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CANARD CYCLES AND HOMOCLINIC
BIFURCATION IN A 3 PARAMETER FAMILY

OF VECTOR FIELDS ON THE PLANE

Paulo Ricardo da Silva

Abstract
Let the 3-parameter family of vector fields given by

(A) y
∂

∂x
+ [x2 + µ + y(ν0 + ν1x + x3)]

∂

∂y

with (x, y, µ, ν0, ν1) ∈ R2 × R3 ([DRS1]). We prove that if µ →
−∞ then (A) is C0-equivalent to

(B) [y − (bx + cx2 − 4x3 + x4)]
∂

∂x
+ ε(x2 − 2x)

∂

∂y

for ε ↓ 0, b, c ∈ R. We prove that there exists a Hopf bifurcation
of codimension 1 when b = 0 and also that, if b = 0, c = 12 and
ε > 0 then there exists a Hopf bifurcation of codimension 2. We
study the “Canard Phenomenon” and the homoclinic bifurcation
in the family (B). We show that when ε ↓ 0, b = 0 and c = 12
the attracting limit cycle, which appears in a Hopf bifurcation of
codimension 2, stays with “small size” and changes to a “big size”
very quickly, in a sense made precise here.

1. Introduction

Let χ the set of C∞ vector fields on the plane and χ0 ⊂ χ, the set of
vector fields with a singularity at (0, 0).

(1) χ0 =
{
P (x, y)

∂

∂x
+Q(x, y)

∂

∂y
| P, Q ∈ C∞, P (0, 0) = Q(0, 0) = 0

}
.

Consider the equivalences introduced by the following definitions.

Definition 1.1.

a) X, Y ∈ χ are called C0-equivalent if there exists a homeomor-
phism h : R2 → R2 sending X-orbits to Y -orbits in a sense pre-
serving way.

b) X, Y ∈ χ0 are called C∞-equivalent if there exists a diffeo-
morphism g : R2 → R2, fixing (0, 0) ∈ R2, such that Y (p) =
[g′(p)]−1 ·X(p), p ∈ R2.
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Definition 1.2.

a) A k-parameter family of vector fields on R2, Xλ, with λ ∈ Rk

denoting the parameter, is defined to be a vector field a(m,λ) ∂∂x+
b(m,λ) ∂∂y , m = (x, y) ∈ R2, where the coefficient functions a and
b are C∞ with respect to (m,λ) ∈ R2 ×Rk. We say that Xλ is a
k-parameter unfolding of X0.

b) Xλ and Yµ, µ, λ ∈ Rk, are (fibre) C0-equivalent if there exist
homeomorphisms µ = φ(λ) and hλ : R2 → R2 such that hλ is a
topological equivalence between Xλ and Yφ(λ).

LetX0 ∈ χ0. Consider the Jordan form JX0 of
[

∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

]
at (0, 0) ∈ R2

([M]).

(2)

T11 :
[
a b
0 c

]
a �= 0, c �= 0 and b = 0 or a = c �= 0 and b = 1

T12 :
[
a b
−b a

]
a �= 0, b �= 0

T2 :
[
a 0
0 0

]
a �= 0

T3 :
[

0 −a
a 0

]
a �= 0

T4 :
[

0 1
0 0

]

T5 :
[

0 0
0 0

]
.

Let Wi = {X0 ∈ χ0 | JX0 ∈ Ti} where T1 = T11 ∪ T12. Thus
χ0 = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5. W1 is the set of vector fields with
hyperbolic singularity at (0, 0). One obtains for generic k-parameter
families (with any k) the so called generalized saddle-node bifurcation of
codimension k which is an unfolding of X0 ∈ W2 but whose restriction
to center manifold starts with non-zero terms of order k. For generic
k-parameter families (k ≥ 2) one finds the generalized Hopf bifurcation
where such Hopf bifurcation of codimension k is a k-parameter unfolding
of X0 ∈ W3 and whose radial component of the normal form in polar
coordinates starts with non-zero terms of order 2k + 1.

The study of the unfoldings of X0 ∈ W4 starts with the Bogdanov-
Takens bifurcation ([RW]). If X0 ∈ W4 then, according [DRS1], j2X0
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is C∞-equivalent to

(3) y
∂

∂x
+ (ax2 + bxy)

∂

∂y
.

If a �= 0 we say that X0 ∈ W4 has singularity of the kind cusp. For
the case a = 0, see [DRS2].

Generically ab �= 0 and j2X0 is C∞-equivalent to ([D])

(4) y
∂

∂x
+ (x2 ± xy) ∂

∂y
.

Bogdanov and Takens showed that, generically, any local 2 parameter
unfolding of (4) is fibre C0-equivalent to

(5) Xµ,ν = y
∂

∂x
+ [x2 + µ+ y(ν ± x)] ∂

∂y
.

Dumortier, Roussarie and Sotomayor ([DRS1]) studied X0 ∈W4 with
j2X0 C

∞-equivalent to

(6) y
∂

∂x
+ ax2 ∂

∂y
.

They showed that, generically, j4X0 is C∞-equivalent to

(7) y
∂

∂x
+ (x2 ± x3y)

∂

∂y
.

Generically, any local 3 parameter unfolding of (7) is fibre C0-equival-
ent to

(8) Xµ,ν0,ν1 = P
∂

∂x
+Q

∂

∂y
= y

∂

∂x
+ [x2 + µ+ y(ν0 + ν1x± x3)]

∂

∂y
.

The bifurcation set of Xµ,ν0,ν1 is the smallest closed subset
∑

⊂
R3 (µ, ν0, ν1) such that the topological type of Xµ,ν0,ν1 for (µ, ν0, ν1) ∈
R3 (µ, ν0, ν1) \

∑
is locally constant. In Figure 1 we have the bifurcation

set of (8+). It is composed of 9 surfaces and 5 curves.
Figure 1 shows the intersection of the bifurcation set with the sphere

Sδ = {(µ, ν0, ν1) | µ2 + ν2
0 + ν2

1 = δ2, µ < 0}, with δ > 0 small. The
parameter values for which

(
∂P
∂x + ∂Q

∂y

)
(−√−µ, 0) = 0 give the sur-

face H (Hopf bifurcation). H is composed of two parts separated by the
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curve H2 (Hopf bifurcation of codimension 2). In one of them, when
the parameter value crosses H, the focus changes the stability and we
have the appearance of one repelling limit cycle. In the other part, the
change of the stability gives the appearance of one attracting limit cycle.
When the parameter value crosses H2 we have the appearance of two
limit cycles, the inner one is attracting and the other is repelling. If
(µ, ν0, ν1) ∈ L (homoclinic bifurcation) then Xµ,ν0,ν1 has a homoclinic

orbit. The parameter values on L for which
(
∂P
∂x + ∂Q

∂y

)
(
√−µ, 0) = 0

give the curve L2. L is composed of two parts separated by the curve L2

(homoclinic bifurcation of codimension 2). In one of them, the attract-
ing limit cycles which appear along H disappear along L. In the other
part, the repelling limit cycles which appear along H disappear along L.
The cycles which appear along H2 disappear along L2. There exists a
surface C where the attracting limit cycle and the repelling limit cycle
coalesce. If (µ, ν0, ν1) ∈ C then Xµ,ν0,ν1 has a semistable cycle. For
the parameter values on the region limited by H, L and C, Xµ,ν0,ν1 has
two limit cycles. On b1(δ) and b2(δ) we have the Bogdanov-Takens bi-
furcations corresponding to the cases (5+) and (5−). For the parameter
values on H ∩ L we have simultaneous Hopf bifurcation and homoclinic
bifurcation.

ν1

µ

ν0

b1

L H

H2

C

L2

b2
Figure 1. The Bifurcation Set on Sδ.

In this work we study the surfaces H and L for µ→ −∞.
In section 2 we make some coordinate changes, such as the Liénard

transformation, and prove that if µ → −∞ then (8+) is (fibre)
C0-equivalent to

(9) [y − Fb,c(x)]
∂

∂x
+ ε(x2 − 2x)

∂

∂y

for ε ↓ 0, b, c ∈ R.
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We denote Fb,c the function given by

(10) Fb,c(x) = bx+ cx2 − 4x3 + x4.

In section 2 we study the bifurcation set of the functions defined by
(10). It is illustrated in Figure 2.

b

c6

4

Figure 2. The Bifurcation Set of Fb,c.
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In section 3 we study the singularities of the family (9). If ε = 0 then
the singularities, with (b, c) fixed, are on the curve

(11) Lb,c = {(x, y) | y = Fb,c(x)}.

Except for the critical points, all the points on Lb,c are normally hy-
perbolic singular points. The phase portrait is illustrated in Figure 3.

Figure 3. Phase Portrait of (9) for (ε, b, c) = (0, 0, 12)
and for (ε, b, c) = (0, 0, 4).

For ε > 0, (9) has two singularities: (0, 0) and (2, Fb,c(2)).

0 < ε ≤ b2/8 ε > b2/8

(0, 0) b > 0 Attracting Node Attracting Focus

b < 0 Repelling Node Repelling Focus

(2, Fb,c(2)) Saddle Saddle

Table I. Singularities of (9) for ε > 0.

We have a special care to classify the singularity (0, 0) when b = 0
because in this case the associated eigenvalues have real part equal
zero. We prove in section 3 the existence of Hopf bifurcation on
H = {b = 0, c �= 12} and Hopf bifurcation of codimension 2 on H2 =
{b = 0, c = 12}. The cycles are so that inner one is repelling and the
other is attracting. We study the behaviour of the cycles for ε ↓ 0.

Definition 1.3.

a) Let A, B ⊂ R2 compact sets. The Hausdorff distance between A
and B is d(A,B) = max

x∈A, y∈B
{d(x,B), d(y,A)}.

b) Γb,c ⊂ R2 is a “Limit Periodic Set” of Xε,b,c if there exist
(εn, bn, cn) → (0, b, c) and Γn ⊂ R2, limit cycle (or homoclinic
orbit) of Xεn,bn,cn , such that Γn → Γb,c, for the Hausdorff dis-
tance between the compact sets in R2.
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H

H2

12
b

c

Figure 4. Hopf Bifurcation.

For (ε, b, c) → (0, 0, 12) the possible limit periodic sets are those for
which y is constant or y = Fb,c(x). The limit periodic sets are known by
“Canard Cycles”. We use the term “canard” because the shape of the
limit periodic sets of the Van der Pol’s equation is like a duck ([E]).

2

y 32

Γ0,4 Γy0,12 Γ32
0,12

2 2

Figure 5. Limit Periodic Sets.

Using the method introduced in [DR1], which consists in global desin-
gularization and center manifolds, we prove

Theorem 1.1. Let the family given by (9) and Γ32
0,12 the compact

set illustrated in Figure 5. There exist ε0 > 0, δ > 0 and a surface
S = {(ε, b, c) | b = ϕ(

√
ε, c), ϕ ∈ C∞, ϕ(0, c) = 0, 0 ≤ ε < ε0, 12 − δ <

c < 12 + δ} such that if (ε, b, c) ∈ S and ε > 0 then two separatrices
of the saddle point (2, Fb,c(2)) give a homoclinic orbit which approaches
Γ32

0,12 for the Hausdorff distance.

With the same method one can find surfaces Sy, 0 ≤ y ≤ 32, such that
if (ε, b, c) ∈ Sy then the phase portrait of (9) has a limit cycle Γyε,b,c and
Γyε,b,c → Γy0,12, for the Hausdorff distance, for (ε, b, c) → (0, 0, 12).
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The divergence at (2, Fb,c(2)) determines the stability of the homo-
clinic orbit. We have

(12) divXε,b,c(2, Fb,c(2)) = 0 ⇔ b = −4c+ 16.

We say that the homoclinic orbit is non-generic if the divergence at
(2, Fb,c(2)) is zero.

Theorem 1.2. Let the family given by (9) and Γ0,4 the compact set
illustrated in Figure 5. There exist ε0 > 0, δ > 0 and a surface L =
{(ε, b, c) | b = ψ(

√
ε, c), ψ ∈ C∞, ψ(0, c) = 0, 0 ≤ ε < ε0, 4 − δ < c <

4 + δ} such that if (ε, b, c) ∈ L and ε > 0 then two separatrices of the
saddle point (2, Fb,c(2)) give a homoclinic orbit Lε,b,c which approaches
Γ0,4. Besides the limit of the parameter values for which Xε,b,c has non-
generic homoclinic orbits for ε ↓ 0 is (0, 0, 4).

The surface L is such that for b < −4c + 16, Lε,b,c is a repelling
homoclinic orbit and for b > −4c+ 16, Lε,b,c is an attracting homoclinic
orbit.

According [ALGM], if b = −4c + 16 and (ε, b, c) ∈ L then for any
δ1 > 0 and δ2 > 0, there exists a perturbation X̃ε,b,c of Xε,b,c, δ1-closed
to Xε,b,c, such that X̃ε,b,c has at least two limit cycles, δ2-closed to Lε,b,c.

We prove the Theorems 1.1 and 1.2 in sections 5 and 6. In section 4
we prove that the parameter values for which Xε,b,c has limit cycles
approache {ε = b = 0}, for ε ↓ 0.

2. The Liénard Transformation

Let Xµ,ν0,ν1 given by (8). We start with the transformation

(13)
x = t2x1 ν0 = t6ν′0 µ = −t4

y = t3y1 ν1 = t4ν′1 T = t5.

Divide by t to get

(14) y1
∂

∂x1
+ [x2

1 − 1 + Ty1
(
ν′0 + ν′1x1 + x3

1

)
]
∂

∂y1
.

Next, use the Liénard transformation

(15)
{
Ty2 =

∫
T (ν′0 + ν′1x1 + x3

1) dx1 − y1
x2 = x1.
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Thus we have

(16)
[
T

(
ν′0x2 +

ν′1
2
x2 +

x4
2

4

)
− Ty2

]
∂

∂x2
− 1
T

(
x2

2 − 1
) ∂

∂y2
.

The Liénard transformation (15) is a diffeomorphism from (x1, y1)-
plane to (x2, y2)-plane.

Multiply (16) by −1
T and denote ε′ = 1

T 2

(17)
[
y2 −

1
4

(
4ν′0 + 2ν′1x

2
2 + x4

2

)] ∂

∂x2
+ ε′

(
x2

2 − 1
) ∂

∂y2
.

Multiply by 4 and put y3 = 4y2, ν
′′
0 = 4ν′0, ν

′′
1 = 2ν′1, ε = 1

16ε
′

(18)
[
y3 −

(
ν′′0 x3 + ν′′1 x

2
3 + x4

3

)] ∂

∂x3
+ ε

(
x2

3 − 1
) ∂

∂y3
.

To simplify the desingularization, make the change

(19)
x̃ = x3 + 1 b = ν′′0 − 2ν′′1
ỹ = y3 − 1 + ν′′0 − ν′′1 c = ν′′1 − 6

and denote x and y again to get (9).

Proposition 2.1. Fb,c : R→ R given by (10) satisfies:

a) If b = 0 then Fb,c has one zero for c > 4, 2 zeroes for c = 4 or
c = 0 and 3 zeroes for c < 0 or 0 < c < 4.

b) The equation

(20)
(

3c− 16
9

)3

+
(−36c+ 128 − 27b

54

)2

= 0

defines a cusp on the (b, c)-plane which is tangent to {b = 0}
at (b, c) = (0, 0), crosses {b = 0} at (b, c) = (0, 4) and crosses
{c = 0} at (b, c) = (9.48, . . . , 0). The cusp and {b = 0} divide the
(b, c)-plane defining the number of zeroes of Fb,c.

Proof: The equation (20) is D = 0 with D the discriminant of
Fb,c(x)
x = 0.
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Proposition 2.2. Fb,c : R→ R given by (10) satisfies:

a) If b = 0 then Fb,c has 3 critical points for c < 0 or 0 < c < 9
2 ,

1 critical point for c > 9
2 and 2 critical points for c = 0 or c = 9

2 .
b) The equation

(21)
(
c− 6

6

)3

+
(−2c− b+ 8

8

)2

= 0

defines a cusp on the (b, c)-plane which is tangent to {b = 0} at
(0, 0), crosses {b = 0} at (0, 9

2 ) and {c = 0} at (16, 0). The vertex
is the point (−4, 6). The cusp and {b = 0} divide the (b, c)-plane
defining the number of critical points of Fb,c.

c) If c ≥ 6 then Fb,c does not have inflexion points and an inflexion
point is a critical point if and only if (b, c) satisfies (21).

Proof: The equation (21) is D = 0 with D the discriminant of
F ′
b,c(x) = 0.

Figure 2 shows two sets of bifurcation: one defined by the equality of
critical points and other by the equality of zeroes.

3. The Singularities of (9)

If ε �= 0, the singularities of the vector field Xε,b,c, given by (9), are
the points (0, 0) and (2, Fb,c(2)). The representative matrix of DXε,b,c
at (0, 0) is given by

(22)
[
−b 1
−2ε 0

]
.

The equation of the eigenvalues is

(23) z2 + bz + 2ε = 0.

If b2 − 8ε < 0 then Xε,b,c has a repelling focus for b < 0 and an
attracting focus for b > 0. The eigenvalues have real part equal zero if
and only if b = 0. We have an attracting node if b2 − 8ε ≥ 0 and b > 0,
and a repelling node if b2 − 8ε ≥ 0 and b < 0.

The representative matrix of DXε,b,c at (2, 2b+ 4c− 16) is given by

(24)
[
−(b+ 4c− 16) 1

2ε 0

]
.

The equation of the eigenvalues is

(25) z2 + (b+ 4c− 16)z − 2ε = 0.

For ε > 0 the singularity (2, 2b+ 4c− 16) is a saddle. The saddle is a
critical point of Fb,c for the parameter values in the plane given by (12).
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Theorem 3.1. Let Xε,b,c given by (9). We have:

a) (x, y) = (0, 0) is an attracting focus (node) if b > 0 and a repelling
focus (node) if b < 0.

b) (x, y) = (0, 0) is a weakly attracting focus if b = 0 and c ≥ 12 and
a weakly repelling focus if b = 0 and c < 12.

c) For any parameter value in H = {(ε, 0, c) | c �= 12, ε > 0}
there exists a Hopf bifurcation of codimension 1. There exists
one attracting limit cycle for the parameter values inside the re-
gion {(ε, b, c) | ε > 0, b < 0, c > 12} and there exists one repelling
limit cycle for the parameter values inside the region {(ε, b, c) |
ε > 0, b > 0, c < 12}.

d) For any parameter value in H2 = {(ε, 0, c) | ε > 0} there exists a
Hopf bifurcation of codimension 2. There are two limit cycles for
the parameter values inside the region {(ε, b, c) | ε > 0, b > 0, c <
12}. The inner one is repelling and the other is attracting.

Proof: The divergence of Xε,b,c is zero at (0, 0) if and only if b = 0.
Taking b = 0, Xε,b,c becomes

(26) (y − cx2 + 4x3 − x4)
∂

∂x
+ ε(x2 − 2x)

∂

∂y
.

Make the change

(27) y =
√

2εy1

and denote y = y1 to get

(28) (
√

2εy − cx2 + 4x3 − x4)
∂

∂x
+

(
−
√

2εx+
√

2ε
2
x2

)
∂

∂y
.

Make the change

(29) x = r cos θ y = r sin θ

to get, in polar coordinates,

(30) P (r, θ)
∂

∂r
+Q(r, θ)

∂

∂θ
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with

(31)

P (r, θ) =

(√
2ε
2

sin θ − c cos θ

)
cos2 θr2 + 4 cos4 θr3 − cos5 θr

Q(r, θ) = −
√

2ε+

(√
2ε
2

cos θ + c sin θ

)
cos2 θr

− 4 cos3 θ sin θr2 + cos4 θ sin θr3.

The phase portraits of (30) are the graphics of r = fρ(θ), fρ(0) = ρ,
solutions of

(32) R(r, θ) =
dr

dθ
= R1(θ)r +R2(θ)r2 + · · ·

with

(33) Rk(θ) =
1
k!
∂kR(r, θ)
∂rk

|r=0.

We have

(34) fρ(θ) = u1(θ)ρ+ u2(θ)ρ2 + · · ·

For r = fρ(θ) the equation (32) becomes

(35) u′1(θ)ρ+ u′2(θ)ρ
2 + · · ·

= R1(θ) [u1(θ)ρ+ · · · ] +R2(θ) [u1(θ)ρ+ · · · ]2 + · · ·

Thus, according [ALGM], we get

(36)

u1(θ) = 1

u2(θ) =
∫
R2 ds

u3(θ) =
∫

(2R2u2 +R3) ds

u4(θ) =
∫ [

2R2u3 +R2u
2
2 + 3R3u2 +R4

]
ds

u5(θ) =
∫ [

2R2 (u4 + u2u3) + 3R3

(
u3 + u2

2

)
+ 4R4u2

]
ds.
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Define the returning map π : R+ → R by

(37) π(ρ) = fρ(2π) − ρ = u2(2π)ρ2 + · · ·

The Lyapunov coefficients are given by

(38) Vk =
π(k) (0)
k!

.

The computation, using maple, gives

(39)

V1 = 0

V2 = 0

V3 =
π(c− 12)

4
√

2ε

V4 = 0

V5 = p(ε)(−168c2 + 21εc− 1152
√

2επc

+ 6912
√

2επ − 76ε+ 14c3 + 48
√

2επc2)

p(ε) =
√

2π
1024(

√
2ε)3

.

When b = 0 we have V1 = V2 = 0 and V3 = 0 if and only if c = 12.
Besides V3 > 0 for c > 12 and V3 < 0 for c < 12. Thus Xε,b,c has
a weakly attracting focus for c > 12 and a weakly repelling focus for
c < 12. For c = 12 we have

(40) V5 =
11
32

π√
2ε
.

Thus, (0, 0) is a weakly attracting focus.

4. The Phase Portrait of Xε,b,c

First we are going to study the phase portrait of Xε,b,c given by (9)
when ε = 0. In this case we have

(41) (y − Fb,c(x))
∂

∂x
.
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For b and c fixed the singularities of (41) are the points (x, y) such
that y = Fb,c(x). Except for the the critical points, all the points are
normally hyperbolic singular points. Figure 3 shows the phase portrait
for some values of (b, c).

For ε �= 0, when x = 0 and x = 2 cross transversally the graphic of
y = Fb,c(x) in non-critical points we can use the R. Lutz and M. Goze
lemma ([LG]) to sketch the phase portrait of Xε,b,c. The trajectories are
so that

(42)
dy

dx
=
ε(x2 − 2x)
y − Fb,c(x)

.

Thus the vector field is almost horizontal for ε ↓ 0.

The main difficulty to obtain the whole phase portrait is the number
of limit cycles.

Lemma 4.1 (Copell). Let the vector field given by

(43) (F (x) − y) ∂
∂x

+ g(x)
∂

∂y

satisfying:

i) F ∈ C2, g ∈ C1 are defined for x ∈ (α, β);

ii) f(x) = F ′(x) has only one zero x0 < 0, f(x) < 0 (> 0) when
α < x < x0 (x0 < x < β);

iii) F (0) = 0, F (ξ0) = 0 with α < ξ0 < x0;

iv) xg(x) > 0 if x �= 0, x ∈ (α, β).

Then there is no limit cycle in ξ0 < x < β.

The proof of the Copell’s Lemma uses a symmetry in the line where
the divergence is zero ([DR2]).

Consider b �= 0 and c ∈ R and suppose that Xε,b,c has a limit cycle Γε,
then either the limit cycle disappear or the limit periodic set will be (0, 0)
for ε ↓ 0. In fact, if b �= 0 the singularity (0, 0) is not a critical point.

Theorem 4.2. Let Xε,b,c given by (9) with b �= 0. There exists ε0 > 0,
ε0 = ε0(b, c), such that if 0 < ε < ε0 then Xε,b,c has no limit cycle.
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Proof: We suppose that for b, c ∈ R, b �= 0, there exists εn → 0 such
that Xεn,b,c has a limit cycle Γεn . By the previous remark we have that
Γεn → {(0, 0)}. If b > 0 then −Xεn,b,c satisfies (ii), (iii) and (iv) in
Lemma 4.1, for a suitable choose of (α, β). Thus Xεn,b,c has no limit
cycle in a neighbourhood of (0, 0).

If b < 0 then we consider the change x1 = −x, y1 = y. The vector
field (9) becomes

(44) Yεn,b,c = (F̃b,c(x1) − y1)
∂

∂x1
+ ε(x2

1 + 2x1)
∂

∂y1
.

The vector field (44) satisfies (ii), (iii) and (iv) and then it has no limit
cycle in a neighbourhood of (0, 0).

5. The Desingularization of Xε,b,c

5.1. The Desingularization at (x, y, ε, b, c) = (0, 0, 0, 0, 12). Ac-
cording with the previous paragraph (ε, b, c) = (0, 0, 12) is the limit of
the points where we have the Hopf bifurcation of codimension 2, for
ε ↓ 0. The point (x, y) = (0, 0) is not a normally hyperbolic singular
point when (ε, b, c) = (0, 0, 12). To simplify the calculation we start with
the change

(45) c1 = c− 12.

Denote c = c1 to get

(46) Xε,b,c = (y − bx− cx2 − 12x2 + 4x3 − x4)
∂

∂x
+ ε(x2 − 2x)

∂

∂y
.

Let K = (S2×D)∪(D2×S1) with S2 =
{(
ε, b, c

)
| ε2 + b

2
+ c2 = 1

}
,

D = {(x, y) | x ∈ [0, 1], y ∈ [0, 1]}, D2 = {(ε, b, c) | ε2 + b
2

+ c2 < 1, ε >
0} and S1 = {(x, y) | x2+y2 = 1}. Consider the map ϕ : [0, T ]×K → R5,
given by

(47)

x = ux ε = u2ε

y = u2y b = ub

c = uc

with u ∈ [0, T ], (x, y, ε, b, c) ∈ K and T > 0.
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There exists X̂ on [0, T ] ×K such that ϕ∗(X̂) = Xε,b,c. Dividing X̂
by u the vector field resulting X will be “the desingularized vector field”
in [0, T ] ×K.

(48) Xu,b,c = (y−bx−ucx2−12x2 +4ux3−u2x4)
∂

∂x
+ε(ux2−2x)

∂

∂y
.

Let M0 = {(x, y)} × {(ε, b, c)} and T1 = [0, T ] ×K. We define M1 =
(T1∪M0−{0})/(m ∼ ϕ(m)). Let φ :M1 →M0 such that φ | (K×{0}) =
ϕ and φ | M0 − {0} = id. Consider π : M0 → {(ε, b, c)} given by
π(x, y, ε, b, c) = (ε, b, c) and π̂ : M1 → {(ε, b, c)} by π̂(x, y, ε, b, c) =
π (φ(x, y, ε, b, c)).

Let λ0 = (ε0, b0, c0) ∈ S2, lλ0
= {(u2ε0, ub0, uc0) | u > 0} and Pλ0

=
π̂−1(lλ0

). We have that Pλ0
is a 3-dimensional space.

b

c
1

S1 ×R
v

u

D

Figure 6. Foliation of M1.

Define X̃ on M1 by

(49) X̃ =
{
Xε,b,c on M1 − {0}
X on T1.
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On S1 × R we have ε = b = c = 0. Make the change

(50) x = u cos θ y = u2 sin θ

and denote c = cos θ and s = sin θ to get

(51)
uc

c2 + 2s2
(
s− 12c2 + 4uc2 − u2c4

) ∂
∂u

− 2s
c2 + 2s2

(
s− 12c2 + 4uc2 − u2c4

) ∂
∂θ
.

The singularities of (51) are (0, 0), (π, 0), (θ1, 0) and (θ2, 0) with θ1
and θ2 solutions of s = 12c2. We have θ1 ∈ (0, π2 ) and θ2 ∈ (π2 , π).
Multiplying (51) by (c2 + 2s2) we have

(52) X(θ, u) = −2s(s− 12c2 + 4uc2 − u2c4)
∂

∂θ

+ uc
(
s− 12c2 + 4uc2 − u2c4

) ∂
∂u

DX(θ, 0) =
[
−4sc+ 24c3 − 48s2c −8c2s

0 sc− 12c3

]

DX(0, 0) =
[

24 0
0 −12

]
DX(π, 0) =

[
−24 0
0 12

]
.(53)

For (θ, u) = (0, 0) the angular eigenvalue is positive and the radial
eigenvalue is negative. For (θ, u) = (π, 0) the angular eigenvalue is neg-
ative and the radial eigenvalue is positive.

If θ = θ1 (θ = θ2) the angular eigenvalue −4sc + 24c3 − 48s2c =
−2sc − 48s2c is negative (positive) and the radial eigenvalue is zero.
Thus we have

(54) DX(θ1, 0) =
[
< 0 �= 0
0 0

]
DX(θ2, 0) =

[
> 0 �= 0
0 0

]
.
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When ε = 1 and u = 0 in (48) we have

(55) Xb,c = (y − bx− 12x2)
∂

∂x
− 2x

∂

∂y

Figure 7. Phase Portraits of X̃ for b > 0, b = 0 and b < 0.

Xb,c independs of c and when b = 0, Xb,c has a center in (x, y) = (0, 0).

(56) X0 = (y − 12x2)
∂

∂x
− 2x

∂

∂y
.

If we take ε = 1, b = b0 > 0, u = 0 or ε = 1, b = b1 < 0, u = 0 the
phase portraits are illustrated in Figure 7.

5.2. The desingularization at (x, y, ε, b, c) = (2, 0, 0, 0, 4). In this
case F0,4(2) = 0. We start with the change

(57) x1 = x− 2 b1 = −b− 4c+ 16
y1 = y + 2b− 4c+ 16 c1 = c− 4.

Denote x, y, b, c to get

(58) (y + bx− cx2 − 4x2 − 4x3 − x4)
∂

∂x
+ ε(x2 + 2x)

∂

∂y
.

Consider the map given by (47) and ε = 1

(59) (y + bx− 4x2 − 4ux3 − u2x4)
∂

∂x
+ (2x+ ux2)

∂

∂y
.

If b = c = u = 0 then

(60) (y − 4x2)
∂

∂x
+ 2x

∂

∂y
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has a singular point (0, 0) and

(61) DX(0, 0) =
[

0 1
2 0

]
.

Thus (0, 0) is a saddle point.
Now we use the same steps used in (50), (51), (52), (53) and (54):

−2us
c2 + 2s2

(s− 4c2 − 4uc3 − u2c4)
∂

∂θ
(62)

+
u2c

c2 + 2s2
(s− 4c2 − 4uc3 − u2c4)

∂

∂u

− 2s(s− 4c2 − 4uc3 − u2c4)
∂

∂θ
(63)

+ uc(s− 4c2 − 4uc3 − u2c4)
∂

∂u

DX(θ, u) =
[
−4sc− 16s2c+ 8c3 8sc3

0 sc− 4c3

]
(64)

DX(π, 0) =
[
−8 0
0 4

]
DX(0, 0) =

[
8 0
0 −4

]
(65)

DX(ϕ1, 0) =
[
< 0 �= 0
0 0

]
DX(ϕ2, 0) =

[
> 0 �= 0
0 0

]
(66)

for ϕ1 and ϕ2 solutions of sinϕ = 4 cosϕ.

5.3. The desingularization at (x, y, ε, b, c) = (1, 1, 0, 0, 4). We
start with the change

(67)
x1 = x− 1 b1 = −b− 2c+ 8

y1 = y − b− c+ 3 c1=c− 4.

Denote x, y, b, c to get

(68) (y + bx− cx2 + 2x2 − x4)
∂

∂x
+ ε(x2 − 1)

∂

∂y
.

Consider the map δ : [0, T ] × S4
+ → R5 given by

(69)
x = ux b = ub ε = u3ε

y = u2y c = uc.
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Make X = 1
uX and take ε = 1

(70) (y + bx− ucx2 + 2x2 − u2x4)
∂

∂x
+ (u2x2 − 1)

∂

∂y
.

For b = c = u = 0 we have

(71) (y + 2x2)
∂

∂x
− ∂

∂y
.

It has no singular point. Using again the same steps we have

−2s
(c2 + 2s2)

(s+ 2c2 − u2c4)
∂

∂θ
(72)

+
uc

(c2 + 2s2)
(s+ 2c2 − u2c4)

∂

∂u

− 2s(s+ 2c2 − u2c4)
∂

∂θ
+ uc(s+ 2c2 − u2c4)

∂

∂u
(73)

DX(θ, 0) =
[
−4sc− 4c3 + 8cs2 0

0 sc+ 2c3

]
(74)

DX(0, 0) =
[
−4 0
0 2

]
DX(π, 0) =

[
4 0
0 −2

]
(75)

DX(θ1, 0) =
[
< 0 0
0 0

]
DX(θ2, 0) =

[
> 0 0
0 0

]
(76)

for θ1 and θ2 solutions of s+ 2c2 = 0.

Figure 8. The Desingularization at (1, 1, 0, 0, 4) and at (2, 0, 0, 0, 4).
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Figure 9. Simultaneous Desingularization.

6. The Canard Phenomenon

6.1. Proof of Theorem 1.1. To simplify the calculations we use
the change (45). First we prove that there exists a hamiltonian H with
integrating factor K such that KX0 = dH, X0 given by (56).

Let the change

(77) X = x Y = y − 12x2.

Thus (56) becomes

(78) Y
∂

∂X
+ (−2X − 24XY )

∂

∂Y
.

Let F (X,Y ) given by

(79) F (X,Y ) = 144X2 + (1 + 12Y ) − ln(1 + 12Y ).

We have that F (X,Y ) is a first integral of (78). In fact

(80) (FX , FY )(Y,−2X − 24XY ) = 0.

Let G(x, y) and H(x, y) given by

(81)
G(x, y) = (1 + 12y) − ln(1 + 12y − 144x2)

H(x, y) = exp(1 − 12y)(1 + 12y − 144x2).
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We have

(82)
Hx = −(144 exp(1 − 12y))(2x)

Hy = −(144 exp(1 − 12y))(y − 12x2).

Thus

(83) K(x, y) = −144 exp(1 − 12y)

is the integrating factor and the hamiltonian H is given by (81).
Now we consider P(1,0,0) defined in section 5. We have that P(1,0,0) is a

3-dimensional space and we can look a point in P(1,0,0) with coordinates
(u, v, θ), indicates in the Figure 6.

c+b,c c−b,c

Figure 10. Center Manifold CN .

For u = 0, we denote D the set associated to v = 0. Let R a rectangle
on P(1,0,0) with one side r on D and such that R is transversal to ∂P . We
take R such that the connection c joing (θ1, 0) and (θ2, 0) is transversal
to r at its middle point. Let S a subrectangle in R with one side s
on D and such that c ∩ r is the middle of s. Let N = {(2, Fb,c(2)) |
b, c ∈ R, 0 ≤ ε ≤ ε0} composed by saddle points of Xε,b,c. We take CN ,
the sature of N , that is, the closure of the union of segments of orbits of
X(u,v,θ) through the points on N and taken between the first intersection
of this trajectory with S in negative time and with R in positive time.

Let wu,b,c the dual 1-form associated to (48)

(84) wu,b,c =
(
y − bx− ucx2 − 12x2 + 4ux3 − u2x4

)
dy

−
(
ux2 − 2x

)
dx.
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We have

(85)
−144e(1−12y)wu,b,c= dH(x, y) −M(x, y)

M(x, y)=144e(1−12y)[
(
−bx−ucx2+4ux3−u2x4

)
dy−ux2 dx].

Consider the section [α, β] joing the center α = (0, 0) and β = (0,− 1
12 )

in c. We parametrize [α, β] by the value of the hamiltonian H. Let
Ch = H−1(h) for h ∈ (0, e) (H(0, 0) = e, H(0,− 1

12 ) = 0).
The assymptotic development of Pu,b,c (Poincaré Mapping), using the

Perturbation Lemma ([DRS1]), is given by

(86) Pu,b,c(h) = h+ bI1(h) + cI2(h) + uI3(h) + o(
∣∣u, b, c∣∣)

with

(87)

I1(h) = 144
∫
Ch

e(1−12y)x dy

I2(h) = 144u
∫
Ch

e(1−12y)x2 dy = 0

I3(h) = −576
∫
Ch

e(1−12y)x3 dy + 144
∫
Ch

e(1−12y)x2 dx.

If u = h = 0 the development of the separation between C+
b,c and C−

b,c

is given by

(88) ∆(b, c) = bI1(0).

If {h = f(u, b, c)} and {h = g(u, b, c)} represent the intersections of
CN (b, c) with R then we can extend (88)

(89) f(u, b, c) − g(u, b, c) = bI1(0) + uI3(0) + o(
∣∣u, b, c∣∣).

Let ∆(u, b, c) given by

(90) ∆(u, b, c) = f(u, b, c) − g(u, b, c).

For h = 0 we have K(x, y) = −144e(2−144x2) and dy = 24xdx. By
integrating by parts we have I1(0) �= 0, I2(0) = 0 and I3(0) = 0. Thus
the equations

(91) ∆ = 0
∂∆
∂b

�= 0

define S = {b = ϕ(c, u)}, the Canard Surface.
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The homoclinic orbits γ associated to the parameter values on S are
attracting because the parameter is near of (0, 0, 12) (see (12)). In order
to study the stability of the limit cycles γ associated to the parameter
values on S32 we must to compute

∫
γ

divXε,b,c.
We aproach the integral

(92)
∫
γ

divXε,b,c

�
2∫

−1.3013

(b+ 2cx− 12x2 + 4x3)(
√

1 + (24x− 12x2 + 4x3)2 + 1) dx.

The computation, using maple, gives

(93)

S1 = subs(b = 0.0001, c = 12.0001) � −518.12

S2 = subs(b = 0.0001, c = 11.9999) � −523.55

S3 = subs(b = −0.0001, c = 11.9999) � −537.06

S4 = subs(b = −0.0001, c = 12.0001) � −531.63.

The values given by (93) attest that the limit cycles are attracting for
the parameter values (ε, b, c) ∈ S32.

Remark 6.1. The “Canard phenomenon” consists in a rapid varia-
tion of the shape of the periodic orbits in function of the variation of the
parameter. According Theorems 1.1 and 3.1 one can find Xε1,b1,c1 and
Xε2,b2,c2 two perturbations of X0,0,12 such that:

a) The phase portrait of Xε1,b1,c1 has two limit cycles contained in a
small neighbourhood of (0, 0), the inner one is repelling and the
other is attracting.

b) The phase portrait of Xε2,b2,c2 has an attracting limit cycle con-
tained in a small neighbourhood of Γ32

0,12 (see Figure 5).

Proof of Theorem 1.2. The surface L is obtained implicitly
of the same way that canard surface. To make it we consider γ =
{(2, Fb,c(2)) | b, c ∈ R, 0 ≤ ε ≤ ε0} composed by saddle points of Xε,b,c.
Saturing γ by the flow of Xε,b,c we have that the intersections of the
manifolds define the homoclinic bifurcation surface.

Let l(ε, b, c), the homoclinic loop associated to the parameters (ε, b, c).
There is not limit of l(ε, b, c), for ε ↓ 0 and c < 4, for the Hausdorff dis-
tance. In fact, the unstable separatrice does not touch the slow manifold
for ε ↓ 0.
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2

Figure 11. Non Existence of Limit Homoclinic Loops in {b = 0, c < 4}.

The parameter values for which Xε,b,c has limit cycles aproache {b=0}
for ε ↓ 0. Thus, the surface L aproaches {b = 0}, for ε ↓ 0, and the pa-
rameter values for which Xε,b,c has non-generic homoclinic loops aproach
(ε, b, c) = (0, 0, 4), for ε ↓ 0.

We need to precise the codimension of the non-generic homoclinic
loops. We start with the desingularization of Xε,b,c in (x, y, ε, b, c) =
(0, 0, 0, 0, 4). Let the change

(94) c1 = c− 4.

Denote c and make the change (47) to get

(95) (y − bx− 4x2 − ucx2 + 4ux3 − u2x4)
∂

∂x
+ (ux2 − 2x)

∂

∂y
.

H(x, y) and K(x, y) given by

(96) H(x, y) = (exp(1− 4y))(1 + 4y− 16x2) K(x, y) = 16 exp(1− 4y)

satisfy

(97) KX0 = −Hy
∂

∂x
+Hx

∂

∂y
.

Let the map

(98) R(h) = bI1(h) + ucI2(h) + uI3(h) + o(u, b, c)

with I1, I2 and I3 given by

(99)

I1(h) = −
∫
ch

Kxdy

I2(h) = −
∫
ch

Kx2 dy = 0

I3(h) =
∫
ch

4Kx3 dy −
∫
ch

Kx2 dx.
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The equation R(h) = 0 defines the surface L and besides R′(h) is
finite if and only if the divergence at the saddle point is zero [R]. Thus
R′(h) is finite if and only if b = −4c. To prove that the homoclinic
loop is of codimension 2 we need to prove that R′(h) �= 0. We use the
map R̃(h) = b+ u I3(h)I1(h)

and we have

(100) R̃′(h) = u
(
I3(h)
I1(h)

)′
.

With a similar argument used in [CW], one can prove that

(101)
(
I3(h)
I1(h)

)′
< 0

for h < e. It follows that R̃′(h) < 0.
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