

Impact of Sustainable Intensification on Landscapes and Livelihoods (SILL)

Robert Richardson, Laura Schmitt Olabisi, Naomi Sakana, and Kurt Waldman

Improving Integration among Agriculture, Forestry, and Land Tenure 15 June 2015 Lusaka

SILL Project Team

- Dr. Robert Richardson, MSU
- Dr. Naomi Sakana, CIFOR
- Dr. Laura Schmitt Olabisi, MSU
- Dr. Kurt Waldman, MSU

Project Objectives

- 1. Provide an **evidence base for linkages** between field and farm-scale sustainable intensification (SI) interventions and (i) forest conservation and (ii) biodiversity conservation in Zambia
- 2. Provide **recommendations** to inform the design of an **integrated framework** for programming in Zambia
 - Pilot sites: Eastern and Lusaka Provinces, Zambia

Agricultural-Environmental Linkages

Ca RISING

Participatory System Dynamics Modeling

May 2014: Workshops in Mfuwe and Lusaka

- Activities designed to identify causal relationships related to agriculture & environment in Zambia
- Causal loop diagramming activities
- August 2014: Participatory modeling workshop in Chisamba

Major Trends in Zambia

- Relatively low population density
- Population growth
 - Projected to increase 10x by 2100
- High rates of urbanization

Implications

- Food security- demand for food
- Demand for cropland (migration to land abundant areas)
- Degraded soils
- Low non-farm rural employment

Forest Data Gaps

- Forest cover (estimates vary from 30 million Ha to 60 million Ha of forest)
- Deforestation rates (150,000—300,000/yr)
- Deforestation versus degradation

Wildlife Data Gaps

- Wildlife population data
- Poaching rates
- Response to habitat loss

Agricultural Income

- Do SI activities increase yields?
- Can we attribute increased income solely to SI practices?
- What do people do with increased agricultural income?

sica RISING

Sources of Deforestation Represented in Model

- Agriculture
- Charcoal production
- Fuelwood collection
- Home construction
- Commercial timber *

National Level Deforestation over time, baseline

National Model

sica RISING

forest clearing for rural home construction : landscape_v5_baseline

wice RISING

National Model

miombo clearing for commercial timber : landscape_v5_baseline -

miombo clearing for rural home construction : landscape_v5_baseline

- Model reports 156,364 ha. loss of all forest types in 2010
- 167,000: FAO (2010)
- 298,000: UN-REDD (2010)
- World Bank: 0.33% annually (our model: 0.33% in 2010).
- However, we do not include deforestation from mining

1.23% loss rate in 2010

Miombo woodland 600,000 450,000 300,000 150,000 0 2010 2025 2040 2055 Time (Year) Miombo woodland : lusaka_baseline

0.93% loss rate in 2010

Lusaka Province

tica RISING

Deforestation by Driver

With the second second

Lusaka Province

Miombo Clearing by Driver

Effect of Drought on Forest Cover

A drought affecting 70% of agricultural area occurs every 40 years, and 40% of agricultural area every 8 years. Farmers turn to charcoal production for income in years in which their crops are affected. If farmers engage in CA, they are not affected.

Maize yields increase at 3x their current rate.

0.74% loss rate in 2010

0.54% loss rate in 2010

Eastern Province

Deforestation by Driver

Eastern Province

Miombo Clearing by Driver

Effect of Drought on Forest Cover

A drought affecting 70% of agricultural area occurs every 40 years, and 40% of agricultural area every 8 years. Farmers turn to charcoal production for income in years in which their crops are affected. If farmers engage in CA, they are not affected.

Deciduous and evergreen forest

Maize yields increase at 3x their current rate.

- Charcoal and clearing for agriculture are both important stories
- Charcoal dominates in Lusaka; agriculture dominates currently in EP
- Charcoal dominates both in the future
- Agricultural land clearing is driven by rural population growth, not low yields/land abandonment
- Charcoal production is driven by urban population growth and energy demand