Understanding niches for multi-purpose-legume intensification in smallholder farming systems: Early *applications of the decision-support Legume CHOICE tool in Ethiopia*

Tamene Temesgen¹, Alan J. Duncan¹, Tadesse Birhanu² and Peter Thorne¹

¹International Livestock Research Institute, Addis Ababa, Ethiopia, ²Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia

Introduction

Legumes have great potential to contribute to rural livelihoods and natural resource status, either in the form of **food, income, feed, protein, soil nutrients** and **fuel.** However, the provision of a given function differs between legume classes, types and species, and needs different intervention approaches. This tool guides decision-making around legume interventions.

Research objectives

- To diagnose the farming system and related entry points for multipurpose legume intensification in farming system.
- To understand niches for identified legumes and design best-fit legume interventions for different farmer types.

Results and discussion

• Output from the tool has helped to select the best legumeintervention options **(Table 2)**.

Qualitative assessment of the farming systems

- Livelihoods of the study areas depend on the crop-livestock farming system.
- Legumes are a major component of this farming system
- Both grain, fodder and/or tree legumes are cultivated but on a very limited share of the farmland.

Legume production and productivity constraints

Materials and methods

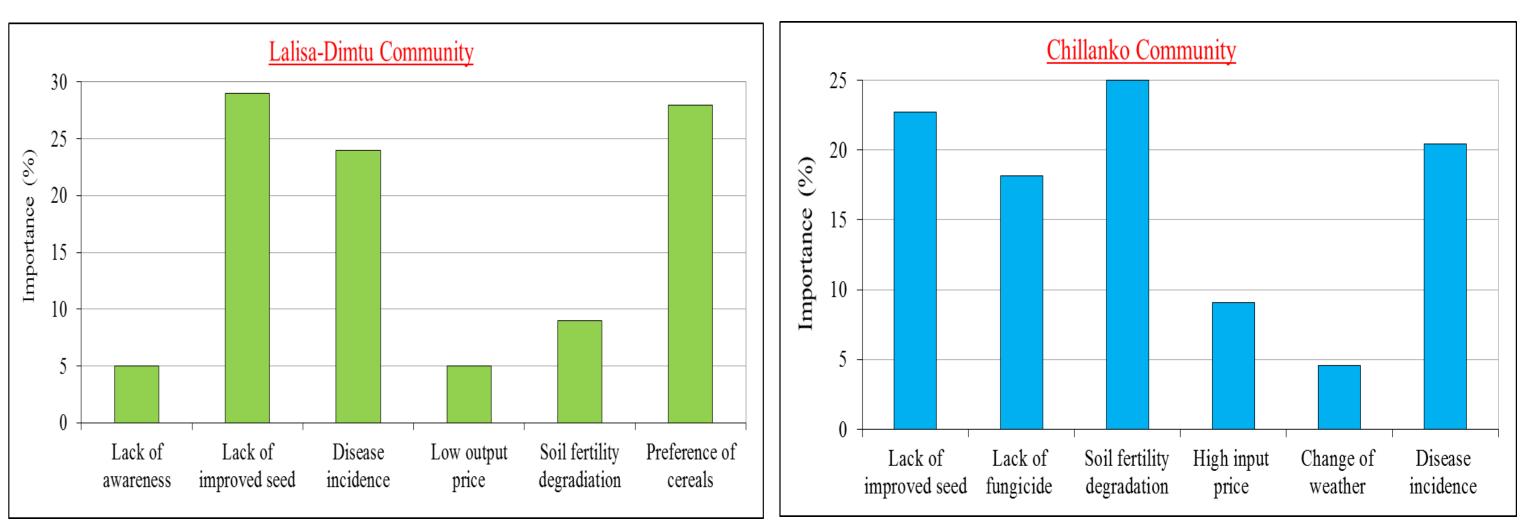
Four implementation sites were selected from CRP Humidtropics field sites (Table 1).

Table 1. Description of Ethiopian Legu	me CHOICE project implementation sites
--	--

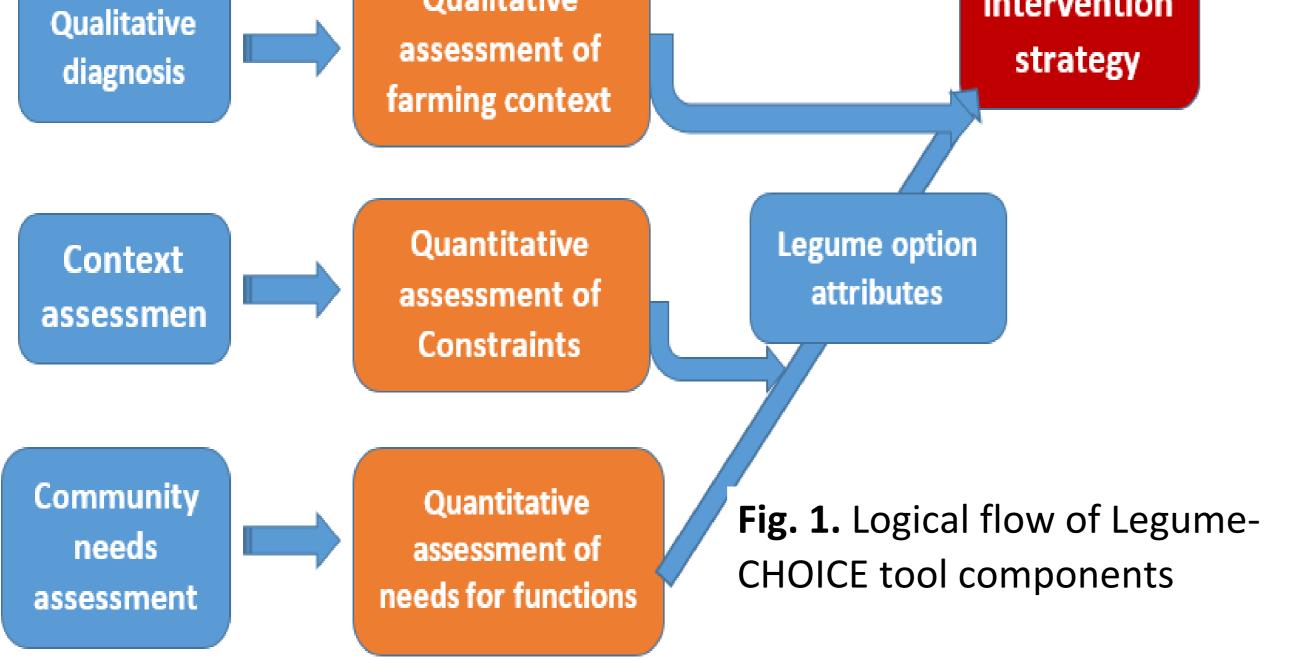
Implementation	Field	Total	Ave.	Agro-	Market
sites	site	household	altitude	ecology	access
Lalisa-Dimtu	Diga	700	1306	Lowland	Good
Fromsa	Diga	550	2140	Mid-altitude	Medium
Chillanko	Jeldu	500	2943	Extreme highland	Good
Kolu-Galan	Jeldu	1150	2685	Highland	Medium

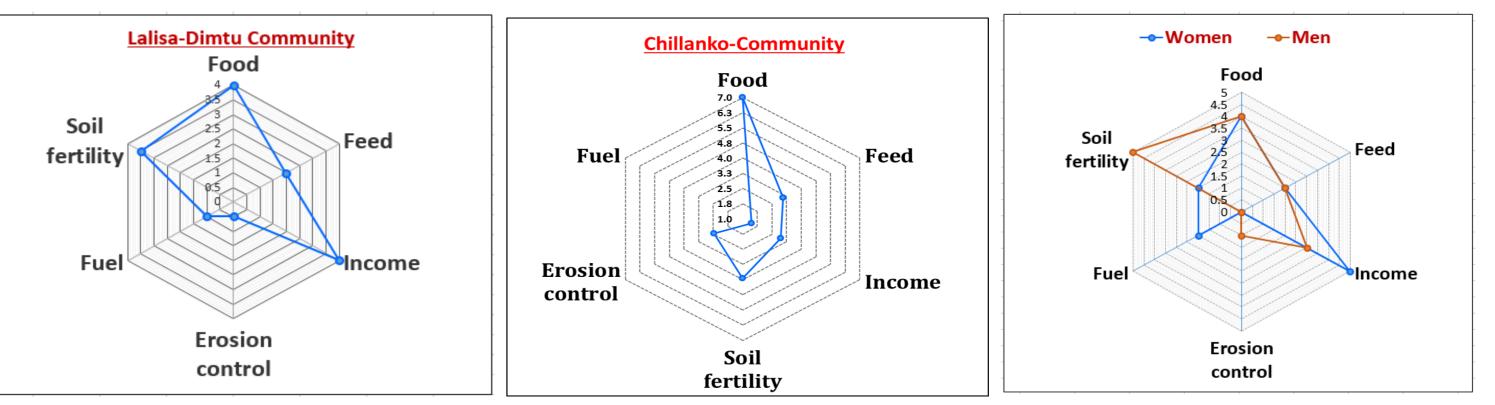
The Legume CHOICE tool has been applied following three steps :

- Qualitative assessment of the farming system;
- Context assessment of key attributes or constraints; and
- **Community need assessment** for different legume functions.



• Each community has a set of constraints that limit selection of


appropriate legume interventions options (Fig. 2)


Fig. 2. Example of key constraints for legume production as ranked by two different communities: *Result from context assessment of the tool*

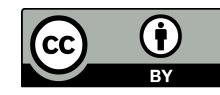
Demand for legume functions

- Each community demands different things of legume interventions (Fig. 3).
- Farmer preferences for those candidate legumes can differ between implementation sites (Table 2).

• Each legume fulfils the various legume functions to varying extents (data not shown).

Fig. 3. Examples of farmers' demand for legume functions as ranked by different farming communities and by gender: *Output from Legume CHOICE tool*

Table 2. Examples of how Legume CHOICE tool helped in coming up with legume intervention activities in Ethiopia


Implementation site/agro-ecology	Priority functions	Key context constraints	Application of Legume Choice tool	Intervention description	Biophysical requirement	How it fulfils functional needs	How it fits to context
Lalisa-Dimtu (Lowland agro- ecology)	Farmers looked for livestock feed, soil fertility improvement, and fuel from tree and fodder legumes.	Lack of planting materials and soil fertility degradation	Pigeon pea, Leuceaena and Lablab identified as best fits to serve priority functions	supply of Pigeon	Ideal for multi- purpose production of these legumes	Introduction leads to more biomass production to feed f livestock and improved soil fertility through BNF and reduced erosion	Alleviates the problems of seeds/planting materials shortages

Fromsa

(Mid-altitude agro- ecology)Farmers looked for food, income, soil fertility improvement and feed from annual grain legumesLack of improved seds, soil fertility degradation, and high disease incidenceFaba bean, field pea, chick pea, lentil and grass pea identified as best fits to serve the priority functionsFarmer-based cluster high yielding and disease-tolerant grain legume seed production	adapted/ cultivated in '
---	--------------------------

Conclusion

- A range of constraints and production objectives in which the farming system operates need to be considered for legume intensification.
- Legume CHOICE decision-support tool has high potential to support selection of best-bet options for legume intensification based on needs for a range of benefits that legumes can deliver (Fig. 2-3 and Table 2).

This poster is copyrighted by the International Livestock Research Institute (ILRI). It is licensed for use under the Creative Commons Attribution 4.0 International Licence. March 2016

