2.7) implies that

am,k ≤ |Em ∩Q′| ‖b‖1/2
3,p 2−5k/2 2(1/2+3ε)(k−nQ′ )hQ′ .

The second estimate is obtained by using the fact that |Em∩Qk| ≤ |Qk|.
Thus

am,k ≤ 2−3k

∫
Q′

(1/4 − |y|) |b(y)|1/2 |h(y)| dy.

If we again apply (2.8) we have that

am,k ≤ 2−3k ‖b‖1/2
3,p |Q′|5/6 hQ′ .

If follows now that for any α, 0 < α < 1, we have

∞∑
m=−∞

∞∑
k=nQ′

23ε(k−nQ′ ) 2m+2k am,k

≤
∞∑

m=−∞

∞∑
k=nQ′

23ε(k−nQ′ ) 2m+2k
[
2−3k‖b‖1/2

3,p |Q′|5/6 hQ′

]α
[
|Em ∩Q′| ‖b‖1/2

3,p 2−5k/2 2(1/2+3ε)(k−nQ′ )hQ′

]1−α

.
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For any α > 0 one can find sufficiently small ε > 0 such that the sum
with respect to k above converges. Thus there is a constant Cα > 0
depending only on α, ε and

(2.11)
∞∑

m=−∞

∞∑
k=nQ′

23ε(k−nQ′ ) 2m+2kam,k

≤ Cα‖b‖1/2
3,p |Q′|α+1/6 hQ′

∞∑
m=−∞

2m|Em ∩Q′|1−α.

Let m0 be an arbitrary integer. Evidently one has
m0∑

m=−∞
2m|Em ∩Q′|1−α ≤ |Q′|1−α

m0∑
m=−∞

2m = 2|Q′|1−α2m0 .

Using the fact that

2mp |Em ∩Q′| ≤ 2p ‖b‖p3,p|Q′|1−p/3,

it follows that if α > 0 satisfies (1 − α)p > 1 then
∞∑

m=m0+1

2m|Em ∩Q′|1−α ≤ Cα‖b‖p(1−α)
3,p |Q′|(1−p/3)(1−α)2m0(1+αp−p),

for some finite constant Cα. Hence, setting λ = 2m0 , it follows that
∞∑

m=−∞
2m|Em ∩Q′|1−α

≤ 2|Q′|1−αλ+ Cα‖b‖p(1−α)
3,p |Q′|(1−p/3)(1−α)λ(1+αp−p).

The RHS of the last inequality is minimised when λ ∼ ‖b‖3,p|Q′|−1/3.
We conclude therefore that

∞∑
m=−∞

2m |Em ∩Q′|1−α ≤ Cα ‖b‖3,p |Q′|2/3−α,

for some finite constant Cα. Putting this last inequality together with
(2.9), (2.10), and (2.11) we conclude that

∫
Q′∩B1/4

(1/4 − |x|)2

 ∞∑
n=nQ′

|b(x)|1/2 Snh(x)




2

dx

≤ C2‖b‖1/2
3,p |Q′|1/6 hQ′‖b‖1/2

3,p |Q′|α+1/6 hQ′ ‖b‖3,p |Q′|2/3−α

= C2 ‖b‖2
3,p|Q′|h2

Q′ ,

for some constant C depending only on p and q.
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Proposition 2.2 follows now from (2.6) and Lemma 2.5 just in the same
way as Theorem 1.2 of [CR] follows from Lemma 2.4 of [CR]. Next we
consider the third stage in section 4 of the proof that the operator Qρ

is bounded on L2. Let Kρ be an operator on functions h : B1/4 → C

defined by

(2.12) Kρh(x) =
∫
B1/4

dy GD(x, y)|b(y)|1/2 h(y), |x| =
1
4
(1 − ρ),

where 0 < ρ < 1/2.

Proposition 2.4. For 0 < ρ < 1/2, Kρ is a bounded operator from
L2

weight(B1/4) to L2(∂B(1−ρ)/4) and the norm of Kρ satisfies an inequality

‖Kρ‖ ≤ C ‖b‖1/2
3,p , where the constant C depends only on p > 1.

Proof: We write the operator Kρ as a sum

Kρ =
∞∑
n=0

Kρ,n,

where

Kρ,0h(x) =
∫
B1/4∩{|x−y|< 1

5ρ}
dy GD(x, y)|b(y)|1/2 h(y),

Kρ,nh(x) =
∫
B1/4∩{ 1

5ρ2
n−1≤|x−y|< 1

5ρ2
n}

dy GD(x, y)|b(y)|1/2 h(y),

n = 1, 2, . . . .

Evidently

|Kρ,0h(x)| ≤
∫
B1/4∩{|x−y|< 1

5ρ}
|b(y)|1/2|h(y)|

|x− y| dy

≤
[∫

{|x−y|< 1
5ρ}

|b(y)|
|x− y| dy

]1/2[∫
B1/4∩{|x−y|< 1

5ρ}
|h(y)|2
|x− y| dy

]1/2

,

by the Schwarz inequality. Since b ∈ M3
p there is a universal constant C

such that ∫
{|x−y|< 1

5ρ}
|b(y)|
|x− y| dy ≤ C ‖b‖3,p ρ.
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Hence∫
|x|= 1

4 (1−ρ)

|Kρ,0h(x)|2 dx ≤ C‖b‖3,pρ

∫
{|x|= 1

4 (1−ρ)}
dx

∫
{|x−y|< 1

5ρ}
|h(y)|2
|x− y| dy

≤ C1 ‖b‖3,p ρ
2

∫
{1/4−|y|>ρ/20}∩B1/4

|h(y)|2 dy

≤ C2 ‖b‖3,p

∫
B1/4

(1/4 − |y|)2|h(y)|2 dy

= C2 ‖b‖3,p ‖h‖2
2,weight

where C1 and C2 are universal constants. Hence we have shown that
Kρ,0 is a bounded operator and that

‖Kρ,0‖ ≤ C
1/2
2 ‖b‖1/2

3,p .

Next we consider Kρ,n for n ≥ 1. We use the fact that there is a
universal constant C such that if |x| = (1 − ρ)/4, then

GD(x, y) ≤ Cρ(1/4−|y|)/(ρ2n)3, y∈B1/4∩
{

1
5
ρ2n−1≤ |x− y| < 1

5
ρ2n

}
.

Applying the Schwarz inequality as we did before we have

|Kρ,nh(x)|

≤ C1ρ

(ρ2n)3
‖b‖1/2

3,p ρ2
n

[∫
B1/4∩{ 1

5ρ2
n−1≤|x−y|< 1

5ρ2
n}

(1/4−|y|)2|h(y)|2 dy
]1/2

,

for some universal constant C1. Hence there is a universal constant C2

such that∫
|x|= 1

4 (1−ρ)

|Kρ,nh(x)|2 dx ≤ C2‖b‖3,p 2−2n ‖h‖2
2,weight.

It follows that Kρ,n is a bounded operator and

‖Kρ,n‖ ≤ C
1/2
2 ‖b‖1/2

3,p 2−n, n ≥ 1.

Now the boundedness of Kρ follows from the Minkowski inequality

‖Kρ‖ ≤
∞∑
n=0

‖Kρ,n‖ ≤ C
1/2
2 ‖b‖1/2

3,p

∞∑
n=0

2−n = 2C1/2
2 ‖b‖1/2

3,p .



Fluctuations of BM 105

Proof of Theorem 1.4: Suppose g is in L2(∂B1/4). Then from Propo-
sition 2.1 and Harnack the function h(y) = |b(y)|1/2n(y) · ∇Pg(y) is in
L2

weight (B1/4) and

‖h‖2,weight ≤ C ‖b‖1/2
3,p ‖g‖2,

where C is a constant depending only on p > 1. By Proposition 2.2 the
function u defined by u = (I − Tsym)−1h is in L2

weight(B1/4) and

‖u‖2,weight ≤ C1 ‖h‖2,weight,

for some constant C1 depending only on p > 1 provided ‖b‖3,p is suf-
ficiently small. Finally we have Qρg = Kρu. Hence Proposition 2.4
and the previous two inequalities tells us that Qρ is a bounded operator
from L2(∂B1/4) to L2(∂B(1−ρ)/4) provided ‖b‖3,p is sufficiently small
and ‖Qρ‖ ≤ C‖b‖3,p for some constant C depending only on p > 1.

Chapter 3. Fourier Space Localisation

Our first goal is to prove a version of Theorem 1.5 which takes account
of the location of g in Fourier space.

Theorem 3.1. Suppose f , g are in L2(S). Then there exists ε > 0
and a constant C > 0 depending only on p > 1 such that ‖b‖3,p < ε
implies

(3.1) |〈f,QρEkg〉| ≤ C‖b‖3,p ‖f‖2 ‖Ekg‖2 ρ2k, 0 ≤ k < ∞.

We can prove Theorem 3.1 by slightly modifying the proof of The-
orem 1.4. The main point to observe is that the quantity 2k in the
estimate (3.1) replaces the weighting factor in the L2 norm of Proposi-
tion 2.2. We shall therefore need to apply Proposition 2.3 here instead
of Proposition 2.2. First we define an operator which is analogous to
the operator A of (2.1). Thus for 0 < ρ < 1/2 let Aρf(y) be defined on
functions f with domain ∂B(1−ρ)/4 by

(3.2) Aρf(y) = |b(y)|1/2 4
ρ

∫
|x|=(1−ρ)/4

f(x)GD(x, y) dx, |y| < 1/4.

It is evident that

lim
ρ→0

Aρf(y) = Af(y), |y| < 1/4.

The following proposition is therefore a generalization of Proposition 2.1.
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Proposition 3.1. For 0 < ρ < 1/2, Aρ is a bounded linear operator
from L2(∂B(1−ρ)/4) to L2(B1/4). There is a constant C depending only
on p > 1 such that ‖Aρ‖ ≤ C ‖b‖1/2

3,p .

Proof: Let Uρ be the spherical shell

Uρ =
{
y :

1
4
(1 − 3ρ/2) < |y| < 1

4

}

and χρ be the characteristic function of the set Uρ. Let us first consider
the operator Kρ defined by

Kρf(y) = χρ(y)Aρf(y), y ∈ B1/4.

We show that Kρ is bounded by arguing as in Proposition 2.4. Thus we
write

Kρ =
∞∑
n=0

Kρ,n,

where

Kρ,0f(y) = χρ(y)|b(y)|1/2 4
ρ

∫
{|x|= 1

4 (1−ρ), |x−y|<ρ}
f(x)GD(x, y) dx,

Kρ,nf(y) = χρ(y)|b(y)|1/2 4
ρ

∫
{|x|= 1

4 (1−ρ), ρ2n−1≤|x−y|<ρ2n}
f(x)GD(x, y) dx,

n ≥ 1.

We have now from the Schwarz inequality that

|Kρ,0f(y)|2 ≤ C χρ(y)|b(y)| ρ−1

∫
{|x|= 1

4 (1−ρ), |x−y|<ρ}
|f(x)|2
|x− y| dx,

for some universal constant C. Hence

‖Kρ,0f(y)‖2
2 ≤ C ρ−1

∫
|x|= 1

4 (1−ρ)

dx|f(x)|2
∫
|x−y|<ρ

|b(y)|
|x− y| dy

≤ C1 ‖b‖3,p ‖f‖2
2

for some constant C1. We conclude that ‖Kρ,0‖ ≤ C
1/2
1 ‖b‖1/2

3,p . To
estimate Kρ,n for n ≥ 1 we use the bound

GD(x, y) ≤ C ρ/(ρ2n)2, |x| =
1
4
(1 − ρ), ρ2n−1 ≤ |x− y| < ρ2n,
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where C is a universal constant. Hence we have

|Kρ,nf(y)|2

≤ C1χρ(y)|b(y)| 1
(ρ2n)2

∫
{|x|= 1

4 (1−ρ), ρ2n−1≤|x−y|<ρ2n}
|f(x)|2 dx,

for some universal constant C1. Hence

‖Kρ,nf‖2
2 ≤ C1

(ρ2n)2

∫
|x|= 1

4 (1−ρ)

dx|f(x)|2
∫
Uρ∩{ρ2n−1≤|x−y|<ρ2n}

|b(y)| dy.

We have now∫
Uρ∩{ρ2n−1≤|x−y|<ρ2n}

|b(y)| dy

≤ meas
[
Uρ ∩ {ρ2n−1≤|x− y| < ρ2n}

]1−1/p
[∫

|x−y|<ρ2n

|b(y)|p dy
]1/p

≤ C(ρ322n)1−1/p ‖b‖3,p (ρ2n)3/p−1

= C ‖b‖3,p ρ
22n(1+1/p),

for some universal constant C. From the last two inequalities we conclude
that there is a universal constant C1 such that

‖Kρ,n‖ ≤ C
1/2
1 ‖b‖1/2

3,p 2−n(1−1/p)/2, n ≥ 1.

Hence

(3.3) ‖Kρ‖ ≤ C
1/2
1 ‖b‖1/2

3,p

∞∑
n=0

2−n(1−1/p)/2 ≤ C
1/2
2 ‖b‖1/2

3,p

for some constant C2 depending only on p > 1.
Next we consider the operator A0 defined by

A0 f(y) = [1 − χρ(y)]Aρ f(y), y ∈ B1/4.

It is easy to see that there is a universal constant C such that

GD(x, y) ≤ C ρ(1/4 − |y|)/|x− y|3, y ∈ B1/4\Uρ, |x| =
1
4
(1 − ρ).
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Furthermore for y ∈ B1/4\Uρ one has 1/4− |y| ≤ C1

[
1
4 (1 − ρ) − |y|

]
for

a suitable constant C1. Hence the operator A0 has a kernel which is
bounded by a constant times the kernel of A. Applying Proposition 2.1
we conclude that A0 is bounded and ‖A0‖ ≤ C

1/2
2 ‖b‖1/2

3,p . Since Aρ =
A0 +Kρ the result follows from this last inequality and (3.3).

Proposition 3.1 enables us to pull out the factor ρ in the inequal-
ity (3.1). Next we address the problem of how to pull out the factor
2k in (3.1). The factor occurs due to the effect of the gradient in the
expression ∇(PEkg). Suppose y = (y1, y2, y3) ∈ R

3. We shall want to
show that

(3.4) |y| ∂
∂yi

PEkg(y) � 2k P hi(y), |y| < 1/4, 1 ≤ i ≤ 3,

where hi is an L2 function on ∂B1/4 with norm comparable to g. Fur-
thermore we shall need to show that hi is approximately concentrated
in Fourier space on the range of Ek. To do this we introduce polar co-
ordinates (r, θ, ϕ) on the ball, 0 ≤ r < 1/4, 0 < θ < π, 0 < ϕ < 2π. We
may also assume that i = 3 in (3.4) and the representation

∂

∂y3
= cos θ

∂

∂r
− sin θ

1
r

∂

∂θ
.

Let Y!,m(θ, ϕ) be the spherical harmonics on the unit sphere. Thus : is
a nonnegative integer, m is an integer satisfying −: ≤ m ≤ : and

−∆S Y!,m = :(:+ 1)Y!,m,

1
i

∂

∂ϕ
Y!,m = mY!,m.

Now the Poisson kernel applied to the boundary data Y!,m yields

PY!,m(r, θ, ϕ) = (4r)! Y!,m(θ, ϕ).

Thus

|y| ∂

∂y3
P Y!,m(r, θ, ϕ) = :(4r)! cos θ Y!,m(θ, ϕ) − (4r)! sin θ

∂

∂θ
Y!,m(θ, ϕ).

Let P!,m(z), : = 0, 1, 2, . . . , 0 ≤ m ≤ : be the associated Legendre
functions. Then one has [M, p. 495], for m ≥ 0,

Y!,±m(θ, ϕ) = σ±m,!

[
(2:+ 1)(:−m)!

4π(:+m)!

]1/2

P!,m(cos θ)e±imϕ,
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where |σ±m,!| = 1. If we use the relations

(2:+ 1)z P!,m(z) = (:+m)P!−1,m(z) + (:+ 1 −m)P!+1,m(z),

(z2 − 1)
d

dz
P!,m(z) = (:−m+ 1)P!+1,m(z) − (:+m+ 1)zP!,m(z),

to be found in [H, p. 289,290], we may conclude that

cos θY!,m(θ, ϕ) =
[

(:+m)(:−m)
(2:+ 1)(2:− 1)

]1/2

Y!−1,m(θ, ϕ)

+
[
(:+ 1 +m)(:+ 1 −m)

(2:+ 3)(2:+ 1)

]1/2

Y!+1,m(θ, ϕ),

sin θ
∂

∂θ
Y!,m(θ, ϕ) = −(:+m+ 1)

[
(:+m)(:−m)
(2:+ 1)(2:− 1)

]1/2

Y!−1,m(θ, ϕ)

+ (:−m)
[
(:+ 1 +m)(:+ 1 −m)

(2:+ 3)(2:− 1)

]1/2

Y!+1,m(θ, ϕ).

Hence we have shown that

|y| ∂

∂y3
PY!,m(r, θ, ϕ) = :

[
ar PY!−1,m(r, θ, ϕ) + br−1PY!+1,m(r, θ, ϕ)

]
,

where a, b are constants which are bounded by 16 in absolute value. It
is easy now to state a rigorous version of (3.4).

Lemma 3.1. Let g be square integrable on the sphere ∂B1/4, such
that Ekg = g for some k ≥ 1. Then for any i, 1 ≤ i ≤ 3, there exist
functions h+, h− on ∂B1/4 such that

|y| ∂
∂yi

Pg(y) = 2k (4|y|)Ph−(y) + 2k(1/4|y|)Ph+(y), |y| < 1/4,

and the functions h+, h− satisfy

(Ek + Ek+1)h+ = h+, (Ek + Ek−1)h− = h−,

‖h+‖2 ≤ C ‖g‖2, ‖h−‖2 ≤ C ‖g‖2,

where C is a universal constant.
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Proof of Theorem 3.1: Consider the function hk on B1/4 defined by

hk(y) = 2−k |b(y)|1/2 n(y) · ∇PEkg(y).

In view of Lemma 3.1 and Proposition 2.1 the function hk is in L2(B1/4)
and

‖hk‖2 ≤ C ‖b‖1/2
3,p ‖Ekg‖2.

Next by Proposition 2.3 if ‖b‖3,p is sufficiently small then uk = (I −
Tsym)−1 hk is also in L2(B1/4) and

‖uk‖2 ≤ C1 ‖hk‖2

for some constant C1 ≤ 2. Observe now that

〈f,QρEkg〉 = ρ2k 〈Aρf, uk〉,
where Aρ is the operator (3.2). The result follows now from the last two
inequalities and Proposition 3.1.

Next we wish to prove a version of Theorem 1.5 which takes account
of both the location of f and g in Fourier space.

Theorem 3.2. Suppose f , g are in L2(S). Then there exists ε > 0
and constants η, C > 0 depending only on p > 1 such that ‖b‖3,p < ε
implies

|〈Ek′f,QρEkg〉| ≤ C‖b‖3,p ‖Ek′f‖2 ‖Ekg‖2 2η(k′−k), 0 ≤ k, k′ < ∞.

Evidently Theorem 3.2 is implied by Theorem 1.4 if k ≤ k′ so we shall
assume that k > k′. The basic fact we want to use is that
the function P (Ekg)(y), y ∈ B1/4 falls off rapidly from the boundary,
|y| = 1/4. In fact a simple computation shows that the function is essen-
tially concentrated on the shell 1

4 (1− 2−k) < |y| < 1
4 . We need to define

a norm which is sensitive to this fact. For h : B1/4 → C, k = 0, 1, 2, . . .
and δ > 0 we define a norm ‖h‖2,k,δ by

‖h‖2,k,δ = sup
0≤r≤k

[
22rδ

∫
Ur,k

|h(y)|2 dy
]1/2

,

where Ur,k are spherical shells given by

U0,k =
{
y :

1
4
(1 − 2−k) < |y| < 1

4

}
,

Ur,k =
{
y :

1
4
(1 − 2r 2−k) < |y| < 1

4
(1 − 2r−1 2−k)

}
, 1 ≤ r ≤ k.

Observe that if k = 0 then one just gets back the L2 norm of h.
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Lemma 3.2. Suppose g is square integrable on ∂B1/4 and A is the
operator defined by (2.1). Then for k = 0, 1, 2, . . . , and any δ > 0 the
function AEkg(y) has norm satisfying

‖AEkg‖2,k,δ ≤ Cδ,p ‖b‖1/2
3,p ‖Ekg‖2,

where the constant Cδ,p depends only on δ ≥ 0, p > 1.

Proof: Evidently

(3.5)
∫
U0,k

|AEkg(y)|2 dy ≤
∫
B1/4

|AEkg(y)|2 dy ≤ Cp ‖g‖2
2

by Proposition 2.1. Next for 1 ≤ r ≤ k observe that if y ∈ Ur,k then

Pg(y) = Prgr(y)

where the operator Pr acts on functions with domain
{
|y|=1

4 (1−2r−12−k)
}

and gives the solution of the Dirichlet problem. Thus u(y) = Prh(y)
satisfies

∆u(y) = 0, |y| < 1
4
(1 − 2r−1 2−k),

u(y) = h(y), |y| =
1
4
(1 − 2r−1 2−k).

It is easy to see that the function gr has L2 norm bounded as ‖gr‖2 ≤
exp[−c2r] ‖g‖2 for some positive constant c > 0. Now applying Theo-
rem 1.4 again we have that∫

Ur,k

|AEkg(y)|2 dy ≤ ‖gr‖2
2 ≤ Cp exp[−c2r+1] ‖g‖2

2.

The result follows now from this last inequality and (3.5).

Next we need to show that the operator Tsym is a bounded operator
on the space determined by ‖ ‖2,k,δ. As before we shall define two
spaces associated with this norm. First the space L2

k,δ(B1/4) is defined
by h ∈ L2

k,δ(B1/4) if ‖h‖2,k,δ < ∞, with norm given by ‖ ‖2,k,δ. The
weighted space L2

k,δ,weight(B1/4) is defined as all h such that the function
f(y) = (1/4 − |y|)h(y) has finite norm ‖f‖2,k,δ < ∞. The weighted
norm of h is then given by ‖h‖2,k,δ,weight = ‖f‖2,k,δ. We have now two
theorems analagous to Propositions 2.2, 2.3.
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Proposition 3.2. There exists δ > 0 such that the operator Tsym is
bounded on the space L2

k,δ,weight(B1/4) and there exists a constant C > 0
depending only on δ, p > 1 such that ‖Tsym‖ ≤ C ‖b‖3,p.

Proposition 3.3. There exists δ > 0 such that the operator Tsym

is bounded on the space L2
k,δ(B1/4) and there exists a constant C > 0

depending only on δ, p > 1 such that ‖Tsym‖ ≤ C ‖b‖3,p.

Proof: We shall first prove Proposition 3.3. Let us suppose x ∈ Uk,k.
Then

|Tsymh(x)| ≤ |b(x)|1/2
2π

k∑
s=0

∫
Us,k

|b(y)|1/2|h(y)|
|x− y|2 dy

≤ Tsymh1(x) + C |b(x)|1/2
∫
B1/4

|b(y)|1/2 |h(y)| dy

where C is a universal constant and

h1(y) = h(y), y ∈ Uk−1,k ∪ Uk,k,

= 0, otherwise.

By the Minkowski inequality we have then[∫
Uk,k

|Tsymh(x)|2 dx
]1/2

≤ ‖Tsymh1‖2

+ C

[∫
B1/4

|b(x)| dx
]1/2 [∫

B1/4

|b(y)|1/2|h(y)| dy
]
.

Evidently ‖h1‖2 ≤ 2−(k−2)δ ‖h‖2,k,δ. On the other hand∫
B1/4

|b(y)|1/2 |h(y)| dy ≤
k∑

s=0

[∫
Us,k

|b(y)| dy
]1/2 [∫

Us,k

|h(y)|2 dy
]1/2

≤
k∑

s=0

[∫
Us,k

|b(y)| dy
]1/2

2−sδ ‖h‖2,k,δ

≤
k∑

s=0

meas(Us,k)(1−1/p)/2 ‖b‖1/2
3,p 2−sδ ‖h‖2,k,δ

≤ C

k∑
s=0

‖b‖1/2
3,p ‖h‖2,k,δ 2(s−k)(1−1/p)/2 2−sδ

≤ C1 ‖b‖1/2
3,p ‖h‖2,k,δ 2−kδ
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provided δ < (1 − 1/p)/2. Now from Proposition 2.3 and the last four
inequalities we conclude that

[∫
Uk,k

|Tsymh(x)|2 dx
]1/2

≤ C ‖b‖3,p ‖h‖2,k,δ 2−kδ,

where the constant C depends only on p > 1 and δ > 0.
We can easily deal with the case of the integral of Tsymh over U0,k by

observing that

[∫
U0,k

|Tsymh(x)|2 dx
]1/2

≤ ‖Tsymh‖2 ≤ C‖b‖3,p ‖h‖2 ≤ Cδ ‖b‖3,p ‖h‖2,k,δ

by Proposition 2.3. Thus we are left to deal with integrals over Ur,k with
1 ≤ r ≤ k − 1. Define the function h1(y) by

h1(y) = h(y), y ∈ Us,k, s ≥ r − 1,

= 0, otherwise.

Next for s ≤ r − 2 and integer n satisfying 2 ≤ n ≤ k − r + 4 let gs,n(x)
be the function

gs,n(x) =
|b(x)|1/2

2π
22n

∫
Us,k∩{2−n<|x−y|<2−n+1}

|b(y)|1/2 |h(y)| dy.

Then we have the inequality

|Tsymh(x)| ≤ |Tsymh1(x)| +
r−2∑
s=0

k−r+4∑
n=2

gs,n(x), x ∈ Ur,k.

It follows by the Minkowski inequality that

(3.6)

[∫
Ur,k

|Tsymh(x)|2 dx
]1/2

≤
[∫

Ur,k

|Tsymh1(x)|2 dx
]1/2

+
r−2∑
s=0

k−r+4∑
n=2

[∫
Ur,k

gs,n(x)2 dx
]1/2

.
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By Proposition 2.3 we have

(3.7)

[∫
Ur,k

|Tsymh1(x)|2 dx
]1/2

≤ ‖Tsymh1‖2

≤ C‖b‖3,p ‖h1‖2

≤ C1‖b‖3,p ‖h‖2,k,δ 2−rδ.

Observe next that for any z,∫
Ur,k∩{|x−z|<2−n}

gs,n(x)2 dx ≤ 24n

(2π)2

∫
Ur,k∩{|x−z|<2−n}

|b(x)| dx

[∫
Us,k∩{|z−y|<2−n+2}

|b(y)|1/2 |h(y)| dy
]2

.

From Holder’s inequality we have∫
Ur,k∩{|x−z|<2−n}

|b(x)| dx

≤ meas
[
Ur,k ∩ {|x− z| < 2−n}

]1−1/p

[∫
|x−z|<2−n

|b(x)|p dx
]1/p

≤ C ‖b‖3,p 2(r−k−2n)(1−1/p) 2−n(3/p−1).

Similarly we have[∫
Us,k∩{|z−y|<2−n+2}

|b(y)|1/2|h(y)| dy
]2

≤
[∫

Us,k∩{|z−y|<2−n+2}
|b(y)| dy

]

[∫
Us,k∩{|z−y|<2−n+2}

|h(y)|2 dy
]
≤C‖b‖3,p2(s−k−2n)(1−1/p)2−n(3/p−1)

∫
Us,k∩{|z−y|<2−n}

|h(y)|2 dy.

The last three inequalities imply then that∫
Ur,k

gs,n(x)2 dx ≤ C ‖b‖2
3,p 24n 2(r−k−2n)(1−1/p) 2−n(3/p−1)

2(s−k−2n)(1−1/p) 2−n(3/p−1)

∫
Us,k

|h(y)|2 dy

≤ C‖b‖2
3,p2

−2rδ‖h‖2
2,k,δ2

−2(k−r−n)(1−1/p)2(s−r)(1−1/p−2δ).



Fluctuations of BM 115

It follows then from the previous inequality and (3.6), (3.7) that if
δ < (1 − 1/p)/2 then

[∫
Ur,k

|Tsymh(x)|2 dx
]1/2

≤ C‖b‖3,p ‖h‖2,k,δ 2−rδ

for some constant C depending only on δ and p > 1. This completes the
proof of Proposition 3.3. Proposition 3.2 follows in an exactly analogous
way from Proposition 2.2.

Next let us consider the operator Kρ defined by (2.12). Let f be a
function in L2(∂B(1−ρ)/4). We define the function Mρf(y), y ∈ B1/4 by∫

|x|= 1
4 (1−ρ)

f(x)Kρh(x) dx =
∫
B1/4

(
1
4
− |y|

)
h(y)Mρf(y) dy,

for h ∈ L2
weight(B1/4). Explicitly we have

Mρf(y) =
∫
|x|= 1

4 (1−ρ)

dxf(x)GD(x, y)|b(y)|1/2
(

1
4
− |y|

)−1

.

In view of Proposition 2.4 we see that Mρ is a bounded operator from
L2(∂B(1−ρ)/4)) to L2(B1/4). Furthermore there is a constant C depend-
ing only on p > 1 such that

(3.8) ‖Mρ‖ ≤ C ‖b‖1/2
3,p

provided 0 < ρ < 1/2. We shall need to more accurately estimate the
effect of Mρ on a function f which is concentrated in a band of Fourier
space. In particular we have the following:

Proposition 3.4. Suppose k, k′ are nonnegative integers and
0 < ρ < 1/2. Then there exists δ > 0 and a constant C depending
only on p > 1 such that for f ∈ L2(∂B(1−ρ)/4),∫

U0,k

|MρEk′f(y)|2 dy ≤ C ‖b‖3,p ‖Ek′f‖2
2 2−2(k−k′)δ.

Proof: In view of the inequality (3.8) we may assume that k > k′. We
shall first show that we may also assume 2−k′

> ρ. This will follow from
the inequality

(3.9)
∫
U0,k

|Mρf(y)|2 dy ≤ C ‖b‖3,p ‖f‖2
2 (2−k/ρ)2δ.
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Observe that it is sufficient to prove (3.9) under the condition 2−k < ρ/2.
In that case we write

(3.10) Mρf(y) =
∞∑
n=0

gn(y), y ∈ U0,k,

where

g0(y)=
∫
{|x|= 1

4 (1−ρ),|x−y|<ρ}
dxf(x)GD(x, y)|b(y)|1/2 (1/4 − |y|)−1,

gn(y)=
∫
{|x|= 1

4 (1−ρ),2n−1ρ<|x−y|<2nρ}
dxf(x)GD(x, y)|b(y)|1/2 (1/4 − |y|)−1.

Since 2−k < ρ/2 we have

(3.11)

|gn(y)| ≤ Cρ

(ρ2n)3
|b(y)|1/2

∫
{|x|= 1

4 (1−ρ),|x−y|<2nρ}
|f(x)| dx

≤ C1ρ

(ρ2n)2
|b(y)|1/2

[∫
{|x|= 1

4 (1−ρ),|x−y|<2nρ}
|f(x)|2 dx

]1/2

,

n = 0, 1, 2, . . . ,

for some universal constants C, C1 by the Schwarz inequality. This last
inequality implies

∫
U0,k

|gn(y)|2 dy

≤ C2
1ρ

2

(ρ2n)4

∫
{|x|= 1

4 (1−ρ)}
dx|f(x)|2

∫
U0,k∩{|x−y|<2nρ}

|b(y)| dy.

Now if we estimate∫
U0,k∩{|x−y|<2nρ}

|b(y)| dy

≤ meas
[
U0,k ∩ {|x− y| < 2nρ}

]1−1/p

‖b‖3,p (2nρ)3/p−1

≤ C ‖b‖3,p (2nρ)1+1/p 2−k(1−1/p),
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we can conclude that

(3.12)

[∫
U0,k

|gn(y)|2 dy
]1/2

≤ C1 ‖b‖1/2
3,p ‖f‖2 (2−k/ρ)(1−1/p)/2 2−n(3−1/p)/2,

for some universal constant C1. Hence from (3.10) and the Minkowski
inequality it follows that (3.9) holds with δ = (1 − 1/p)/2.

We can assume now that 2−k′
> ρ, k > k′. Let fk′(x) be the function

fk′ = 2−4k′
(−∆S + 22k′

)2Ek′f,

where ∆S is the Laplacian on the unit sphere. Evidently there is a
universal constant C such that ‖fk′‖2 ≤ C‖Ek′f‖2. Furthermore Ek′f
can be written in terms of fk′ by

Ek′f(x) =
∫
|x′|= 1

4 (1−ρ)

Hk′(x, x′)fk′(x′) dx′,

where Hk′(x, x′) is the kernel of the operator 24k′
(−∆S + 22k′

)−2. It is
well known [CH] that there are constants C, c > 0 such that

0 ≤ Hk′(x, x′) ≤ C 22k′
exp[−c|x− x′|/2−k′

].

Again we write

MρEk′f(y) =
∞∑
n=0

gn(y), y ∈ U0,k,

where

g0(y) =
∫
{|x|= 1

4 (1−ρ),|x′|= 1
4 (1−ρ),|x′−y|<2−k′}

dx dx′Hk′(x, x′)fk′(x′)GD(x, y)|b(y)|1/2 (1/4 − |y|)−1,

gn(y) =
∫
{|x|= 1

4 (1−ρ),|x′|= 1
4 (1−ρ),2n−1−k′<|x′−y|<2n−k′}

dx dx′Hk′(x, x′)fk′(x′)GD(x, y)|b(y)|1/2 (1/4 − |y|)−1,
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if n ≥ 1. Observe now that

∫
|x|= 1

4 (1−ρ)

dxHk′(x, x′)GD(x, y)(1/4 − |y|)−1

≤ C 22k′
∫
|x|= 1

4 (1−ρ)

dx GD(x, y)(1/4 − |y|)−1 ≤ C1 22k′
,

for some universal constant C1. Hence

(3.13) |g0(y)| ≤ C1 22k′
∫
{|x′|= 1

4 (1−ρ),|x′−y|<2−k′}
dx′|fk′(x′)| |b(y)|1/2.

Now if 2n−1−k′
< |x′ − y| < 2n−k′

, n ≥ 1, then one easily sees that

∫
|x|= 1

4 (1−ρ)

dxHk′(x, x′)GD(x, y)(1/4 − |y|)−1 ≤ C 22k′−3n,

for some universal constant C2. Hence if n ≥ 1 we have the inequality

(3.14) |gn(y)|

≤ C2 22k′−3n

∫
{|x′|= 1

4 (1−ρ),|x′−y|<2n−k′}
dx′|fk′(x′)| |b(y)|1/2.

We can now bound the integrals of |gn(y)|2 over U0,k exactly as in (3.12)
by using the inequalities (3.13), (3.14). There is therefore a universal
constant C1 such that

[∫
U0,k

|gn(y)|2 dy
]1/2

≤ C1 ‖b‖1/2
3,p ‖fk′‖2 2(k′−k)(1−1/p)/2 2−n(3−1/p)/2, n ≥ 0.

Since ‖fk′‖2 ≤ C ‖Ek′f‖2 the result follows as before.
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Proof of Theorem 3.2: Let h(y) = |b(y)|1/2 n(y)·∇PEkg(y), y ∈ B1/4.
Then from the Harnack principle and Lemma 3.2 it is easy to see that h
is in the space L2

k,δ,weight(B1/4) for every δ > 0 and

‖h‖2,k,δ,weight ≤ Cδ,p‖b‖1/2
3,p ‖Ekg‖2,

where the constant Cδ,p depends only on δ, p > 1. Now by Proposi-
tion 3.2 one sees that if ‖b‖3,p is sufficiently small then the function
ξ(y) = (1/4 − |y|)(I − Tsym)−1h(y) is in L2

k,δ(B1/4) and

‖ξ‖2,k,δ ≤ Cδ,p ‖b‖1/2
3,p ‖Ekg‖2,

for some suitable constant Cδ,p. Observe next that

∣∣∣〈Ek′f,QρEkg
〉∣∣∣ =

∣∣∣∣∣
∫
B1/4

ξ(y)MρEk′f(y) dy

∣∣∣∣∣
≤

k∑
r=0

[∫
Ur,k

|ξ(y)|2 dy
]1/2 [∫

Ur,k

|MρEk′f(y)|2 dy
]1/2

.

If we use now Proposition 3.4 we have that

∣∣∣〈Ek′f,QρEkg
〉∣∣∣ ≤ k∑

r=0

2−rδ‖ξ‖2,k,δ

[∫
Ur,k

|MρEk′f(y)|2 dy
]1/2

≤
k−k′∑
r=0

2−rδ‖ξ‖2,k,δ C
1/2‖b‖1/2

3,p ‖Ek′f‖2 2−(k−k′−r)δ′

+
k∑

r=k−k′+1

2−rδ‖ξ‖2,k,δ C
1/2‖b‖1/2

3,p ‖Ek′f‖2

≤ C1 ‖b‖1/2
3,p ‖ξ‖2,k,δ ‖Ek′f‖2 2−(k−k′)δ

≤ C2 ‖b‖3,p ‖Ekg‖2 ‖Ek′f‖2 2−(k−k′)δ

for constants C1, C2 depending only on p > 1 provided we choose
0 < δ < δ′ appropriately.
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The proof of Theorem 1.5 will be complete if we can prove:

Theorem 3.3. Suppose f , g are in L2(S). Then there exists ε > 0
and constants η, C > 0 depending only on p > 1 such that if ‖b‖3,p < ε
then∣∣∣〈Ek′f,QρEkg

〉∣∣∣≤C‖b‖3,p ‖Ek′f‖2 ‖Ekg‖2 ρ2k 2η(k−k′), 0 ≤ k, k′<∞.

The main work to be done to prove this last proposition is to show that
Proposition 3.4 also holds for the operator Aρ defined by (3.2). Thus we
have the following:

Proposition 3.5. Suppose k, k′ are nonnegative integers and
0 < ρ < 1/2. Then there exists δ > 0 and a constant C depending
only on p > 1 such that for f ∈ L2(∂B(1−ρ)/4),∫

U0,k

∣∣∣AρEk′f(y)
∣∣∣2 dy ≤ C ‖b‖3,p ‖Ek′f‖2

2 2−2(k−k′)δ.

Proof: We proceed in the same way as in Proposition 3.4. By Propo-
sition 3.1 we can assume that k ≥ k′. Next we show that one may also
assume 2−k′

> ρ. This follows from the inequality

(3.15)
∫
U0,k

∣∣∣Aρf(y)
∣∣∣2 dy ≤ C ‖b‖3,p ‖f‖2

2 (2−k/ρ)2δ.

Observe that it is sufficient to prove (3.15) under the condition 2−k <
ρ/2. In that case we write

Aρf(y) =
∞∑
n=0

gn(y), y ∈ U0,k,

where

g0(y) =
4
ρ

∫
{|x|= 1

4 (1−ρ),|x−y|<ρ}
dxf(x)GD(x, y)|b(y)|1/2,

gn(y) =
4
ρ

∫
{|x|= 1

4 (1−ρ),2n−1ρ<|x−y|<2nρ}
dxf(x)GD(x, y)|b(y)|1/2, n ≥ 1.

Since 2−k < ρ/2 we have

|gn(y)| ≤ Cρ

(ρ2n)3
|b(y)|1/2

∫
{|x|= 1

4 (1−ρ),|x−y|<2nρ}
|f(x)| dx.
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Since this last inequality is exactly the same as (3.11) we can conclude
that the theorem holds in the case of 2−k′ ≤ ρ. To deal with the case of
2−k′

> ρ we proceed again as in Proposition 3.4. The functions gn are
now defined by

g0(y) =
4
ρ

∫
{|x|= 1

4 (1−ρ),|x′|= 1
4 (1−ρ),|x′−y|<2−k′}

dx dx′Hk′(x, x′)fk′(x′)GD(x, y)|b(y)|1/2,

gn(y) =
4
ρ

∫
{|x|= 1

4 (1−ρ),|x′|= 1
4 (1−ρ),2n−1−k′<|x′−y|<2n−k′}

dx dx′Hk′(x, x′)fk′(x′)GD(x, y)|b(y)|1/2,

if n ≥ 1. Evidently one has

4
ρ

∫
|x|= 1

4 (1−ρ)

dxHk′(x, x′)GD(x, y)

≤ 4C22k′

ρ

∫
|x|= 1

4 (1−ρ)

dxGD(x, y) ≤ C1 22k′
,

for some universal constant C1. Similarly

4
ρ

∫
|x|= 1

4 (1−ρ)

dxHk′(x, x′)GD(x, y) ≤ C2 22k′−3n

for some universal constant C2 if 2n−1−k′
< |x′ − y| < 2n−k′

, n ≥ 1.
Now, using these last two estimates the proof of the theorem is identical
to the proof of Proposition 3.4.

Proof of Theorem 3.3: Let h(y) = |b(y)|1/2n(y) ·∇PEkg(y), y ∈ B1/4.
From Lemmas 3.1, 3.2 it follows that h is in the space L2

k,δ(B1/4) for every
δ > 0 and

‖h‖2,k,δ ≤ Cδ,p‖b‖1/2
3,p 2k ‖Ekg‖2,

where the constant Cδ,p depends only on δ, p > 1. Now by Proposi-
tion 3.3 one sees that if ‖b‖3,p is sufficiently small then the function
ξ(y) = (I − Tsym)−1h(y) is in L2

k,δ(B1/4) and

(3.16) ‖ξ‖2,k,δ ≤ Cδ,p‖b‖1/2
3,p 2k ‖Ekg‖2,
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for some suitable constant Cδ,p. Observe next that

∣∣∣〈Ek′f,QρEkg
〉∣∣∣ =

∣∣∣∣∣ρ
∫
B1/4

ξ(y)AρEk′f(y) dy

∣∣∣∣∣ .
The rest of the proof follows now from (3.16) and Proposition 3.5 in
exactly the same way as Theorem 3.2 follows from Proposition 3.4.

Chapter 4. Proof of Theorem 1.3

We first define the density fρ,b in terms of the density f . To do this
we consider the Dirichlet problem

(∆ + b(y) · ∇)v(y) = 0, y ∈ B1/4,

v(y) = g(y), y ∈ ∂B1/4.

Formally v(y) is given by the formula

v(y) = Pg(y) +Qg(y), y ∈ B1/4,

where P is the Poisson integral (1.4) and Qg is defined by (1.5). Now
v can be represented in terms of the diffusion process Xb(t) by the ex-
pression

v(y) = Ey[g(Xb(τ))], y ∈ B1/4,

where τ is the first hitting time on ∂B1/4 for the process started at
Xb(0) = y. It is clear then that if we regard the density f as a function
on ∂B(1−ρ)/4 and the density fρ,b as a function on ∂B1/4, then∫

∂B(1−ρ)/4

f(y)v(y) dy /normalisation

=
∫
∂B1/4

fρ,b(y)g(y) dy /normalisation,

where the normalisations are chosen so that the measures are probability
measures. It follows therefore, on going back to regarding f and fρ,b as
functions on the unit sphere S that

〈fρ,b, g〉 = 〈f, Pρg +Qρg〉, g ∈ L2(S),

where Pρg(y) = Pg(y), y ∈ ∂B(1−ρ)/4. Hence fρ,b = P ∗
ρ f +Q∗

ρf , where
P ∗
ρ and Q∗

ρ are the formal adjoints of Pρ, Qρ respectively.
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We can analyse the operator Pρ precisely since we know its eigen-
functions. In fact if Yl,m(θ, φ), 0 ≤ θ < π, 0 ≤ φ < 2π, is a spherical
harmonic and we take g = Yl,m then Pg(y) = (4|y|)lYl,m(θ, φ), y ∈ B1/4.
Hence

(4.1) PρYl,m = (1 − ρ)lYl,m.

It follows in particular that Pρ is selfadjoint, whence Pρ = P ∗
ρ . We also

have that Pρ1 = PρY0,0 = 1. Hence for any f ∈ L2(S) we have that

(4.2) ‖Pρf −Avf‖2 ≤ (1 − ρ)‖f −Avf‖2.

Theorem 1.2 follows from (4.2) and the fact that ‖Qρ‖ ≤ C‖b‖3,p

where C depends only on p, ρ. In fact

‖fρ,b −Avfρ,b‖2 = ‖Pρf +Q∗
ρf −Avf‖2

≤ ‖Pρf −Avf‖2 + ‖Q∗
ρf‖2

≤ (1 − ρ)‖f −Avf‖2 + C‖b‖3,p‖f‖2.

Suppose now ‖f − Avf‖2 ≤ δ|Avf |. Then ‖f‖2 ≤ (1 + δ)|Avf |. Hence
the last inequality yields

‖fρ,b −Avfρ,b‖2 ≤ (1 − ρ)δ|Avf | + C‖b‖3,p(1 + δ)|Avf |

= [1 − ρ+ C‖b‖3,p(1 + δ−1)]δ|Avfρ,b|,

since Avf = Avfρ,b. Theorem 1.2 follows from the last inequality by
choosing ‖b‖3,p sufficiently small.

Theorem 1.3 follows by a similar argument from Theorem 1.5. Since
Yl,m is an eigenfunction of −∆S with eigenvalue l(l + 1), l = 0, 1, 2, . . . ,
it follows from (4.1) that there is a universal constant c > 0 with

(4.3) ‖EkPρf‖2 ≤ {1 − cmin[ρ2k, 1]}‖Ekf‖2, k ≥ 1.

The inequality (4.3) plays the same role in the proof of Theorem 1.3 as
(4.2) plays in the proof of Theorem 1.2. By the Minkowski inequality we
have

‖Ekfρ,b‖2 = ‖EkPρf + EkQ
∗
ρf‖2

≤ ‖EkPρf‖2 + ‖EkQ
∗
ρf‖2.
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Theorem 1.5 yields an appropriate estimate on ‖EkQ
∗
ρf‖2, which when

combined with (4.3) proves Theorem 1.3. To see this let us assume
‖f −Avf‖2,ν ≤ δ|Avf |. Then

(4.4) ‖Ekf‖2 ≤ δ|Avf |/2νk, k = 1, 2, . . . .

Now, for some g satisfying ‖Ekg‖2 = 1,

(4.5) ‖EkQ
∗
ρf‖2 = 〈f,QρEkg〉 ≤

∞∑
k′=0

|〈Ek′f,QρEkg〉|.

Hence from Theorem 1.5 and (4.4) we have,

‖EkQ
∗
ρf‖2 ≤ C ‖b‖3,p|Avf |min[ρ2k, 1]2−ηk

+
k∑

k′=1

C ‖b‖3,p δ |Avf |2−νk′
min[ρ2k, 1]2η(k−k′)

+
∞∑

k′=k+1

C ‖b‖3,pδ |Avf |2−νk′
min[ρ2k, 1].

Note that the first term on the right in the last inequality comes from
the k′ = 0 term on the right in (4.5). Hence if η > ν we have that

‖EkQ
∗
ρf‖2 ≤ C‖b‖3,p|Avf |min[ρ2k, 1]{
2−ηk + δ2(η−ν)(k+1)2−ηk/[2(η−ν) − 1] + δ2−ν(k+1)/[1 − 2−ν ]

}
.

We conclude that

‖EkQ
∗
ρf‖2 ≤ C(δ)‖b‖3,pδ|Avf |min[ρ2k, 1]2−νk, k ≥ 1,

where the constant C(δ) depends only on δ. Combining this last inequal-
ity with (4.3) we have that

‖Ekfρ,b‖2 ≤ {1 + [C(δ)‖b‖3,p − c] min[ρ2k, 1]}δ|Avf |2−νk, k ≥ 1.

The theorem follows now by choosing ‖b‖3,p sufficiently small so that
C(δ)‖b‖3,p < c.
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