

Fitting technology options to farmer context in Mali

Mary Ollenburger, Wageningen University and Research Centre

Africa RISING West Africa Review and Planning Meeting, Accra, 30 March–1 April 2016

AfricaRISING sites in Mali

On-farm trials of options

Maize

Analysis of on-farm trials

Falconnier 2015

Analysis of on-farm trials

Falconnier 2015

Niches for developing new systems

Falconnier et al. AgSys 2015

Farm-scale explorations: Trade-off analysis

HRE and HRE-LH farms – replacement of maize by maize-cowpea intercrop MRE farms – replacement of sorghum by soya LRE farms – replacement of sorghum by cowpea

Falconnier 2015

Farm distributions

Farms

- Many scenarios, using limited data, to quickly explore options
- Input data:
 - Household survey at district level for yields, input costs (AfricaRISING baselines), market survey for crop prices
 - Rapid characterization of population of 109 farm households in 3 villages (crop areas, livestock and equipment), plus detailed characterization of 19 farms based on types
 - Calculated income from crops and food self-sufficiency for each farm in several scenarios

- Yields
 - 50th percentile (median) yields [MARBES]
 - 90th percentile (best farmer practice) yields [MARBES]
 - Experimental potential yields [ICRISAT/IER]
- Prices
 - Averaged market prices from monthly market survey in 2014-2015
- Calculated income and food self-sufficiency

- Current crop allocation
- Optimized crop allocation
 - Maximize gross margins
 - Meet household calorie requirements with staple grains
 - Maize area < twice cotton area (fertilizer availability constraint)
- Crop area expansion

	≥80% food	≥100% food	
Yield Scenario	self-sufficient	self-sufficient	
Median	91%	79%	
Best farmer	99%	99%	
Potential	99%	99%	

- Median yields: most farms self-sufficient
- All other scenarios: all but one farm is self-sufficient

Results: Gross Margins

Farms

Results: Gross Margins

Farms

What can we learn from simple scenarios?

- "Rapid prototyping" of farm designs to explore potential
- Estimating cost-benefit of a new technology should be a first step not a last step
- Staple crop improvement research should target foodinsecure households
- Livestock and off-farm income income sources are important for improving livelihoods

Typologies for Targeting and Scaling

- Simple indicators allow researchers to place farmers within types
- Important to target a diverse group of farmers for testing technologies
- Farmer evaluations can aid in analysis of variability and in targeting technologies to types
- Ex-post typologies based on initial adoption can be useful for scaling

IFPRI ARBES team Ousmane Sanogo, Institut d'Economie Rurale Mouvement Biologique Malienne ICRISAT Technicians The McKnight Foundation

Africa Research in Sustainable Intensification for the Next Generation

World Vegetable Center

VRDC

groforestry

Centre