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Relating Quantitative Soil 
Structure Metrics to Saturated 
Hydraulic Conductivity
Dennis V. Eck, Mingming Qin, Daniel R. Hirmas,* 
Daniel Giménez, and Nathaniel A. Brunsell
Soil structure affects saturated hydraulic conductivity (Ks) by creating highly 
conductive macropores that preferentially transmit soil water. In this study, 
we explored the relationship between Ks and macropores in an Oxyaquic 
Vertic Argiudoll in northeastern Kansas. Macropores were quantified from 
an excavation wall using multistripe laser triangulation (MLT) scanning. Soil 
water contents were measured at four depths within a soil lysimeter installed 
within 2 m of the MLT-scanned soil profile and adjacent to an Ameriflux 
tower monitoring precipitation, air temperature, and solar radiation. 
Selected hydraulic properties of soil horizons within the lysimeter were opti-
mized to water content data using a Markov chain Monte Carlo technique 
in combination with the mobile–immobile water (MIM) model in HYDRUS-1D. 
Estimates of Ks varied between 4198 cm d−1 in the A horizon and 0.6 cm d−1 
in a 2Btss2 horizon with strongly expressed wedge structure. Approximately 
87% of the variation in Ks was explained by the geometric mean of the 
widths of pores quantified with the MLT technique and modified by the coef-
ficient of linear extensibility (COLE). The use of the COLE allows the widths 
of the macropores obtained under dry conditions to be approximated at 
saturation. Two models that predict Ks from either texture or water retention 
data resulted in Ks estimates that were similar to each other but significantly 
lower than Ks values predicted with MIM in horizons where structural pores 
dominate water flow. This technique shows a great deal of promise in better 
understanding and predicting the relationship of soil structure to water flow.

Abbreviations: COLE, coefficient of linear extensibility; MIM, mobile–immobile; MLT, mul-
tistripe laser triangulation; PET, potential evapotranspiration.

Soil water flux affects many important soil and environmental processes including 
root water uptake, nutrient and contaminant transport, and aquifer recharge. The flux of 
water into and through soil can often be modeled if the hydraulic properties of the mate-
rial are known. The specific hydraulic properties needed depend on the model being used 
to simulate water flux but most often include parameters describing the water retention 
curve and saturated hydraulic conductivity (Ks) (e.g., Šimůnek et al., 2013). Soil structure 
influences hydraulic properties near saturation because aggregation of soil particles and 
soil biological activity create highly conductive pores (known generically as macropores) 
that serve as preferential conduits for the transmission of soil water and have the poten-
tial to significantly alter soil hydraulic properties (Logsdon et al., 1993; Lin et al., 1999; 
Kutílek, 2004).

Saturated hydraulic conductivity is particularly sensitive to the abundance and size of 
macropores; this is demonstrated by the considerable decrease (often across several orders 
of magnitude) in hydraulic conductivity when macropores are excluded from measure-
ments by the application of slightly negative potentials (Jarvis et al., 2002). Because the 
spatial density of macropores is relatively low, Ks should be measured in large enough 
soil volumes to include a representative sample of macropores to reduce variation in the 
measurements (Lauren et al., 1988). Consequently, quantification of soil structure and con-
comitant pore networks in the field could provide a means to predict “effective” Ks values 
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that are representative of a soil horizon (Rawls et al., 1993; Lilly et 
al., 2008). The use of subjective and/or qualitative morphological 
information such as in situ visual estimations of aggregate sizes, 
shapes, and number and/or cross-sectional area of macropores 
(O’Neal, 1949; McKenzie and Jacquier, 1997; Lilly et al., 2008; 
Schoeneberger et al., 2012) has typically led to grouping of Ks into 
classes (McKeague et al., 1982; Logsdon et al., 1990; McKenzie 
and Jacquier, 1997). By contrast, the use of objective measures of 
soil morphology such as macropore size measured in the field can 
lead to point predictions of Ks (Rawls et al., 1993). The use of 
objective measures of soil morphology in predictive models of Ks is 
more desirable, but a method to extract that information is lacking 
in the literature (Eck et al., 2013; Hartemink and Minasny, 2014).

Recent work, however, has shown that a novel structured-light 
scanning technique—known as multistripe laser triangulation 
(MLT)—has the ability to quantify soil structure for an entire 
soil profile by capturing the geometric information of interpedal 
pore spaces in the field (Eck et al., 2013). With MLT, a laser scan-
ner monitors the apparent deformation of parallel vertical laser 
stripes as they sweep across a surface and computes distances by 
detecting variations in the light intensity of the projected laser 
stripes (Knighton et al., 2005; Platt et al., 2010). The resulting 
digital data are a triangulated irregular network with areas of miss-
ing data where a return was not detected by the scanner. Eck et 
al. (2013) termed these areas of missing data scan surface gaps and 
used them to quantitatively characterize soil structure geometries. 
These scan surface gaps can be interpreted as macropores. Thus, 
MLT scanning opens up the potential for directly examining the 
relationship between macropores and Ks. For instance, Eck (2014) 
conducted a dye study on an undisturbed core followed by splitting 
the sample and scanning the inside using MLT. The macropores 
determined using this technique visually matched the preferential 
flow pathways (Fig. 1).

Considering the heterogeneity of soil morphology and related 
hydraulic properties near saturation, it is important to have mea-
sures of uncertainty associated with any estimate of Ks and/or 
water retention. Inverse modeling using multiple data types has 
been proposed as a way to estimate hydraulic properties and 
their uncertainty (Mertens et al., 2005; Vrugt et al., 2009). This 
approach back-calculates the hydraulic properties needed to model 
a measured response to flow of water through soil, such as changes 
in soil water content, during a certain period of time (Mertens et 
al., 2005). The method is particularly powerful when the state 
variables used for inverse modeling are measured in the field. Soil 
water content measured in space and time is commonly used in 
conjunction with measurements of pressure potential (Wöhling 
and Vrugt, 2011) or with field or laboratory measurements of Ks 
and water retention (Mertens et al., 2005; Verbist et al., 2009). The 
advantage of using field data for inverse modeling is that estimates 
of the hydraulic properties investigated are more in line with the 
scale or domain being modeled.

The primary objective of this work was to investigate the rela-
tionship between MLT-derived pore metrics and Ks. We derived 
estimates of Ks by modeling measurements of water content made 
in a soil lysimeter using the mobile–immobile water (MIM) model 
in HYDRUS-1D run with the DiffeRential Evolution Adaptive 
Metropolis [DREAM(ZS)] algorithm. The DREAM(ZS) algorithm 
is a Bayesian method based on a Markov chain Monte Carlo tech-
nique that approximates the probability distribution functions of 
the optimized parameters from a large sample generated by inter-
actively running a numerical model, in this case HYDRUS-1D 
(Vrugt et al., 2009; Wöhling and Vrugt, 2011). The resulting 
probability distributions provide a measure of uncertainty of the 
estimates. Water contents measured at several depths in the lysim-
eter were supplemented with water retention data at corresponding 
depths measured in the laboratory. This approach allowed the esti-
mation of Ks values from each horizon present in the lysimeter 
together with a measure of their uncertainty. The relatively large 
volume of the lysimeter ensured that the estimated values were 
representative of the soil structure and at a similar scale to the pore 
metrics derived from MLT.

66Materials and Methods
Study Site
This study was conducted in eastern Kansas at the site described 
in detail by Eck et al. (2013). Brief ly, the site is located on an 
upland topographic position in a tallgrass prairie and oak–hick-
ory forest ecotone (Kettle et al., 2000) that has an average annual 
temperature of 13.3°C and receives an average of 937 mm of 
annual precipitation (Brunsell et al., 2014). The soil is mapped as 

Fig. 1. Visual comparison of a dyed core section photograph (left) and 
multistripe laser triangulation (MLT) scan data (right) demonstrates 
agreement between observable conditions (dye) and captured digital 
data (light gray gaps). Arrows highlight several examples of interpedal 
pores in the core and digital data. The core sections were air dried 
for approximately 48 h before being split open, photographed, and 
scanned with an MLT scanner.
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a Grundy silty clay loam (a fine, smectitic, mesic, Oxyaquic Vertic 
Argiudoll; Soil Survey Staff, 2015) in the Nelson Environmental 
Study Area at the University of Kansas Field Station in Jefferson 
County, Kansas. This site was taken out of cultivation in the 1970s 
and used as a cool-season hay field until about 1987 (Foster et al., 
2009; Brunsell et al., 2011). Currently, a combination of C3 and 
C4 grasses dominates the site, with a relatively minor amount of 
woody vegetation (Brunsell et al., 2011).

Field Lysimeter Installation and Sampling
An annular space was excavated at the site to a depth of 1 m 
around a column of undisturbed soil. The column was care-
fully hand carved to fit tightly into a 25.4-cm i.d. by 63.5-cm 
length stainless steel cylinder, which served as the divergence 
control tube for a passive capillary lysimeter (Drain Gauge G3, 
Decagon Devices). After reaching a depth of 75 cm, the undis-
turbed column was removed and a polyvinyl chloride drainage 
reservoir was installed beneath the original column location. 
The undisturbed column was repositioned on top of the drain-
age reservoir, with a thin layer of diatomaceous earth between 
the soil column and lysimeter wick to provide a good contact 
surface. Four soil water content and temperature sensors (5TM, 
Decagon Devices) were installed in the undisturbed column at 
depths of 5, 12, 35, and 55 cm within the lysimeter. These sensor 
depths corresponded to a depth within the upper horizon (5 cm), 
a depth at the top of the divergence control tube (12 cm), and the 
locations of two precut sensor slots in the divergence control tube 
(35 and 55 cm). Soil water content and temperature measure-
ments were recorded on a datalogger (Em50, Decagon Devices) 
every 30 min using the manufacturer-recommended calibration 
curve. In addition, a suite of atmospheric variables, including 
air temperature, air pressure, solar radiation, and precipitation 
were also measured from an Amerif lux tower directly adjacent 
to the lysimeter installation (Brunsell et al., 2014). These data 
were used to calculate the potential evaporation (PET) from the 
net radiation and soil heat flux measurements using the Priestley–
Taylor approach (Priestley and Taylor, 1972).

Multistripe laser triangulation data collected by Eck et al. 
(2013) were used for this investigation. In that study, the soil 
pit was extended to expose a 1-m profile and described follow-
ing Schoeneberger et al. (2002). To calculate the inputs needed 
for modeling water flux, the root distribution was converted to 
an index as follows. Within each horizon, the abundance of fine 
and very fine roots were summed and divided by 10 to scale the 
final root distribution values below 1. The abundance category 
described in the field as “many” (i.e., ³5 roots cm−2 on average 
determined from the excavation wall) was assigned a value of 
5 cm−1, “common” (i.e., between 1 and 5 roots cm−2 on average) 
assigned a value of 3 cm−1, and “few” (i.e., <1 root cm−2 on average) 
assigned a value of 1 cm−1 corresponding to the lower, middle, and 
highest values in those categories, respectively, multiplied by the 
length of the assessment window (i.e., 1 cm). For example, in the 

0- to 8-cm horizon, we observed many very fine and common fine 
roots, which were converted to a value of 0.8 cm−1 [i.e., (5 cm−1 
+ 3 cm−1)/10].

Artifacts produced during excavation of the profile were removed 
using a freeze method (Hirmas, 2013), and the profile was allowed 
to dry for 36 h to enhance the visible appearance of the soil struc-
ture (McKenzie and Jacquier, 1997; Eck et al., 2013). An MLT 
scanner (NextEngine Desktop 3D Scanner Model 2020i) was used 
to collect digital data from the profile surface as detailed by Eck 
et al. (2013). Triplicate bulk density samples were collected from 
each horizon using 3- by 5.4-cm i.d. brass rings (SoilMoisture 
Equipment Corp). Bulk samples and three fist-size soil clods were 
also collected from each horizon to analyze the particle-size dis-
tribution, organic C content, water retention, and coefficient of 
linear extensibility (COLE).

Laboratory Analyses
The pipette method was used to determine the particle-size dis-
tribution from the bulk samples after pretreatment to remove 
organic matter (Gee and Or, 2002). Bulk density was obtained 
from the triplicate sampled cores following Grossman and 
Reinsch (2002) and used to convert gravimetric water content 
to a volumetric basis. Other morphological and physical data 
from this profile (e.g., organic C content and soil structure) 
were obtained from Eck et al. (2013, Table 1). For each horizon, 
duplicate soil clods were used to measure water retention using a 
hanging column at −15, −30, and −60 cm. Measurement of these 
three points took approximately 10 d to complete. Water reten-
tion at pressure potentials lower than −60 cm were measured 
using bulk samples, equilibrated for 2 mo at −1000, −3000, and 

−10000 cm on pressure plates (four replicates) following Dane 
and Hopmans (2002) and using a dew-point potentiameter 
(WP4C, Decagon Devices) at lower pressure potentials (Leong 
et al., 2003; ASTM, 2003). The COLE was measured in tripli-
cate for each horizon using the rod method following Schafer 
and Singer (1976). Briefly, soil samples were extruded from cus-
tomized syringes as saturated pastes to form straight cylindrical 
rods and allowed to air dry. The COLE value was calculated 
as the ratio of the change in rod length between the moist and 
dry states to the length of the dry rod. Measured values of water 
content and the corresponding pressure potentials were exported 
to SWRC Fit (Seki, 2007) and fit with the van Genuchten (1980) 
water retention function:

( ) ( )r
e

s r
1

mnh
-q-q é ù= = + -aê úë ûq -q

S h  	 [1]

where Se is the effective saturation, q s and qr are the saturated 
and residual water contents, respectively, q is the volumetric water 
content at equilibrium with pressure potential h, and a and n are 
fitting parameters. We used the common simplification that m 
= 1 − 1/n.
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One-Dimensional Model of Water Flow
One-dimensional water flow through the lysimeter column was 
simulated with the MIM model as implemented in HYDRUS-1D 
(Šimůnek et al., 2013). Field-scale estimates of Ks for each soil 
horizon were obtained by running HYDRUS-1D with the 
DREAM(ZS) algorithm (Laloy and Vrugt, 2012; Vrugt et al., 2008, 
2009). The MIM model assumes a dual-porosity system in which 
the soil water is partitioned between a mobile region composed 
of interaggregate pores (or macropores) and an immobile region 
where water is retained by the soil matrix and is considered stag-
nant (Philip, 1968; van Genuchten and Wierenga, 1976). Water 
retention properties for the two regions are assumed to be identical 
and were modeled with Eq. [1] without considering hysteresis. At 
any given time, the soil water content q should fulfill the condition

m imq=q +q  	 [2]

where the subscripts m and im refer to the mobile and immobile 
regions, respectively. The water transfer rate Gw [T−1] between the 
two regions is a function of the difference in effective saturation 
between the mobile, Se

m, and immobile, Se
im, regions:

( )m im
w e eS SG =w +  	 [3]

where w is a first-order rate coefficient [T−1].

HYDRUS-1D with the MIM model simulates water f lux by 
numerically solving the continuity equation, which can be 
expressed as (Šimůnek et al., 2003)

( ) ( )m m
m m w1

h
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where t is time, z is the vertical coordinate, K is the hydraulic con-
ductivity, and S(hm) is a sink term assumed to be the root water 
uptake function. The water transfer rate can be expressed as

im
w t

¶q
G =

¶
 	 [5]

The hydraulic conductivity function was given by van Genuchten 
(1980) as
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where l is a pore-connectivity parameter.

The simulation domain was the length of the lysimeter (75 cm) and 
contained 172 nodes with separation distances increasing linearly 
from approximately 0.1 cm at the surface to approximately 0.8 cm 
at the lower boundary. Roots were input using a relative scale by 
considering the abundance of fine and very fine roots as described 

above. The leaf area index (LAI) was obtained from MODIS satel-
lite data at a 1-km resolution and processed to obtain the value for 
the pixel containing the study site (Knyazikhin et al., 1998, 1999). 
The satellite-derived values for LAI were 0.49 and 0.80, respec-
tively, for the two calibration periods described below. Observation 
nodes were set at depths corresponding to the locations of the water 
content sensors (5, 12, 35, and 55 cm). The upper boundary condi-
tion was set to time-variable atmosphere conditions with runoff. 
Precipitation and PET data were obtained from Ameriflux tower 
measurements as explained above. The HYDRUS-1D Feddes 
root water uptake function, S(hm), with parameter values from 
the pasture database (Wesseling et al., 1991), were used in this 
work. The lower boundary condition represented the interface 
between the soil and a thin layer of diatomaceous earth used to 
increase contact with the lysimeter wick and was modeled as a 
seepage face in HYDRUS-1D. Initial conditions were set as pres-
sure potentials calculated from measured water retention curves 
and water content data at the start of the two calibration periods 
used. This was done to avoid discontinuities in water content at 
interfaces between layers.

To reduce problems associated with non-uniqueness in the solu-
tion, we minimized the number of parameters to be optimized 
in HYDRUS-1D by fixing the values of five parameters: qr,m, n, l, 
qr,im, and qs,im. The parameters qr,m and l were set at 0 (Šimůnek 
et al., 2001) and −1 (Schaap and Leij, 2000), respectively, across 
all horizons. For each horizon, values for n and qr were obtained 
directly from the fits of the corresponding water retention curves 
with Eq. [1]. Furthermore, we assumed that qr was equal to the 
residual water content of the immobile fraction, qr,im, and we 
defined the saturated water content of that fraction, qs,im, as the 
water content at the inflection point of the water retention curve: 
qs,im = q inf. Using Eq. [1] as the water retention model, q inf is cal-
culated as (Han et al., 2008)

( )
(1/ ) 1

inf s r r1
1

nn
n

-é ù
q = q -q ê + ú +q

ê ú-ë û
 	 [7]

The choice of defining q s,im = q inf is based on the observation 
that q inf separates micro- and macroporosity (Baver, 1939; Dexter, 
2004), which implies that it constitutes the upper bound of water 
content for the immobile region. According to this definition, 
porosity greater than q inf belongs to the mobile region and may 
not be fully captured by measurements of water retention done 
in clods. Consequently, we optimized qs,m (Eq.[2]) along with a 
(Eq. [1]), Ks (Eq. [5] and [6]), and w (Eq. [3]).

Three Markov chains were used to run HYDRUS-1D with 
DREAM(ZS), and their convergence was determined using a scale 
reduction parameter, R̂ , of <1.2 for each of the optimized param-
eters (Wöhling and Vrugt, 2011). The DREAM(ZS) algorithm 
requires that distributions of possible values be defined a priori for 
each of the optimized parameters (prior distributions; Scharnagl 
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et al., 2011). Although a prior distribution can speed up the con-
vergence of the Markov chains, our experience with preliminary 
runs and information by Vrugt et al. (2008) indicate that the 
DREAM(ZS) algorithm is robust even with biased prior distribu-
tions. Averages and standard deviations for a and Ks were selected 
from Schaap and Leij (1998, Table 4) based on the textural classes 
of each horizon and used to define the corresponding prior distribu-
tions, whereas mean values for qs,m were derived from the difference 
of measured qs and calculated qs,im with standard deviations of 0.1. 
For all horizons, values of w were assigned a mean value of 0 and 
standard deviations of 0.5. Wide ranges were originally assigned to 
each of the parameters to ensure inclusion of the entire optimized 
distributions. In most cases, the DREAM(ZS) algorithm was run 
until the criteria for chain convergence was met, which means that 
posterior distributions were consistently within their corresponding 
target distribution regions. In some cases, that implied modifying 
prior distributions, shifting the range of parameters, and rerunning 
the algorithm. This strategy was used to speed the chain convergence 
by adjusting the prior distribution of parameters close to the target 
distribution. For each optimized parameter, this procedure resulted 
in a distribution of optimized values (posterior distribution), which 
was characterized by its median value and values representing the 2.5 
and 97.5 percentiles of the distribution estimated from the cumula-
tive distribution. The standard deviation divided by the mean value 
of the parameter distribution was used as a measure of the coefficient 
of variation (CV) and expressed as a percentage. Parameter opti-
mization was performed using soil water contents at four depths, 
precipitation, and PET from two calibration time periods in April 
2013 that received a total amount of precipitation of 166 mm over 
9 d and 132 mm over 11 d, respectively. Because PET was similar 
for the two periods, they are identified based on the amount of pre-
cipitation received as period P166 (i.e., a slightly wetter period: 166 
mm) and P132 (i.e., a slightly drier period: 132 mm). These relatively 
short periods were chosen to capture most of the range in field-mea-
sured water contents—taken just before significant rainfall events 
and allowed to return close to initial conditions—and to minimize 
temperature variation during the simulation period; Gribb et al. 
(2009) used two similarly short periods (8 and 5 d) to successfully 
estimate effective hydraulic parameters by inversion. Goodness-of-
fit for both calibration runs were determined using r2 and the root 
mean squared error (RMSE) estimated according to Šimůnek and 
Hopmans (2002):

( ){ }
( ) ( )

( ) ( )
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obs sim obs sim
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   [8]

where Yi
obs is the ith observation of soil water content, Yi

sim is 
the ith simulated soil water content, wi is the weight of the ith 
observations, which for this study was always equal to unity, and

( )2obs sim
1RMSE

n
i i ii w Y Y

N M
=

-
=

-

å  	 [9]

where N is the number of observations and M is the number of 
fitted parameters.

Multistripe-Laser Triangulation and Image 
Analyses
As detailed by Eck et al. (2013), data collected from the MLT 
scans of the soil profile were processed and separated by horizon 
in ScanStudio HD (NextEngine Inc.) and analyzed in ImageJ 
(Research Services Branch, National Institute of Health). Scan 
data were binarized in ImageJ to exclude the solids, leaving only 
gaps in the digital data (referred to as pores) for analysis. Results 
of the image analyses were imported into R 3.0.2 (R Development 
Core Team) for statistical analysis, where composite metrics 
were calculated for each horizon following Eck et al. (2013). We 
excluded pores with areas <3.142 mm2 (corresponding to the 
projected area of an individual coarse sand grain with a radius of 
1 mm) from the analyses to separate noise from actual pores. Image 
metrics from each horizon were correlated with the DREAM(ZS)-
optimized Ks.

66Results and Discussion
Soil Water Retention
Water retention data from each of the three methods used in this 
study (hanging column, pressure plate extractor, and dew-point 
potentiameter) followed a monotonically decreasing trend in 
water content with decreasing pressure potential, indicating that 
the measurements consistently characterized the water retention 
curve for each horizon (Fig. 2). The agreement between methods 
suggests that samples measured with the hanging column and 
pressure plate extractor technique reached equilibrium. The slight 
deviation from the monotonically decreasing trend in the 8- to 
22-cm depth at approximately −23,000-cm pressure potential may 
be due to the higher imprecision from the dew-point potentiameter 
arising from increasing sensitivity to temperature at the wet end of 
its measurement range (Gubiani et al., 2013).

The shapes of the water retention curves (Fig. 2) ref lect the 
increase in clay content with depth in this soil, which increases 
monotonically from 22% in the surface horizon to 54% in the 
lowest horizon (Eck et al., 2013). Water retention data plotted 
on a semi-logarithmic scale tended to fall on a straight line, par-
ticularly for horizons deeper than 39 cm. Also, water contents 
measured by the pressure plate extractor and the dew-point 
potentiameter techniques tended to be greater in deeper horizons, 
which is also a consequence of the increase in clay content with 
depth. Water contents measured with the dew-point potentiam-
eter in particular are likely not to participate in the flow process. 
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On the other hand, water contents in the range measured by the 
hanging column method are influenced by a combination of soil 
texture and soil structure.

Modeling of Water Flow
Results of the DREAM(ZS)-optimized 
HYDRUS-1D model runs for the two 
calibration periods showed very close 
agreement with measured values (Fig. 
3). The r2 values for periods P166 and 
P132 were 0.990 and 0.995, and the 
RMSE values were 0.00017 and 0.00011, 
respectively, indicating that water flow 
in both time periods was predicted 
reasonably well with the selected and 
optimized parameter values (Table 1). 
The CV for almost all optimized values 
of q s,m, a , and Ks were <10%, except 
for Ks values from the Ap, Bt1, and Bt2 
horizons during period P166, and the 
q s,m values from the Bt2 and 2Btss2 
horizons during period P132 (Table 1). 
The parameter w exhibited the largest 
variations, with CV values in period 
P132 ranging between 6.2 and 104.4%. 
The average difference in the values of 
the optimized qs,m, a , and Ks between 
the two periods used in this study was 

27%, except for values from the Bt2 and 2Btss2 horizons that 
had an average difference of 67.8% (Table 1). The difference 
between w values of the two periods was >90% for all horizons 

Fig. 2. Water retention curves for all horizons. Measurements were obtained using hanging column 
(HC), pressure plate (PP), and dewpoint potentiameter (DP) methods. Solid lines represent van 
Genuchten (1980) functions with the a parameter and saturated mobile water content, qs,m, (i.e., qs = 
qs,m + qs,im) optimized using the mobile–immobile water model (MIM) in HYDRUS-1D run by the 
DREAM(ZS) algorithm (VG-HYDRUS). All other water retention parameters were obtained by fit-
ting the van Genuchten function to the measurement data using SWRC Fit (Seki, 2007).

Fig. 3. Precipitation (top), potential evapotranspiration (PET, middle), and measured soil water content (q, bottom) at four depths in the lysimeter for 
the two calibration periods used in this study. Solid lines in the bottom panel represent mobile–immobile water model (MIM)-optimized soil water 
content results from the HYDRUS-1D calibration using the DREAM(ZS) algorithm.
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except the 2Btss2 horizon, which was 32%. Large variations in w 
were also reported by Šimůnek et al. (2001) in upward infiltration 
measurements that were repeated under different lower bound-
ary pressure potentials on the same sample and by Köhne et al. 
(2004) in tracer displacement experiments done on two replicated 
columns. For horizons Bt1 and Btss1, values of qs,m were larger for 
period P132, which received less precipitation with similar PET 
values. Small differences were observed between the q s,m values 
of the two periods for either the Ap or A horizon, which were 
characterized by low COLE values (Table 1). This suggests that 
under relatively dry conditions, the porosity and Ks of the mobile 
region increased, possibly because of soil shrinkage. The excep-
tions of horizons Bt2 and 2Btss2 may have been caused by the 
lack of observations at these two horizons and, in the case of the 
2Btss2 horizon, by the uncertainty of the lower boundary condi-
tion. Most optimized parameters showed consistency between the 
two calibration periods despite difficulties in reaching convergence 
(Table 1), particularly for P132, where 2 out of 24 parameters had 
R̂  values >1.20 ( R̂  = 1.25 for Ks of the A horizon and R̂  = 1.22 

for w of the 2Btss2 horizon). The variability of these distributions 
and the difference in values obtained in the two periods can be 
considered small and provide confidence in the accuracy of the 
optimized values from the Markov chain Monte Carlo approach 
used in this study.

Saturated Hydraulic Conductivity and 
Multistripe Laser Triangulation Derived 
Parameters

The Ks values optimized from the two calibration runs shown 
in Fig. 3 are presented in Table 1. The high conductivities of the 
upper three horizons are reflected in the rapid rise in water con-
tent at the 5-, 12-, and 35-cm measurement depths in response to 
the two rainfall events occurring at approximately Days 2 and 4 
in the calibration period P166 and Days 3 and 8 in P132. Water 
reached the 55-cm depth very slowly in both periods compared 
with the upper three measurement depths owing to the small Ks 
of the Bt2 horizon directly above the sensor (Table 1). The Bt2 
horizon, which showed the second lowest Ks among the horizons 
studied (Table 1), contained weakly expressed prismatic structures, 
which were detected as relatively thin vertical pores in the analyzed 
image (Eck et al., 2013).

Initial exploration of the image metrics revealed strong correla-
tions between Ks, pore width variables, and COLE (Table 1). We 
used the geometric mean of the minimum Feret diameter, dFmin, 
measured on each pore as the metric describing pore width. The 
minimum Feret diameter is defined as the smallest distance 
between parallel lines around an object in two-dimensional 
space (Ferreira and Rasband, 2012; Fig. 4a). The COLE describes 
the potential for soil swelling by relating the change in lengths 
between dry and moist states to the dry soil length (Grossman 
and Reinsch, 2002; Soil Survey Laboratory Staff, 2004). These 

values increased with depth from 0.05 in the surface horizon to 
0.12 in the lowest two horizons corresponding to the visible pres-
ence of slickensides in those horizons (Table 1). By contrast, dFmin 
decreased from a surface value of 3.0 mm to <2.6 mm in the Bt1 
and Bt2 horizons before increasing to 3.1 mm in the Btss1 horizon 
(Table 1). The COLE values for the uppermost and two lowest 
horizons correspond to the presence of moderately expressed 
granular and moderately to strongly expressed wedge structures, 
respectively, with clear and distinct pores in the MLT-derived 
images (Eck et al., 2013).

McKenzie and Jacquier (1997) argued that because morphological 
descriptions are conducted under relatively dry soil conditions, the 
metrics of visible soil pores are not representative of those pores 
under saturated conditions for soils with moderate or large poten-
tial for swelling. Because MLT scanning was conducted on the dry 
excavation wall, we normalized 2

Fmind  by COLE to correct for the 
effect of soil swelling on pore area, as illustrated in Fig. 4b. Thus, 
the effective pore area index, Aeff, corresponds to a COLE-adjusted 
flow cross-sectional area of the pore (Fig. 5):

2
Fmin

eff COLE
d

A =  	 [10]

The effect of dividing the 2
Fmind  value by COLE is to reduce the 

effective pore area of the Bt2 horizon relative to the rest of the pro-
file (Fig. 5). The COLE values of the lowest two horizons reduced 
the effective pore area despite the higher dFmin of those horizons, 
bringing them in line with the trend observed in Fig. 5. Thus, the 
normalization of 2

Fmind  by COLE appears to effectively adjust 
the flow cross-sectional area of the macropores to their areas at a 
saturated state.

Figure 5 presents the optimized Ks estimates (HYDRUS) from 
the calibration run as a function of Aeff. A significant (P < 0.01) 
correlation between Aeff and Ks can be observed, and the high 
coefficient of determination (r2 = 0.869) suggests that dFmin 
from the MLT-derived image represents a useful proxy of mean 

Fig. 4. Hypothetical scanned pore illustrating (a) the minimum Feret 
diameter measurement, dFmin, and (b) how the pore boundary would 
change for high shrink–swell soil materials (i.e., high coefficient of 
linear extensibility values) under saturated conditions compared with 
the relatively dry state of an excavation wall during multistripe laser 
triangulation (MLT) scanning. The light gray box drawn in perspec-
tive represents the area, A, generated by squaring dF min.
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macropore width. We also found a significant (P = 0.03) relation-
ship between Ks and 1/COLE, with an r2 = 0.747, indicating that 
dFmin explains approximately 12% of the variation in the Ks of the 
horizons used in this study. The variation explained by dFmin is 
considerably larger than improvements obtained by incorporating 
subjective measures of soil structure in the prediction of Ks (Lilly 
et al., 2008) or water retention at −33 and −1500 kPa (Rawls and 
Pachepsky, 2002).

Prediction models of Ks include pedotransfer functions based 
on texture (e.g., Rawls et al., 1982; Schaap et al., 2001) and 
models based on water retention data (e.g., Mishra and Parker, 
1990; Guarracino, 2007; Han et al., 2008; Nasta et al., 2013). To 
assess the performance of these models with data collected in this 
study, we estimated Ks with the model ROSETTA (Schaap et al., 
2001) based on texture and with the model proposed by Han et 
al. (2008) that uses water retention parameters, in this case those 
fitted to water retention data and optimized by DREAM(ZS) 
(Table 1). Han et al. (2008) defined macroporosity as the differ-
ence qs − q inf, which is equivalent to the mobile porosity defined 
from the water retention function in this study. Predictions with 
these two models provided reasonable estimates of the lowest Ks 
values but failed to predict the large Ks of the upper three hori-
zons (Fig. 5), suggesting that the conductivity of these horizons 
is mostly driven by soil structure. These models invert the Ks of 
the upper two horizons largely because of clay content, whereas 
the Aeff for these horizons suggest that the A horizon should 
indeed have a larger Ks than the Ap horizon. Although these 
results do not constitute a formal comparison among different 
approaches to predict Ks, they highlight the value of quantifying 
soil morphology in enhancing understanding and prediction of 
hydraulic properties.

66Conclusions
This study utilized a field-based quantified description of macro-
pores obtained from MLT scanning in combination with a set of 
soil hydraulic properties optimized with DREAM(ZS) to investi-
gate the relationship between soil structure and saturated hydraulic 
conductivity. We found that the geometric mean of dFmin derived 
from measurements made with the MLT scanning, when com-
bined with COLE, was able to explain 87% of the variation in Ks. 
The use of COLE allowed the MLT-derived pore width metric 
(i.e., dFmin), which was obtained under relatively dry conditions 
from the excavation wall, to be estimated at a saturated state appro-
priate for Ks. The combination of COLE with dFmin allows the 
estimation of an effective pore area index representing a COLE-
modified pore area orthogonal to the presumed direction of flow. 
When we compared this with two models that predict Ks from 
either texture or water retention data, we found that these models 
are able to reasonably estimate the Ks in horizons with low Aeff 
where structure has a more muted role at saturation. These models, 
however, significantly underpredicted Ks in horizons with lower 
COLE values and larger pore widths where structural pores domi-
nate the saturation-state hydraulic character of the soil. Although 
future work is needed to investigate the relationship of quantified 
macropore metrics to Ks in a broader diversity of soil types, this 
technique shows a great deal of promise in better understanding 
and predicting the role of soil structure in soil water flow.
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