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Overview 

This handbook is designed to provide practitioners, researchers, students, and policymakers with the 
analytical tools required to use system dynamics (SD) tools in the context of analyzing value chains. 
In recent years, system dynamics tools have been identified as a means of adding value to 
conventional value chain analysis. System dynamics can transform value chain analysis from a 
qualitative diagnostic tool to a quantitative planning tool that can provide users with insights on the 
economic and social returns to specific policy scenarios.  
 
The handbook emerged from three training sessions administered by the authors during 2013-2014 
in Kenya, Colombia, and Vietnam. It specifically follows the training course administered in Vietnam 
in November 2014 for the International Livestock Research Institute (ILRI) through the CGIAR 
Research Programs on Policies, Institutions, and Markets (PIM)   and Livestock and Fish (L&F). While 
the focus of that course – and this handbook – is on pig value chains, the lessons and methods 
presented here are replicable in many other livestock and agricultural settings. 
 
We have organized the handbook as follows. First, we provide the reader with an introduction to SD 
and its use in value chains. We then provide a step-by-step guide in the construction of a value chain 
model using the iThink/STELLA software of ISEE Systems (http://www.iseesystems.com). We note 
that other software platforms for SD could be used, such as Vensim, Powersim, or AnyLogic, and 
adding complexity to the model as the handbook progresses.  A number of hands-on examples that 
build upon each other are provided. The handbook is written in an interactive, informal style, with 
lots of practical examples and solutions provided. The reader is encouraged to work through each of 
the examples and think through some of the extensions provided at different points of the text. 

How to use this manual 

This manual is meant for the prospective user of system dynamics. It is not meant to be read 
passively from cover-to-cover but rather is aimed at interactive self-study. The reader will be 
expected to have a background in basic economics and mathematics, but does not require any 
specialized technical background. Indeed, one of the benefits of system dynamics is in its 
interdisciplinary nature that is open to scholars and practitioners with different disciplinary and 
technical backgrounds. What is required is a willingness to learn and experiment, and persistence in 
understanding the model concepts described in the text. After finishing this manual, the reader 
should have some confidence in their ability to develop more complex value chain models using this 
very rich field of modeling!  

About the authors 

Kanar Hamza is a Ph.D. student at the University of New England in Armidale, Australia. His research 
interests are in the application of system dynamics tools in different biological systems and value 
chains (livestock, fisheries, forestry). He has worked as a consultant for ILRI and WorldFish Centre, 
and previously worked at the Norwegian Institute of International Affairs (NUPI). He holds Masters 
degrees from the University of Bergen in System Dynamics, Radboud University Nijmegen in 
Business Administration, and James Madison University in Integrated Science and Technology. 
 
Karl M. Rich is Head of Research and Strategy at Lab 863 Ltd., a UK-based boutique research 
company conducting applied research in value chain analysis, animal health economics, 
conservation, and regional development. He holds adjunct professorships at the University of New 
England and Scotland’s Rural College (SRUC). He has over 18 years of experience in value chain 
analysis, policy modeling, and animal health economics, and has previously worked at ILRI, NUPI, 
and the International Food Policy Research Institute.  

http://www.iseesystems.com/
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Introduction: what is system dynamics?  

System dynamics (or SD) is a modeling and analytical paradigm invented during the mid-1950s at the 
Massachusetts Institute of Technology (MIT) by Professor Jay W. Forrester. SD was a developed 
initially as a means to provide quantitative and mathematically grounded insights to problems 
arising in industrial systems. In its early stages, SD was mainly applied in the fields of urban and 
industrial dynamics, with a heavy emphasis on developing decision-making frameworks for the 
private sector. However, the use of SD has expanded in recent years and has been applied in various 
fields such as economics, public policy, environmental studies, defense, commodity cycles, 
management, etc.  
 
The System Dynamics Society, the professional association of system dynamics practitioners, defines 
SD as follows: 
 

[SD is] a computer-aided approach to policy analysis and design. It applies to dynamic 
problems arising in complex social, managerial, economic, or ecological systems — literally 
any dynamic systems characterized by interdependence, mutual interaction, information 
feedback, and circular causality. 

 
SD is, at its heart, an approach to solving problems based on dynamic behavior in complex systems. 
SD practitioners develop models as a means of understanding the consequences of behavior given 
interactions and feedbacks between different actors and/or decisions. An SD model need not 
necessarily be quantitative – qualitative models based on causal loop diagrams (CLD) that map the 
behavioral relationships between different actors or actions often can be a powerful means of 
helping stakeholders understand how the system works in the first place (Vennix 1996). However, 
quantitative models using software such as Dynamo, iThink, Powersim, Vensim, and Anylogic are 
generally constructed as a means of quantifying the dynamics within complex systems and 
conducting scenario analysis. 
 
SD models are a relatively new feature in the context of value chain analysis, although early models 

by Slater et al. (1969) and Harrison et al. (1974) in the context of the agricultural marketing system 

in South America demonstrated their potential well ahead of their time. Rich et al. (2011) provided 

insights and motivation as to why SD models were particularly relevant in livestock systems. First, 

given the biological dynamics of livestock production, many of which take some time to manifest, SD 

models represent a useful way of modeling livestock systems in a way conventional economic 

models (e.g., partial equilibrium, general equilibrium) do not or cannot. Second, value chains 

themselves are complex systems of diverse actors, each with different motivations and capacities, 

and where temporal and spatial phenomena are of particular importance. Conventional value chain 

analyses (Kaplinsky and Morris 2001) focus primarily on mapping and diagnosing a given value chain 

at a given point of time and do not take into account explicitly (or quantitatively) how value chains 

could evolve in the future. Put differently, value chains themselves are movies, not pictures. Because 

of this, we require analytical frameworks that address those dynamics, something that SD models do 

nicely.  Third, SD provides a useful means of combining market dynamics with other dynamic 

phenomena, such as those arising from animal disease or the environment that potentially have 

important feedback effects.  

In this context, a number of SD models of value chains have been developed in recent years, most of 
which have been livestock-focused. Examples include Rich, Perry, and Kaitibie (2009) in the context 
of beef exports from Ethiopia; Hamza, Rich, and Wheat (2014) in the case of Norwegian salmon; 
Hamza et al. (2014a,b) on smallholder livestock markets in Southern Africa; and Naziri, Rich, and 
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Bennett (2015) on beef exports from Namibia. There is currently ongoing work at ILRI using SD in the 
context of pig value chains in  Vietnam, beef in Botswana, and dairy in Tanzania. SD methods are 
also being used in the context of analyzing dairy value chains in Nicaragua at CIAT.  

First principles of system dynamics: stocks, flows, and feedbacks 

The central concepts of the SD paradigm are stocks, flows, and feedback loops. Later in the 
handbook, we will discuss the concept of delays, which play an important role in mediating the 
behaviors we predict in our systems.  
 
Stocks represent the state of the system, such as the population of a country, water level in a 
reservoir, state of knowledge, etc. Put simply, stocks represent “stuff” at any given period of time. 
For example, a cup of coffee would be a stock, with the amount of coffee in the cup the value of the 
stock at this moment in time. Flows represent how the state of nature changes over time. In our 
coffee example, if I pour more coffee into the cup, there will be an inflow of coffee into my stock 
(the cup). If I drink from the cup, there will be an outflow of coffee from one stock (my cup) into 
another (my stomach!).  Flows thus express the entry or exit of things to or from a stock. These 
could include, for example, the inflow of people into a country through births (birth rate) or the 
outflow of people through deaths (death rates). Neither stocks nor flows are required to be physical 
goods – intangible things like knowledge (a stock) or changes in the rate of knowledge acquisition (a 
flow) could also be modeled.  
 
Stocks cannot change by themselves. Only flows (inflows and/or outflows) can change the level of a 
stock at any period of time, which are affected by other variables or technical relationships known as 
convertors and/or other stocks. In a similar vein, flows themselves are governed by feedback loops. 
Feedback loops represent circular connections among different elements of a model that influence 
the evolution of the system over time. Figure 1 shows a graphical representation of the central 
concepts of SD based on the software in the iThink software from which we base our models and 
instructions1.   

 
Figure 1: Graphical representation of stock, flow and feedback loop 
 
At this point, it is instructive to step back for a moment and first review the building blocks of SD 
using iThink so that you can follow along with the exercises that follow. To begin, first create a new 
model in iThink (go to File-New in iThink in either Windows or Mac). You will see a white, blank page 
and will notice a series of icons on the upper part of the screen; these represent the major tools we 
use to build our model. In figure 2, we provide a screenshot of the toolbar for iThink to help you 
follow along. The first icon (reading from left to right) is a rectangle shape that denotes stocks. If you 
click on the box, you can drag it to the blank screen; when you release, you will see a stock named 

                                                           
1 We refer to iThink throughout the text, but note that our handbook instructions apply both to iThink and 
STELLA. Both are produced by ISEE Systems and are very similar, though there are slight differences in the 
applications in which they are used. For the purposes of this handbook, there is no functional difference 
between either software package or the commands mentioned. Note that other software systems use similar 
representations of stocks and flows, although the visualization and command structure are slightly different.  
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“Stock 1”. If you click on the text above the stock (not the stock itself), you can rename it. In order to 
be consistent with figure 1, let’s rename this as “Stock”.  
 
To the right of the stock on the toolbar is a thick arrow – this denotes flows. You can drag this to the 
screen as with stocks, but remember to stretch it all with the mouse to show it. To connect the flow 
as an inflow to a stock, drag the “cloud” that is at the end of the arrow to the stock. As with stocks, 
you can rename flows; to be consistent with figure 1, change the name of this flow to “Flow”. 
If you wished to connect an outflow from a stock, you would drag the cloud at the beginning of the 
flow to the stock.   
 
Continuing along the toolbar, the circular shape represents convertors. These are various technical 
parameters that mediate flows or can be used to create new convertors. Consider the coffee 
example from earlier. How much I drink depends on the speed (or rate) at which I do every time 
period. We could define this rate as a convertor that is connected to the flow (see the next section 
for more details and an example on this). But how do we connect convertors or other elements? 
This is where we use connectors, which is the red skinny arrow next to convertors. To complete 
figure 1, click on the connector icon and place it on the stock. Then, while holding the mouse or 
trackpad, drag it to connect to the flow.  
 

 
Figure 2: Screenshot of a blank iThink modeling frame 

 
You will notice other elements on the toolbar; we will discuss these later in the handbook as their 
use arises. In addition, on the left hand side of the screen, you will see four tabs: Interface, Map, 
Model, and Equations. The Interface provides a platform for model communication. The Map is just 
that – it shows a diagram of what your model looks graphically. The Model tab is where you do your 
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modeling and it tells you whether relationships have been defined. If you click on the Model tab for 
your model, you will see a “?” sign in the stock and flow. Finally, the Equation tab keeps track of your 
model definitions. As we will see shortly, modeling in iThink is conducted using graphical icons which 
mathematical relationships between stocks, flows, and convertors defined and stored in the 
Equations tab. For the purposes of the exercises that follow, you should be sure to be working in the 
Model frame. 
 
Going back to figure 1, you will observe that information about the level of the “stock” is passed to 
the “flow” through a connector. This indicates that the “flow” rate depends on “stock” level. 
Similarly, the direction of “flow” is headed into the “stock” as an inflow.  In figure 1, you will see that 
there is a circular connection defined here i.e. we start from “stock”, go through “flow” via a 
connector, and then back to the starting (“stock”) point through “flow”. This is an example of a 
feedback loop.  
 
There are two types of feedback loops: 

 Reinforcing (R) or positive feedback loops are self-reinforcing loops, in which an increase 
(decrease) in one element leads to an increase (decrease) in another. For instance, in the 
absence of any other flows, as population grows, more people are born, which leads to 
more people in the future, and more births, and so on.  

 Balancing (negative) feedback loops are self-correcting loops, in which an increase 
(decrease) in one element leads to a decrease (increase) in another. For instance, in the 
absence of any other flows, as populations grow, there will be more deaths, leading to a 
reduction in the population in subsequent periods.  

 
To graphically represent balancing and reinforcing feedback loops, let’s modify the names of stocks 
and flows of a simple stock and flow structure shown in figure 1 to represent a simple pig production 
model that includes “pig population”, and “being born”. In iThink, rename your stocks and flows 
accordingly. You should note that “Pig Population” is your stock (it is the number of pigs), while 
being born is the inflow of new pigs into the system.  Your result should look like figure 3 below. 
 

 
Figure 3: Modified stock and flow structure to represent a simple pig population model 
 
As noted earlier, we defined a converter as an independent parameter or variable. Converters either 
directly influence flows (i.e. an independent parameter) or take inputs from other elements of the 
model to convert it to outputs that influence other sections of the model (whether another flow or 
other converters before reaching flows). The former case represents an exogenous parameter 
(independent parameter) while the latter represents a variable (dependent variable). To introduce 
converters to the simple model structure shown in figure 3, let’s add “birth rate” to the model, 
which we define as the (fixed) percentage of the population that is born every period. In iThink, go 
to the circular icon and drag a converter to the modelling frame, and name it “Birth Rate”. Then, 
drag a connector to connect “Birth Rate” to “Being Born”. This shows that the flow of “being born” 
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depends on the number of pigs in the farm or region (i.e. “pig population”) and pig productivity (i.e. 
“birth rate”). 

 
Figure 4: Expanding the simple pig model by adding a converter (birth rate)  
 
The model shown in figure 4 represents a qualitative model. To operationalize this model for 
simulation we need to add initial values and equations to the stock and flow structure. We do this as 
follows. We will first assume that this model runs on a weekly basis (we will define this explicitly in 
the model shortly). Let’s then define our stock, “Pig Population”. By definition, the stock is the state 
of the system. However, we need to first insert an initial value that represents the state of the 
system at time=0. This initial value can be an exogenously defined number, a converter from the 
model, or an equation. To define this stock in iThink, double click on the stock. You will get a diagram 
box to insert an equation or number for the stock.  Place the value of 10,000 in the box and press 
the return key twice. Then in curly brackets, type {pigs}. What this element in the curly brackets 
denotes are the units of the stock, which in this case is pigs.2 When you are finished, click on the 
green check icon.  
 
Next, let’s define the converter “Birth Rate”. As “Birth Rate” is a constant parameter and is a 
percentage, we can insert any value between zero to one. Zero means no growth, while one 
represents a growth rate of 100%. We enter a value for “Birth Rate” in the same way – double click 
on the convertor and add a value. Our value will depend on the time period in our model. If we run a 
weekly model, for example, we would need to take an annual rate and convert to weeks. So, for 
example, if the annual birth rate is 3% per year, the weekly rate would be 3%/52. Thus, let’s first 
enter the value 0.03/52, hit the return key twice, and enter {1/week}. This denotes that the unit for 
“Birth Rate” is per week.  
 
What about inflows? The inflow “being born” depends on both the stock of “pig population” and the 
parameter “birth rate”. This should be intuitive – the change in the number of pigs between time t-1 
and t will be the product of the previous stock of pigs at time t-1 and the birth rate. Thus, because 
this flow has a functional form, we need to define an equation for “being born”. In the equation box, 
you will notice that in the upper left hand of the box, there is a list of “required inputs,” which in this 
flow are “Birth rate” and “Pig Population”.  That alerts us to the fact that we have to use both of 
these elements in our definition. As noted, the entry of new pigs will be the product of the birth rate 
and the current population, so we define our equation as in equation (1), i.e. 
 
Being born = Birth rate * Pig population {pigs/week}3 ……. (1) 

                                                           
2 It is good modeling practice to label the units of your model. It is not necessary to run the model, but it is an 
extremely useful way to check the consisting and validity of the dynamic relationships defined. 
3 It should be noted that the unit of each element of the model must be an outcome of the equation used. In 
this case, we multiplied pig population (the unit is pigs) by the birth rate (the unit is 1/week) and therefore the 
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Based on this simple model structure, consider the following exercise: 
 

Exercise 1:  

1- Based on equation 1 and the assumed values above, what sort of behavior would you expect 
for the stock “pig population” based on the model shown in figure 4 to generate (for 
example, linear, exponential, etc.)? Why? (Hint: Please remember the description of stocks 
and flows provided above).  
 
 
 
 
--------------------------------------------------------------------------- 
 

2- What type of feedback loop exists in the model shown in figure 4? Why? (Hint: please 
remember the definition of both reinforcing (R) and balancing (B) feedback loops provided 
above). 
 
 
---------------------------------------------------------------------------  

 

Solution 1: 

1- We should observe that this model exhibits exponential growth. In this model, recall that we 
only have an inflow into the stock “pig population” (figure 4). This inflow depends on the 
previous value of the stock and a positive birth rate, which means that the stock of “pig 
population” can only increase over time. The exponential pattern of behavior arises because 
each week, as the stock of pigs rises, the inflow (rate of change) of new pigs in the next 
period increases, generating an even larger cumulative stock of pigs, and an even faster rate 
of increase in the growth rate of pigs in the next period, and so on. If we run the model 
(more on this later), we would get the behavior as shown in figure 5 below. 
 
 

                                                                                                                                                                                    
unit of the flow is pigs/week. This is an important model validation procedure that must be satisfied to 
increase one’s confidence in any SD model. More on model validation will be presented as we progress.  
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Figure 5: Behavior of “pig population” stock in our initial population model 

 
2- The feedback loop is a reinforcing loop. Recall figure 4. In this question, it is a reinforcing 

feedback loop because more “pig population” leads to more pigs “being born” which leads 
to a higher “pig population” and so on in a reinforcing manner.  

Figures 4 and 5 show the structure and behavior of a simple pig production model, respectively. 
However, this model is quite simplistic. Thus, we need to expand the model boundary to make it 
more consistent with real life physical systems. For example, the behavior of the simple model that 
is shown in figure 4 indicated exponential growth of the pig population and assumed no sales or 
deaths, for instance. This is clearly unrealistic.  
 
To solve this issue, let’s expand the model boundary by including a new structure to denote the sales 
of pigs to the market. Consider two new model elements, “sales rate” (i.e the percentage of the “pig 
population” that is sold over time) and “selling pigs” (i.e. number of pigs shipped to customers over 
time) to the market. How would we add these to our model? See exercise 2  
 

Exercise 2: 

 
1- Would we define “sales rate” as a stock, flow, or a parameter? Why?   

 
---------------------------------------------------------------------- 
 

2- Would we define “selling pigs” to the market as a stock, flow, or a parameter? Why? 
 
---------------------------------------------------------------------- 

 
3- Can you add the new elements of 1 and 2 above to the model structure shown in figure 4? 

Please use the space below to add model structure (be sure to do this in your model in 
iThink too!). Explain your reasoning for adopting this structure. 
 
---------------------------------------------------------------------- 

 
 

Page 1

1.00 260.75 520.50 780.25 1040.00

Weeks

1:

1:

1:
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19000

1: Pig Population

1

1

1

1
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Solution 2: 

1- “Sales rate” is a parameter (or an independent parameter or a constant) because it 
represents a fractional sales rate (that is, what proportion of “pig population” is sold per 
each time unit). 

2- “Selling pigs” to the market is a flow (it is an outflow since it takes pigs out of the stock) 
because it denotes the number of pigs that are sold to the market over time (that is, pigs per 
week). As an aside, it is good modelling practice to define flows as action verbs (ending in –
ing) to denote their dynamism over time, while stock and parameters are defined as nouns. 

3- Our modified figure can be found in figure 6 below. 
 

 
Figure 6: An expanded pig population model 
 
SD models are generally built step-by-step. It is highly recommended that the modeler run the 
model each time after adding more structure to ensure that the modeler understands the model’s 
behavior and whether the model and its behavior are consistent with real life conditions. This is also 
an important factor to decide whether we need to add more structure to the model or not (i.e. 
whether to challenge or expand the model boundary or not). Afterwards, we test different 
parameter values and evaluate model results based on the expected outcomes to reveal any 
structural flaws in the model.  
 
Before we do these tests, let’s first add some figures and equations to the added structure from 
figure 6. We will define sales rate at the same level as birth rate i.e. 0.03/52. For the outflow “selling 
pigs,” we will have the same relationship as before, namely that this outflow will depend on the 
stock of pigs multiplied by the fractional rate of sales, or “sales rate”. Enter the following equations 
for (2) and (3) into your model for “Sales rate” and “Selling Pigs,” respectively, and complete 
exercise 3 below.  
 
Sales rate = 0.03/52 {1/week} ………………………………………… (2) 
Selling pigs = Sales rate * Pig population {pigs/week} …….. (3) 
 

Exercise 3: 

1- Based on equations 1, 2, and 3 what sort of behavior (for “pig population”) you expect the 
model shown in figure 6 to generate (for example, equilibrium, growth, decay, etc.)? Why?  
 
--------------------------------------------------------------------------- 

2- What types of feedback loops exist in the model shown in figure 6? Why?    
 
--------------------------------------------------------------------------- 
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 Solution 3: 

1- In this model, we would expect to observe equilibrium behavior in the stock “pig 
population”. This is because the inflow and outflow rates are the same, since the fractional 
rates of births and sales are the same. As stated earlier, stocks accumulate the differences 
between inflow and outflow. Thus, when the inflow equals the outflow, the stock remains 
unchanged (i.e. equilibrium). Figure 7 shows the model’s behavior under the initial 

assumptions.  
 

 
Figure 3: Behavior of the “pig population” stock of the model shown in figure 6 under initial 
assumptions 
 
The stock and flow structure is a graphical representation of SD models. That is, SD modelers use 
graphical representations to build any model. However, behind these graphics is an underlying 
mathematical structure in the background of the graphical representation of SD models. Figure 8 
shows the standard graphical stock and flow structure and three alternative identical expressions of 
representing stocks and flows. In the hydraulic metaphor, the bathtub represents the stock and the 
faucets represent inflows and outflows. In the example above, we could interpret this that the water 
inflow is exactly the same as the water outflow, such that the level of water in the bathtub remains 
the same. Similarly, both the integral and differential equations in figure 8 mathematically formalize 
the stock and flow relationship.  
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Figure 8: Equivalent representation of a stock and flow structure (Source: Sterman 2000) 

2- The new feedback loop is a balancing loop. Please note that when the direction of flows 
goes outside of the stock, this indicates that this flow negatively affects the stock (i.e. it 
takes material out of the stock). In this question, it is a balancing feedback loop because as 
“pig population” rises, this leads to an increase in “selling pigs” which leads to a lower “pig 
population” and so on in a balancing manner.  

 
Figure 9: Feedback loops in the expanded pig population model 
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Exercise 4: 

1- Please adjust the birth rate to read 
 
Birth rate = 0.01/52 {1/week} ………………… (4) 
 
Assuming the rest of the model remains unchanged, how would you expect the model 
behavior shown in figure 7 to change in terms of the population of pigs? Could you draw a 
graph to show the pattern of behavior in the pig population (for example, would you expect 
to see exponential growth, linear growth, exponential decay, linear decay, or something 
else)? Hint: please refer to figure 8 to see how changes in flows affect the model to answer 
this question.). Plot time on the X-axis and pig population on the Y-axis for this question and 
subsequent ones. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2- Return the birth rate in question 1 to its original value (0.03/52). Now, please adjust 
equation 2 (sales rate) to 
 
Sales rate = 0.01/52 {1/week} ………………… (5) 
 
Assuming the rest of the model remains unchanged, how would the model behavior shown 
in figure 7 change? Could you draw a graph to show the expected pattern of behavior (for 
example, exponential growth, linear growth, exponential decay, linear decay, or something 
else)?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

16 

Solution 44: 

1- The observed model behavior is exponential decay because in this particular case the inflow 
“birth rate” is lower than the outflow “sales rate”. This leads to a depletion of the stock “pig 
population” in a decreasing manner. Think of this using the hydraulic metaphor in figure 8. If 
more water leaves the bath tub than water comes in, the level of water in the bath tub 
decreases.  
 

 
Figure 10: Updated model behavior by changing the birth rate inflow 
 

2- The expected model behavior is exponential growth because in this particular case the 
inflow “birth rate” is higher than the outflow “sales rate”. This leads to an increase in the 
stock of “pig population”. Again, use the hydraulic metaphor in figure 8. If more water 
comes into the bath tub than water exits, then the level of water in the bath tub increases.  

 
Figure 11: Updated model behavior by changing the sales rate outflow 
 
So far, we have gone through a simple example of the stock and flow structure and different types of 
simple model behavior in SD in an intuitive fashion. However, as we will be building more complex 
models of value chains shortly, it is good at this stage to demonstrate how we translate this intuitive 
analysis into the running of such models in iThink itself.  
 

                                                           
4 Please note that we extended the time horizon on x-axis of figures 10 and 11 to make sure that the pattern of 
behaviour is clearly visible.  
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Let’s start with the model developed above in figure 6, based on the equations (1)-(3) above. Using 
the instructions given earlier on inserting stocks, flows, converters, and equations into iThink, 
reproduce figure 6 into iThink. When all model elements have been defined (in the Model frame, 
there should be no more “?” signs in your icons.  
 
You will want to see your results from your model, and in iThink you can generate both graphical 
and tabular forms of model outputs. To create a graph, on the icon toolbar at the top of the 
modeling frame, you will see a green line graph icon. When you click on this and drag to the 
modeling frame, a blank graph will appear (see figure 12 below). To add things to this graph, double 
click on the blank graph. You will obtain a box entitled “Define Graph” which allows you to choose 
stocks, flows, and converters from the “Allowable” window on the left side of the box. Highlight “pig 
population”. That will highlight the “>>” button and allow you to move this stock to “Selected”. Then 
click OK. You will see “pig population” on the y-axis of your newly created graph. 
 

 
Figure 12: A blank graphical output in iThink 
 

To run SD models in iThink, you can either click on the play arrow ( ) on the bottom-left corner of 
iThink model (see figure 2) or via the task list above the tool bar by clicking on “Run” and then 
selecting the first choice (“Run”) on the list. You should obtain the same results as in figure 7. Repeat 
Exercise 4, changing the values of birth and sales rates to obtain the graphs reproduced in figures 10 
and 11. 
 
Under the “run” menu, you will find other elements, one of which is called “Run specs”. Run specs is 
the seventh element on the list under the run menu.  The “Run specs” menu is important because 
here you can change various model settings, such as the simulation time unit (day or week or month 
etc.), simulation length (from week X to week Y), and DT in the box that appears after you select run 
specs.  
 
While simulation time units and length are pretty straightforward and based on the system the user 
defines, the concept of DT is not. DT is defined as the frequency by which the model updates itself. A 
DT of 1 for a weekly model, for example, means that the model is a discrete-time model that 
updates every week. The smaller and smaller DT gets means that we increase the precision and 
approximation to continuous time. The default DT setting of iThink model is 0.25. You can change DT 
as needed but a very low DT (for example 0.0007) needs to be justified. As a rule of thumb, DT must 
be equal to or lower than one-quarter of the shortest time delay found in the model (we will discuss 
delays in the next section). DT has significant impacts on SD models and must be selected carefully. 
A good test of DT selection is to re-run your model with a lower DT to see if the pattern of model 
parameters is the same as with your chosen DT. If your model behavior changes significantly (for 
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example, oscillation changes to linear or exponential growth or decay, etc.), this indicates that your 
selected DT is not precise. In this case, lower the DT value by half and run the model until the 
behavior remains about the same as when you lowered DT to half again. When the pattern of 
behavior does not change when you lower DT, this means your model DT is appropriate.   
 
Note: the default setting on iThink for time unit is months, the simulation time horizon is 13, and DT 
is 0.25. You can change these to different values and units under run specs as we explained earlier. 
Similarly, when you use the graph icon to create a graph (as you did it in figure 12), the default 
setting of the graph is the same as your model default setting in terms of the time horizon and units 
(month or week or day). However, as you can see, there are more details on the figure you created 
in figure 12 compared to the other figures presented in this manual. In order to remove some of the 
unnecessary details in the figure, label the figure, and scale the y-axis, double click on the figure you 
created in iThink - the box shown in figure 13 will open.  
 
On the box shown in figure 13, the items listed in the box under allowable represents model 
elements that can be plotted on a graph. To plot any of those items listed under “allowable” on a 
graph, double click on any of them. They will automatically move to the next box on the right hand 
side. Any item that has been selected for plotting on the graph is listed in the box under “selected” 
on the right hand side of the box. To change the scale on the y-axis, click (select) the item (or items, 
if apply) in the box under “selected”. The selected item will be highlighted (pig population in figure 
13). To make sure the change in the scale on the y-axis is correctly applied, make sure the double-
headed arrows next to the item listed on the box under “selected” is surrounded by a circle. If it is 
not, click on the double headed arrow once or twice until it is surrounded by a circle. At this stage, 
the boxes (Min and Max) next to scale at the bottom of the box shown in figure 13 will allow you to 
make changes on the scale of the y-axis. The boxes next to display at the bottom of the box show 
the scale on the x-axis. The x-axis is automatically set in a similar ways to the model time horizon 
(simulation length). But you can also change it if needed. However, the minimum on the X-axis can 
only be greater than or equal to the starting time of the simulation and the maximum should less 
than or equal to the finish time of the simulation. In other words, if your simulation time starts from 
week 1 to week 13, then the minimum on the x-axis should be 1 or more and the maximum should 
be 13 or less. To remove any unnecessary details on the figure, check the box “hide details” and 
delete (or change) the word untitled in the box next to the title.   
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Figure 13: Toolbox to change graph settings 

  

System dynamics and value chains 

Different interpretations and definitions of the value chain have been used in the literature (Tchale 
& Keyser 2010; UNIDO 2009; FAO 2012) but the most common definition is the one by Kaplinsky & 
Morris (2000, page 4) as the “full range of activities which are required to bring a product or service 
from conception, through the different phases of production (involving a combination of physical 
transformation and the input of various producer services), delivery to final consumers, and final 
disposal after use.”  
 
Traditionally, value chain analysis (VCA) has been conducted in a qualitative manner, following the 
principles of Kaplinsky and Morris (2000), or later development handbooks (e.g. M4P 20075; GIZ 
20086). A complete VCA consists of a mapping of the value chain; an analysis of chain governance, or 
understanding the power and transaction mechanisms that exist within and among different chain 
nodes; an assessment of upgrading strategies taken by chain actors; and the distributional benefits 
of chain participation (Rich et al. 2011). While quantitative data is used in the analysis to look at the 
distribution of value and flows of goods throughout the value chain, such analyses are incapable of 
looking at the returns to potential identified policy options.  
 
However, as noted earlier, SD modeling gives us a unique platform to look more rigorously at the 
value chain. A naïve way of looking at the value chain in an SD framework would be to consider each 
node or actor in the chain as a stock, with various flows connecting different nodes depending on 
the marketing channel in question. However, certain nodes are much more complicated in their 
setup, particularly at the production and retail sides of the chain. This is even more pressing in 

                                                           
5 http://www.value-chains.org/dyn/bds/docs/574/M4PComMarkConferenceSummary.pdf  
6 http://www2.gtz.de/wbf/4tDx9kw63gma/ValueLinks_Manual.pdf  

http://www.value-chains.org/dyn/bds/docs/574/M4PComMarkConferenceSummary.pdf
http://www2.gtz.de/wbf/4tDx9kw63gma/ValueLinks_Manual.pdf
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livestock systems given the influence of biological parameters and time delays in production. This 
requires a more rigorous means of modeling both the supply and demand sides of livestock systems 
as we detail below.  
 
An SD model of the value chain can include a number of interacting modules: 

 A module that describes the supply side of the value chain, in terms of modeling explicitly 
the dynamics of the production of a good; 

 A module that describes the demand side of the value chain, in terms of modeling explicitly 
the dynamics of sales and parameters that influence consumer demand; 

 A module that shows and links the intermediaries that exist between production and 
consumption and the different channels of distribution that may exist; 

 A module that describes price formation within the value chain and how producers and 
other value chain actors respond in the short-term to price; 

 A module that looks at long-term investment behavior of relevant value chain actors to build 
and expand (or reduce) capacity; 

 A module that elaborates the profitability of different actors in the chain and how those 
influence short- and long-run investment behavior; 

 A module that looks at adoption behavior and how that influences behavior in the value 
chain; 

 A module that looks at biophysical or other external influences on behavior in the value 
chain, such as environmental factors, land constraints, or animal disease considerations. 

 
In the next three sections, we will create a value chain model of the pig sector. We will do that by 
creating a number of modules associated with supply, demand, and price setting that reflect the 
dynamics of production, trade, and sales within the value chain. The next sections should be done 
interactively, following closely in iThink with the instructions and discussion given. 
 

Pig Supply 

Let’s first begin with modeling pig production by expanding the model that we constructed in the 
first section. Before, you will recall that we consider a very simple model of population growth, with 
one stock and two flows representing births (inflow) and sales (outflow). However, pig (or any 
livestock or fish) production should be modeled in more detail to reflect the evolution of growth 
over time. In particular, we can consider the life cycle of animals in our model by separating out the 
different stages of life experienced by pigs. Pigs start out in gestation prior to birth, and then 
become piglets after birth. After some weeks, piglets grow into young pigs, or growers.  Growers are 
fattened for many weeks after which they become adult pigs, or finishers. Finishers are finally either 
sold for slaughter or die naturally. Some growers are reserved for breeding stock, which are then 
used to generate more pigs. Each of these transitions between age classes will depend on various 
factors. Further disaggregation (such as based on gender) can be done but this depends on the 
purpose of the model.  
 
In order to conceptualize this model, let’s try to develop this age cohort using the language of SD. 
We will first define the different pig age groups (“breeding stock”, “gestation”, “piglets”, “growers”, 
and “adult pigs”) as stocks. We represent these age classes as stocks because they represent the 
number of pigs in each age group on a farm or in a region (for example, 10 breeding pigs). In our 
model, let’s define five such stocks: “Breeding stock”, “gestation”, “piglets”, “growers”, and “adult 
pigs”.  We denote this visually in iThink as shown in figure 14 below.  
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Figure 14: Age cohort stocks of pigs 

 
Let’s next consider the transition of pigs from one age stage to another. In the language of SD, we 
represent this by flows. These flows define the transition from one age class to another, and are 
defined as action verbs e.g., weaning as the transition from gestation to piglets, growing as the 
transition from piglets to growers, and so on (figure 15). In our model, we define a transition (flow) 
from growers to breeding stock to model the behavior of reserving some animals for breeding stock. 
New pigs enter the system via the inflow “breeding” into the gestation stock. 

                
Figure 15: Inflows and outflows of pigs in an age cohort model 
 
As we described earlier, flows are regulated via stocks and parameters.  What elements might affect 
the transition of pigs from one stage to another? Let’s start with “breeding”. Breeding will depend 
firstly on the availability of pigs to breed with, or put differently, the number of animals in “Breeding 
Stock”. Second, breeding will depend on the number of piglets that result from breeding. On 
average, about 8-12 pigs are generated per litter and there are just over two litters per sow per year. 
Given this, we’ll need to create convertors for “Head per litter” and “Litters per year” that will be 
multiplied by the number of “breeding stock”. If our model is a weekly model, we will need to adjust 
“litters per year” accordingly i.e., by dividing the annual rate by 52 weeks.  
 
Let’s move next to the flow of “weaning”. The rate of outflow from “Gestation” to “Piglets” will 
depend on the number of pregnant pigs we have and the time it takes for a pregnant pig to give 
birth. In other words, there will be a time delay between conception and birth. How we model this 
delay depends on our assumptions regarding it. In SD, we distinguish between two types of delays: 
material delays and pipeline delays. A material delay defines the outflow from a stock as the 
quantity held in the stock at time t divided by the length of delay. The assumption here is that there 
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is perfect mixing of all elements in the stock at any given time so that the probability of exit by any 
element is the same and independent of when the item entered the stock (figure 16, Sterman 2000). 
A pipeline delay, by contrast, acts like a conveyor belt where elements that enter the stock first exit 
the stock first (figure 17). We model a pipeline delay by using the inflow into the stock (not the stock 
itself) and applying a DELAY function to the outflow that depends on the inflow and the delay time. 
 

 Figure 16: a stock and flow structure of first order material delay (A) and an equivalent bath-tub 
metaphor (B). Source (Sterman 2000) 
                                      
 
        

Figure 47: a stock and flow structure of first pipeline delay (A) and an equivalent metaphor (B). 
Source (Sterman 2000) 
 
While a pipeline delay is a more realistic means of marketing livestock systems intuitively, it may not 
always be the case that producers strictly manage age cohorts of animals, especially in developing 
countries and in smallholder systems. For the purposes of exposition for this model, we use a 
material delay in this model. Therefore, our “weaning” flow would be our “Gestation” stock divided 
by a converter “Gestation Delay”. Similarly, our “growing” stock would be defined similarly, as the 
stock of “Piglets” divided by the converter “Time to Grow”.  
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When animals are in the stock “Growers,” one of two things can happen. First, a proportion of 
female pigs will be reserved for breeding stock to create pigs in the future. To model this, we define 
a flow called “replenishing” that depends on number of pigs in the “growers” stock and a parameter 
called “indicated breeding stock change rate” that is the proportion of pigs in “growers” stock 
producers decide to keep for breeding purposes. Second, animals not kept for breeding will 
eventually move to the “Adult Pig” stock through the “becoming adult” flow. We define the flow 
“Becoming adult” as the number of pigs in the “growers” stock divided by “time to grow” minus pigs 
from the “replenishing” flow to ensure consistency. In other words, those pigs that are kept for 
breeding are not moved to the stock of “adult pig”.  
 
Figure 18 provides an illustration of the completed age structure. 

 
Figure 18: An SD model of a pig production system 
 
It is important to recognize what is exogenous and endogenous in SD models. An endogenous 
variable, stock, or flow is the one that is part of a feedback loop. That is, it affects a model 
component or components and in return is affected by those components of the model. An 
exogenous parameter (or variable) is a parameter or a variable that is not part of any feedback loop. 
That is, it affects a component or components of the model but it is not itself affected by the rest of 
the model. In other words, it is exogenous to the model or outside the model boundary.  
 
Based on figure 18 above, consider the following exercise: 
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Exercise 5 (all questions relevant to figure 18): 

1- Are “breeding stock” and “growing” flow exogenous or endogenous components of the 
model? Why? 
 
----------------------------------------------------------------------------------- 
 

2- Are parameters “gestation delay”, “indicated breeding stock change rate”, and “head per 
litter” endogenous or exogenous components of the model? Why? 
 
----------------------------------------------------------------------------------- 
 

3- Can you show how many feedback loops are in the model shown in figure 18? Please 
address whether they are reinforcing or balancing feedback loops? (Hint: recall that a 
feedback loop is a circular causality. That is, we start from point X, we go through Z and then 
move back to X in a circular connection.)  
 
----------------------------------------------------------------------------------- 

 

 Solution 5: 

1- Both “breeding stock” and “growing” flow are endogenous components of the model 
because they are part of a feedback loop. That is, “breeding stock” determines “breeding” 
flow which in turn affects “gestation” stock. In a similar vein, “gestation” stock determines 
“weaning” flow which affects “piglets” stock and goes through “growing” flow, “growers” 
stock, “replenishing” flow and feeds back to the “breeding stock”. “Breeding stock” is 
connected back to “breeding” flow via a connector that closes the feedback loop. This 
indicates that all elements involved in this feedback loop are endogenous to the model as 
they affect each other (directly or indirectly) in a circular relationship. This feedback loop is a 
reinforcing feedback loop (R17 in figure 15) because, for example, more “breeding stock” 
leads to more “breeding” which in turn leads to higher “gestation”, “piglets”, “growers” and 
then even more “breeding stock” which leads to a further increase in “breeding” flow and so 
on in a reinforcing manner. 
 

2- These parameters are all exogenous to the model. That is, “gestation delay”, “indicated 
breeding stock change rate”, and “head per litter” affect the flows “weaning”, 
“replenishing”, and “breeding”, respectively, but they are not affected by any components in 
the model. That is, they are fixed parameters and do not change over time or interact with 
the rest of the model.  

 

3- There are at least five feedback loops in the model. See figure 19 for feedback loop 
locations. 

                                                           
7 R and B signs are not mandatory to be written on the SD model structure. But for the sake of clarity they are 
provided in a few places in this manual. 
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Figure 59: Feedback locations in the model8 
 
R1 is described in point 1 above. The balancing feedback loop B1 involved two endogenous 
(“gestation” and “weaning”) and one exogenous (“Gestation delay”) elements of the model. B1 
shows that more “gestation” leads to more “weaning” which in turns lowers “gestation” stock which 
leads to lower “weaning” flow in the next rounds and so on. This process happens in all balancing 
feedback loops.   

 
As we model the supply side of this model, we should be aware of the following issues.  First, it is 
best to endogenize SD model behavior as much as possible (i.e. so that the behavior is driven by 
closed feedback loops rather than exogenous parameters and variables). The modeler should justify 
the choice of exogenous elements (parameters and variables) of any model to ensure the validity of 
the model (in SD, we call this the model boundary test). If we run a model for 10 years, the 
exogenous elements of the model must not change significantly over this time horizon. For instance, 
the parameters “litter per year” and “head per year” can be estimated based on historic values (i.e. 
taking a 10 year average). If they do change in real life, then we must endogenize them to ensure 
model validity. For instance, consider the parameter “indicated breeding stock change rate”. This 
represents the producer’s decision on the percentage of pigs that are kept for breeding purposes. If 
we run the model over a one-year (52 weeks) time horizon, it is unlikely that this parameter would 
change. However, simulating over a ten-year time horizon might be more problematic since 
producers will decide what percentage of pigs to keep as breeding stock based on pig price 
movements. Thus, if the pig price is high for one to two years, producers might decide to keep more 
breeding pigs for future investment and vice versa. Therefore, in this case we would need to 
endogenize this parameter to increase our confidence in the model (we will come back to this point 
later). 

                                                           
8 Parameters “head per litter” and “litter per year” represent number of offspring per litter and number of 
litter per year, respectively. Parameters “gestation delay”, “time to grow”, and “time to become adult” 
represent pregnancy duration, time required to grow from piglets to growers, and time required to grow from 
growers to adult pigs, respectively. Parameter “indicated breeding stock change rate” represents the 
percentage of grower pigs farmers decide to keep for breeding stock over time.   
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Before we move to the next section, let’s parameterize the model in figure 19 with the figures found 
in table 1 below. In table 2, we review the definitions of the flows defined earlier. For now, keep the 
initial values of stocks undefined – we will define these in the next section.  
 
Table 1: Initial parameter value of the pig model 

Parameter value Unit 

Gestation delay 17 {week} 

Time to grow  5.5 {week} 

Time to become adult  16 {week} 

Feeding time  1 {week} 

Average breeding time  260 {week} 

Minimum processing time  1 {week} 

Indicated breeding stock change rate 0.000781 {1/week} 

Litter per year 2 {litter/pig/year} 

Pig per litter  8 {pig/litter} 
 
 
Table 2: Initial value of the flows of the pig production model 

Flow Value Unit 

Breeding (Breeding Stock*Litter per Year*Head per Litter)/52  {pig/week} 

Weaning Gestation/Gestation Delay {pig/week} 

Growing Piglets/Time to Grow {pig/week} 

Becoming adult (Growers/Time to Become Adult)-Replenishing {pig/week} 

Replenishing Growers*Indicated breeding stock change rate {pig/week} 
 

Pig sales  

In this section, we expand the model structure to move downstream in the pig value chain.  Our 
model expansion will necessarily challenge the model boundary to correctly represent the system or 
the problem that we intend to model. As a rule of thumb, expanding the model boundary should aim 
to improve model behavior and to verify the model structure (i.e. structure verification test) as a 
means of increasing our confidence in the model. If expanding the model boundary does not have 
any impact on model behavior, then it is an unnecessary addition. However, when our model 
structure is incomplete (i.e. the model structure cannot be verified compared to the real life physical 
system), then challenging the model boundary is necessary. The structure verification test is simple. 
This test is conducted by looking at the model structure to verify if there is any parameter or 
structure that has no real life meaning. If there is a parameter used that has no real life meaning, 
then this represents a shortcoming of the model. Similarly, if the model structure is not consistent 
with real life physical systems, then challenging the model boundary is necessary.  
 
As constructed at present, the structure of the model is incomplete if we compare it with a real life 
pig production system. For instance, both of the stocks “adult pig” and “breeding stock” are only 
affected by inflows. In real life, however, farmers grow pigs to supply the market and fulfill customer 
demand.  
 
Let’s think through the model structure and determine where we need to expand. First, farmers do 
not keep “adult pigs” (if not kept for breeding purposes) for a long time. Rather, adult pigs are sold 
for slaughter to meet customer demand. In SD terms, that means we should create a flow that 
comes out of the stock of “adult pig” called “slaughtering”. The flow of “slaughtering” is based on 
the number of pigs in “adult pig” stock and the amount of time pigs are fed prior to slaughter, which 
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we can define as a parameter called “feeding time”. Second, pigs in “breeding stock” are kept for a 
few years and then shipped to the market after they are past productive age. In SD terms, we model 
this through a flow called “breeding stock slaughtering” that comes out of the stock of “breeding 
stock”. This flow depends on the number of pigs in “breeding stock” divided by the “average 
breeding time,” which is defined as the average time (measured in the number of years or weeks or 
any other time units) that farmers keep breeding pigs on their farm prior to sending them to 
slaughter.  
 
When farms sell pigs for slaughter, they are purchased either directly by slaughterhouses or other 
intermediaries (traders, collectors, etc.). For simplicity and exposition, let’s assume a simple value 
chain structure by which slaughterhouses buy directly from farmers (it is possible to expand this – 
see Hamza et al. 2014a for an example). Slaughterhouses will transform pigs into meat. The amount 
of pigs they process into meat can be represented as a stock, which we define as “inventory”. In this 
example, we keep all units in our model in liveweight equivalent even though it is possible to 
convert pigs into meat directly (can you think how you would model this?) The stock of “inventory” 
represents available meat (in pig equivalent) to the market. In your model in iThink, create a stock 
named “inventory” and then drag the cloud at the end of the flow of “slaughtering” to drop it9 on 
the stock of “inventory”.  Repeat the same process to connect the flow of “breeding stock 
slaughtering” to the stock of “inventory”.  
 
In SD models, actors sell from inventory. On the supply side, producers sell from the stock of adult 
pigs and old breeding stocks. Same way, processors will sell meat from inventory to consumers. This 
means that we need to create an outflow named “selling” that exits the stock of “inventory” to 
supply meat (in pig equivalent) to the market. The flow of “selling” depends on two things. First, 
“selling” will depend on consumer demand, which we can define as a converter that denotes the 
number of pigs demanded by customers per week. Second, the amount processors can sell will 
depend on their ability to meet customer demand. For instance, it might be that processors may 
have limitations in meeting consumer demand if there are capacity constraints in slaughter. In other 
words, sales will be a fraction of consumer demand that is adjusted by the fraction of demand that 
can be met by processors. That means we should adjust the amount that can be sold based on these 
capacity constraints.  
 
To model these capacity constraints, we first define a converter that we name “order fulfilment 
ratio”. “Order fulfilment ratio” depends on “customer demand” and the ability of processors to 
meet demand from inventory, which we call “maximum selling rate”. This converter will be a 
fraction ranging from 0 to 1. If “order fulfilment ratio” is 1, then all “customer demand” is realized, 
while if it is 0.5, this means only 50% of “customer demand” is realized. Thus, we will need to create 
a converter called “maximum selling rate” and connect both “maximum selling rate” and “customer 
demand” using connectors to “order fulfilment ratio”.    
 
“Order fulfilment ratio” will be defined as a graphical (or table or lookup) function. We define the x-
axis, as “maximum selling rate” divided by “customer demand”. When the x-axis is less than one, it 
should be the case that processors will not be able to fully meet demand. Once the x-axis is greater 
than one, processors should be able to meet all, or nearly all, demand. To define this as a graphical 
function in iThink, first, define the equation “order fulfilment ratio” as “maximum selling rate” 

                                                           
9 Make sure that the cloud is attached to the stock before dropping, usually when you drag the cloud of any 
flow to any stock, the stock will be filled with dots before dropping as it is shown in figure below. 
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divided by “customer demand”. The equation box looks like figure 20 (A). Second, at the bottom of 
equation box, next to ( ), where you insert the equation to the model elements, select graphical 

function (  ). The equation box will then look like figure 20 (B). To switch to graphical function, on 
the top-left corner of the equation box (shown in figure 20 (B)), check the box next to graphical. 
When the graphical function is switched on, the equation box will look like figure 20 (C).  
 
Now, note that the x-axis is the same as the equation you defined initially for the variable (figure 20 
– A). To define the graph, you can simply either use the cursor on the space provided to draw a 
graphical relationship or under the x-axis enter specific points (see figure 20 – D) to insert values 
directly to define the relationship between the x-axis and y-axis.  You can also set min and max 
values of both the x-axis and y-axis on specific numeric boxes provided next to each axis. You can 
adjust the number of data points to figures you have in your model. The default value for the 
number of data points is 11 but if you do not have a specific reason to change or keep the default 
value, change it to 5 points to make it easier to draw.  
 
Now, going back to finalize the graphical equation inside our variable “order fulfilment ratio”, let’s 
define the min and max for x-axis as 0 and 2, respectively. Zero means that “inventory” is empty and 
2 means that number of pigs in the “inventory” is twice the size of “customer demand”. Set the min 
and max value of the y-axis as 0 and 1, respectively. Zero means 0% of “customer demand” is 
realized, while 1 means 100% of “customer demand” is realized. To set values on y-axis, use the 
table you opened (as in figure 20 – D). While the x-axis will be automatically set, you can change the 
values of the x-axis by unlocking the key on the top of the table (do not forget to lock it again when 
finished editing). To fill the graphical function you developed, use the following values as (x, y): (0, 
0), (0.5, 0.3), (1, 0.9), (1.5, 1), (2, 1). The expression (0,0) means that when inventory is empty, then 
0% of customer demand is realized, while (0.5, 0.3) means that when inventory equals 50% of 
customer demand, then only 30% of customer demand is realized. Note that these are suggested 
values and can be adjusted if needed.  
 

When you have finished defining all data points on the x and y-axis, click the check sign (  ) on the 
bottom-right corner of the equation box. Variables (or parameters) that are defined as graphical 

equations will have a small curvy line in it ( ). 
 
The converter “Maximum sales rate” represents the number of pigs that can be sold to the market 
given the availability of pigs in the stock of “inventory” and time required for processing, which we 
define as a converter called “minimum processing time”. We define “maximum selling rate” as 
“inventory” divided by “minimum processing time”. Finally, we will define the flow of sales as the 
product of “consumer demand” and “order fulfillment ratio”, which ensures that consumer demand 
is adjusted by the fraction of inventory that can be sold to the market. 
 
Figure 21 shows the updated model structure that shows the flow of pigs from production to 
consumption (selling to the market), while table 3 and figure 22 define the new parameters and 
flows added to the model.  
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Figure 20: The procedure to make a graphical function in iThink
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Figure 21: Revised structure of the pig supply chain model to include processing and sales to the market10 
 

                                                           
10 Both flows of “breeding stock slaughtering” and “slaughtering” represent number of breeding pigs that is been removed from breeding stock and number of 
adult pigs being slaughtered over time, respectively. Parameters “average breeding time” and “feeding time” represent number of weeks (or years depending 
on model time unit) producers keep breeding pigs and the number of weeks producers keep adult pigs before slaughtering them, respectively. Stock of 
“inventory” represents inventory of pigs available to be shipped to the market. Flow of “selling” represents number of pigs shipped to the market to fulfil 
customer demand. Parameter “minimum processing time” represents time required to process a pig for selling. Variables “maximum selling rate” and “order 
fulfilment ratio” represent number of pigs producers can sell over time and portion of customer demand that can be satisfied by “inventory”, respectively. 
Parameter “customer demand” represents number of pigs demanded by customers.        
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Table 3: New parameter and flow values for the demand side of the pig model 

Parameter Value Unit 

Customer demand  390 {pig/week} 

Order fulfillment ratio Graphical function (see figure 21) unitless 

Maximum selling rate  Inventory/Minimum Processing Time {pig/week} 

   

Flows Value Unit 

Slaughtering Adult Pig/Feeding Time {pig/week} 

Breeding stock slaughtering Breeding Stock/Avg Breeding Time {pig/week} 

Selling Customer Demand*Order Fulfilment 
Ratio 

{pig/week} 

 

 

 
Figure 22: Graphical function for order fulfillment ratio 
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To completely operationalize the latest version of the model shown in figure 21, we need to provide 
initial values for the stocks. Table 4 shows the name of the stocks, the equation that is used to calculate 
the initial value of each stock, and the unit of each stock in the pig model.  
 
Table 4: Initial value of the stocks in the pig model 

Stock11 Value Unit 

Gestation  Customer Demand12*Gestation Delay {pig} 

Piglets  Customer Demand*Time to Grow  {pig} 

Growers  Customer Demand*Time to Become Adult {pig} 

Adult pig  Customer Demand*Feeding Time {pig} 

Breeding stock  Customer Demand*(52/ (Litter per Year*Head per Litter)13   {pig} 

Inventory  Customer Demand*Inventory Goal  {pig} 

 
Based on figure 21 above, consider the following exercises: 
 
 

Exercise 8:  

1- Is it possible to run the model shown in figure 21 in equilibrium? How?  
 
 
 
------------------------------------------------------------------------------------------------------------ 
 

2- Are “customer demand” and “indicated breeding stock change rate” exogenous or endogenous 
element of the model shown in figure 21? Why?    
 
 
 
------------------------------------------------------------------------------------------------------------ 
 

3- Does the model structure make sense? Do we need to further challenge the model boundary? 
 
 
 
------------------------------------------------------------------------------------------------------------ 

                                                           
11 Note: equations inside stocks are only used to provide initial value to the stock. You can also enter a number 
directly inside a stock to initialize it. But the use of question is desired. For example, if you change the initial value 
of “customer demand”, then the initial value of all stocks will update automatically. 
12 We multiply the equation inside the stocks by customer demand to ensure that the values of all stocks are set to 
run the model in equilibrium.  
13 The expression (52/ (Litter per Year*Head per Litter) is used in this equation to correctly convert model time unit 
to weeks and to adjust to the fact that pig (unlike sheep and cows) has more than 1 litter per year and more than 1 
offspring per litter. That is, 52 represent 52 weeks of a year (note: if we want to convert model unit to months, 
then we will use 12 or 365 for days). Then we divide 52 by (litter per year * head per litter) to make sure that we 
can run the model in equilibrium regardless of parameter (litter per year and head per litter) values.  
 



 
 

33 

 
4- Is there any new feedback loops introduced to the model provided in figure 21 (compare to the 

mode shown in figure 19)? If yes, what type of feedback loops (reinforcing or balancing)? 
 
 
------------------------------------------------------------------------------------------------------------ 
 

Solution 8: 

1- Yes, it is possible to run the model in equilibrium. In order to run the model in equilibrium, the 
inflows and the outflows of any stock must be equal (we will illustrate this through running the 
model after this exercise).  
 

2- “Customer demand” and “indicated breeding stock change rate” are exogenous parameters in 
the model because they affect the flow of “selling” and “replenishing”, respectively, but they are 
not (neither directly or indirectly) affected by any element of the model (they are not part of any 
feedback loops).  
 

3- The flow of pigs from breeding to selling seems reasonable and consistent with real life 
smallholder livestock producers supply chains. However, “customer demand” is exogenous to 
the model which is unrealistic. In other words, “customer demand” should be an outcome of the 
interaction of supply and demand and price movements rather than a constant parameter 
(more on this will come later). Similarly, “indicated breeding stock change rate” should change 
based on price movement (more precisely, producer’s perception about) the price of pigs in the 
market) rather than a constant parameter because farmers decision to manage breeding stock 
depends on price movements.  
 

4- There are at least two new balancing feedback loops: 
 

A- The loop of “breeding stock” and “breeding stock slaughtering” flows. 
B- The loop that starts from “inventory” and goes through “maximum sales rate”, “order 

fulfilment ratio”, and the flow of “selling” and feeds back to the stock of “inventory”.  
 

 

Pig demand 

In this section, we move to explain and elaborate on the demand side of the value chain. To begin, let’s 
first think through what factors affect “customer demand”.  From neoclassical economic theory, the 
demand curve is defined as a function of prices (own price, prices of complements and substitutes), 
income, and other factors such as preferences, tastes, etc. Moreover, our demand curve can shift (to the 
right or left) based on changes in income, prices of complements and substitutes, and other factors. 
Accordingly, we can define demand in a similar way in iThink, while translating it into the language of 
stocks and flows.  
 
Recall before that we already created a converter called “Customer demand”. What would this 
converter depend on? From the discussion above, we should ensure that demand is based on standard 
demand factors (prices, incomes) and shift parameters that might cause demand to change based on 
changes in preferences and tastes.  In our model, we will thus define a stock called “Demand” that 
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determines what the value of “Customer demand” will be, and whose value will change based on 
changes in demands that depends on prices, income, and other factors  

 

Remember that the value of stocks can only change from inflows and/or outflows. That means we need 
to define some type of flow that allows demand to change, but which also takes into account that the 
change in demand could be either positive or negative. We model these demand changes by creating 
what’s called a bi-flow.  A bi-flow is double-headed flow that shows the flow can either be positive 
(inflow to the stock of “demand”) or negative (outflow from the stock of “demand”). To create a biflow 
in iThink, simply draw an inflow or an outflow as you usually do, but when you double click on the flow 
to open the equation box, on the top-left corner, check biflow instead of uniflow. Call this biflow 
“Change in demand” and be sure to connect to the stock “Demand”. Note that one arrow head of the 
biflow is filled while the other is not. When the bifow head that is not filled is attached to the stock, this 
means when the value of biflow is positive, meaning that the stock increases.   
 
The biflow “change in demand “is affected by three elements. First, it will depend on the stock of 
“demand” to represent the current demand or demand at time t (make a link from the stock of 
“demand” connect to the biflow “change in demand” using a connector). Second, it will depend on a 
parameter “demand adjustment time” that represents the time it takes consumers to adjust their 
demand for pig meat. In other words, if price goes up or down, it takes some period of time for 
consumers to adjust their purchasing behavior. Use a converter to create a parameter named “demand 
adjustment time” and then make a connection from this parameter to the biflow “change in demand” 
using a connector. Finally, changes in demand will depend on price changes that will determine what 
value demand will take. This means that we will need to define some type of price relationship that 
relates demand to prices. In your iThink model, use a converter to create a parameter called “demand 
schedule” and then link it to the biflow “change in demand”.  
 
Let’s define the parameters just added to the model. Define “demand adjustment time” as 4 weeks. To 
define “demand schedule,” we will create a simple demand function that depends on its own price, the 
response of demand to price (the elasticity of demand), and the initial level of demand that determines 
where the demand curve intercepts the y-axis. In your model, create the converters “price”, “demand 
intercept” and “price elasticity of demand” and link them to the converter “demand schedule” using 
connectors. Double click on “demand schedule” and then insert the following equation: 
 

Demand schedule = EXP (Demand Intercept)*Price^Price Elasticity of Demand {pig/week} 
 

Let’s assume that “price elasticity of demand” is -0.5 {unitless}. The “demand” intercept” will depend on 
initial values of price and demand based on the demand schedule equation above. If we rearrange the 
equation for “demand schedule,” solving for demand intercept, and replacing “initial demand” for 
demand and “initial price” for price, we get:    
 

Demand intercept = LN (Initial Demand/ (Initial Price^Price Elasticity of Demand)) 
 

Make sure the demand intercept converter is connected to initial demand and initial price. Insert 390 
{pig/week} and 50 {$/pig} for the parameters “initial demand” and “initial price”, respectively. Let’s also 
define the initial value of the stock of “demand” equal to “initial demand”. To do this in iThink, double 
click on the stock of “demand”, start to write initial and it will automatically show up on among a list of 
parameters used in the model. Make sure to use the correct parameter of “initial demand”. Note that 
this will only allocate the value to the stock at time 1 (starting time of the simulation).  
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“Demand intercept” is also affected by exogenous factors called “other factors”. “Other factors” is an 
exogenous variable that exogenously introduces shocks to the model. The shock might be a long-term 
shock due to animal disease or a short term shock. For the sake of testing the model response to various 
shocks, we will focus on the latter in this manual. Now, on your model in iThink, create a converter 
called “other factors” and link and use a connector to connect it to “demand intercept”. The converter 
“other factor” is defined in a way to represent percentage change. In other words, if “other factors” is 
0.8, it means that “other factors” lower the “demand intercept” to 80% of what it would normally be; if 
“other factors” is 1.2, it means that “other factors” increase the “demand intercept” to a 120% of what 
it would normally be.  
 
 We assume that “other factors” is exogenous to the model that depends on a parameter called 
“demand shock”.  The parameter “demand shock” allows us to introduce exogenous changes to the 
demand side of the model. If the value of this parameter is 0, it means there are no external changes on 
“demand intercept”. If it is 0.2, it means we introduce a 20% increase in demand. If it is -0.2, it means 
we introduce a 20% decrease in demand. In your model, use a converter to create a parameter “demand 
shock” and then connect it with “other factors” using a connector. To define the extent to which 
“demand shock” affects “other factors” and then “demand intercept”, we use a STEP function in iThink. 
A STEP function in iThink will increase a parameter by a certain amount (height) at a certain period of 
time. The STEP function takes the form “STEP (height, time)”. Height represents the magnitude of 
change (or shock). Time represents the starting time of the STEP change. To find STEP function in iThink, 
simply look for it in the builtin14 function list on the right side of the equation box (the equation box can 
be opened by double-clicking on the targeted parameter, variable, flow, and stock). The below equation 
is used to define how any “demand shock” introduced to the model: 
 
 Other factors = 1+ (STEP (Demand Shock, 10)-STEP (Demand Shock, 12)) {unitless}  
 
Let’s review what this function says. STEP(Demand Shock, 10) tells the program to increase the 
parameter “other factors” by the amount of “Demand Shock” at time=10. We add 1 to this since 
“Demand Shock” is given as a percentage change. The term “-STEP (Demand Shock, 12)” is introduced to 
make sure that the STEP length will be for only 2 weeks. That is, we are subtracting the same “Demand 
Shock” two weeks later, so that the net effect after week 12 is zero (i.e., other factors reverts to its 
baseline value of 1). If we only included the first step function, then the STEP change will be permanent 
from week 10. 
 
The equation inside “demand intercept” now reads as  
 
Demand intercept = LN (Initial Demand/ (Initial Price^Price Elasticity of Demand)) * other factors 
 
Note that the parameter “demand shock” is an input to the STEP function inside “other factors”. For 
now, let’s assume that parameter “demand shock” equals to zero.    
 
For the remainder of the simulation, the stock of “demand” will change through the biflow “change in 
demand”.  
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For the biflow “change in demand,” insert the following equation: 
 

Change in demand = (Demand Schedule-Demand)/Demand Adjustment Time {pig/week/week} 
 
Note how this equation works. When the price increases, the demand schedule will change. If this value 
is larger than the stock of demand, prices will rise. This change in the demand will be mediated by the 
demand adjustment time, such that if the demand adjustment time is large, demand will adjust much 
more slowly. 
 
Figure 23 shows the new model structure. Compare your model to the one shown in figure 23 to make 
sure that you have correctly specified all the connections and directions of flows and connectors. Be 
particularly careful with the direction of the biflow “change in demand”.   
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Figure 23: Incorporating added structure to the pig value chain model to include factors that affect demand15 

                                                           
15 “Initial price” and “initial demand” parameters are introduced to initialize the model (only initial values of the affected model component are affected by 
these two parameters). Otherwise, both price and demand are determined by the model endogenously (more on this will come later). 
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Note: 
After using the parameter value in tables 1 and 2 above and the equations provided in the text above 
figure 23 as suggested to your model in iThink to operationalize the latest version of the model shown in 
figure 23, the model should run in equilibrium. Below are a few figures from the model behavior. 
Running model in equilibrium provides a benchmark to check the model validity under shocks. In other 
words, running the model in equilibrium ensures that the modeler understands how the model works 
and provides a benchmark to compare the model behavior under a shock. 
 

  
Figure 24: Breeding stock behavior of the model shown in figure 23 
 

      
Figure 25: Inventory behavior of the model shown in figure 23 
 
Running model in equilibrium assists modelers to understand the model behavior as model structure 
expands and to conduct tests to ensure model validity. The tests include an equilibrium shock and 
behavior prediction tests. These tests are conducted by shocking (change in a parameter) the model in 
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which the modeler predicts how the model behavior changes under a shock. In the latest version of the 
model shown in figure 21, the model runs in equilibrium (figure 24 and 25), to conduct an equilibrium 
shock and behavior perdition tests, let’s increase “customer demand” by 20% from week 10 to 12 (i.e. 
from week 10 to 12 there will be 20% increase in demand but the demand heads back to its original 
value afterwards).  
 
 

Exercise 9: 

1- Can you predict the behavior of “breeding stock” under the proposed demand shock (please use 
the space provided below to draw a figure)? If your figure is not similar (only qualitatively, do 
not worry about quantitative precision) to the figure provided in solution 9? Why? 
 
 

 
 
 
 
 
 
 
 
 
 
  

2- Can you predict the behavior of “inventory” under the proposed demand shock (please use the 
space provided below to draw a figure)? If your figure is not similar (only qualitatively, do not 
worry about quantitative precision) to the figure provided in solution 9? Why? 
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Solution 9: (note that we compare behavior of “breeding stock” and “inventory” here with those shown 
in figures 23 and 24 – run 1 is the same as in figures 23 and 24; run 2 is the model behavior under 
demand shock) 
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1- We expect that the behavior of breeding stock will not change under demand shock because 

producer’s decision to manage pig production (i.e. “indicated breeding stock change rate”) is not 
endogenous). That is, pig supply remains the same because the model does not have “indicated 
breeding stock change rate” endogenized to ensure that any change in demand is reflected in 
the supply. In other words, the supply of pigs remains the same regardless of changes in the 
demand side. 

 
Figure 26: undated breeding stock behavior under demand shock (run 2) 
 

2- We expect that the stock of “inventory” will decline and reach a new equilibrium at a lower level 
than before the shock (figure 24 above or run 1 in figure 27) because a 20% demand shock leads 
to more pigs moving out of inventory without any increase in pig supply.  
 

 

Figure 27: undated inventory behavior under demand shock (run 2) 
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Note:  
Figures 26 and 27 showed that the latest version of the model shown in figure 23 above makes a correct 
response to the demand shock. However, the model behavior showed the need to challenge the model 
boundary. For example, economic theory expects that change in demand (for example, the 20% demand 
shock we introduced to the model) should trigger changes in price and the quantity supplied. But 
currently price is outside the boundary (exogenous), and thus to improve the realism of the model, we 
need to endogenize price, which we will do in the next section.  
 
 

Exercise 10: 

1- Is “customer demand” in the model shown in figure 27 an exogenous or endogenous 
component of the model? Why? 
 
 
-------------------------------------------------------------------------------------------------------- 

2- Is “price” an exogenous or endogenous component of the model shown in figure 27? Why? 
 
 
---------------------------------------------------------------------------------------- 

 

Solution 10: 

1- Though there are various factors affecting “customer demand”, “customer demand” is still an 
exogenous element of the model because it is not part of any feedback loop. That is, to be an 
endogenous component of the model, the component needs to be part of a feedback loop 
(circular connection, which is we start form a point and need to go through the model until we 
go back to the starting point). In this example, if we start from “customer demand, we cannot go 
through the model and head back to “customer demand in a circular connection).  
 

2-   “Price” is an exogenous component of the model because it is not part of any feedback loops.  
 

Pig price setting  

In SD models, the process by which equilibrium occurs is modeled somewhat differently than in 
neoclassical economic theory. In neoclassical economic theory, shifts in the supply and/or demand curve 
(arising from changes in technology, income, or external market forces) will define a new equilibrium 
point. In an SD model, by contrast, price changes (and subsequently changes in supply and demand) 
occur based on product availability as defined by the stock of inventory (Whelan and Msefer 1996).  
 
We assume in an SD model that products (pigs or meat in our model) are sold from the inventory 
producers or processors have at hand. This should make intuitive sense if we think about the process of 
sales in industrial supply chains in the real world.  The decision for a producer in our model is to first 
define the desired amount of inventory and to make their stocking decisions based on the difference 
between what they actually have as inventory and desired inventory. If a producer has more inventory 
than they desire, they would want to get rid of the excess. In doing so, this will place more supply on the 
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market and reduce prices. Same way, if the producer does not have a sufficient level of inventory, they 
will want to increase their stocks, increasing demand for product and raising the price.  
 
In our model, we will use the stock of “inventory” to represent the availability of pigs in the market and 
the flow of “selling” to represent pig demand. The ratio of “inventory” to “selling” represents actual 
inventory coverage at each period of time. In other words, actual inventory coverage gives a signal to 
the market about the relative availability of pigs in the market. If this ratio is 1 (that is, one week of 
inventory coverage), it means the inventory of pigs is equal to market demand. If the ratio is greater 
than 1, it means more pigs are available in the market than market demand. If the ratio is less than 1, it 
means fewer pigs are available in the market than market demand. To add this to your SD model in 
iThink, use a converter to create a variable named “actual inventory coverage” and then make a link 
using a connector from the stock of “inventory” to “actual inventory coverage”. Similarly, make another 
link through a connector from the flow of ‘selling” to “actual inventory coverage”. We then define the 
equation of “actual inventory coverage” as: 
  
Current inventory coverage = Inventory/Selling {week}16 
 
“Current inventory coverage” represents the immediate or actual inventory coverage in the market. 
However, such information is not immediately available to the market. In other words, there may be a 
delay in how quickly this information affects decision-making. We can account for this delay by creating 
two new variables – the first named “perceived inventory” and the other called “time to perceive 
inventory”. “Perceived inventory” takes into account the delay in which this information is acted upon, 
while “time to perceive inventory” is the number of weeks of this delay; it is the time needed for the 
information about actual inventory coverage to be perceived by market actors.  
 
In iThink, make a connection from “current inventory coverage” and one from “time to perceive 
inventory” to “perceived inventory coverage” using connectors. Let’s assume that “time to perceive 
inventory” is 2 weeks. The “perceived inventory” coverage is a smoothed version of “current inventory 
coverage”. In other words, value chain actors adjust their perceptions gradually over a certain time 
delay (i.e. “time to perceive inventory”). To define such an equation in iThink, we use a builtin function 
called smooth (SMTH): 
 
Perceived inventory = SMTH1 (Current Inventory Coverage, Time to Perceive Inventory)17 {week} 
  
Perceptions about inventory are only one part of the product availability story. Producers (or other 
chain actors) will also have a level of inventory desired based on various factors related to the nature of 
the product or the amount of inventory they want to keep in stock to ensure the market is satisfied.   
We thus need to compare our perceptions about inventory with these desired levels of inventory, which 
in turn will determine whether we want to liquidate or add stocks, and will subsequently influence what 
happens to prices.   
 

                                                           
16 Note how the unit of “week” is generated. We divide “inventory” which it has a unit of {pigs} by “selling” which it 
has a unit of {pigs/week}. Thus, we get pigs/(pigs/week) which can be rewritten as pigs*(week/pigs) which results 
in the unit of {week}. That is, week or weeks of inventory coverage.   
17 “The SMTH1 builtin calculates a first-order exponential smooth of input, using an exponential averaging time of averaging 

time, and an optional initial value initial for the smooth. If you do not specify an initial value, SMTH1 assumes the value to be 
the initial value of input”. (iThink help command) 
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In your model, define a converter named “inventory goal” to represent the desired number of weeks of 
inventory coverage. Let’s assume that our “inventory goal” parameter is 2 weeks. In other words, if the 
flow of “selling” equals to 100 pigs/week, then we desire to have 200 pigs in our inventory. Next, let’s 
define a new converter that defines the relationship between perceived and desired inventory (or 
inventory goal). Call this converter “inventory ratio” and define it as the ratio between “perceived 
inventory coverage” and “inventory goal”, ensure that you use connectors to link perceived inventory 
and inventory goal.  
 
Inventory ratio = Perceived Inventory/Inventory Goal {unitless} 

 
“Inventory ratio” represents market signals about the availability of pigs in the market. If the inventory 
ratio is greater than 1, then perceived inventories are greater than what we want. In that case, this ratio 
should send a signal that prices should fall. To enable that those signals affect price with this parameter, 
first create a new parameter named “price elasticity of inventory ratio” to represent the sensitivity of 
the “inventory ratio” to price. Let’s assume that the “price elasticity of inventory ratio” is -0.3 {unitless}.  
 
Next, make connections from “inventory ratio” and “price elasticity of inventory ratio” to “price” using 
connectors. Similarly, make a connection from “price elasticity of inventory ratio” to “price” using a 
connector. Note that earlier in this manual we defined “price” to be equal to “initial price”. However, 
now there are two additional factors (“inventory ratio” and “price elasticity of inventory ratio”) that 
affect “price” which requires updating the way we defined “price”. The new definition (or equation) of 
price is: 

 
Price = Initial Price*Inventory Ratio^Price Elasticity of Inventory Ratio {$/pig} 

 

    
Figure 28 presents the addition of the price setting process to the model. Make sure you got all 
connections especially direction of flows and connectors as shown in figure 28.
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Figure 28: Incorporating added structure to the pig value chain model to include factors that affect prices 
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Exercise 11: 

1- Can you identify any new feedback loops (whether reinforcing or balancing loop) in the added 
model structure in figure 28?  

 
--------------------------------------------------------------------------------------------------------------------- 
 

2- Are “customer demand” and “price” endogenous or exogenous variables in the model show in 
figure 28? Why? 
 
 
---------------------------------------------------------------------------------------------------------------------- 
 

3- Is it possible to run the latest version of the model (figure 28) in equilibrium? How? 
 
 
---------------------------------------------------------------------------------------------------------------------- 
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Solution 11: 

1- A main feedback loop is introduced to the model. This feedback loop begins at “customer 
demand”, goes through the flow of “selling” and the stock of “inventory”, then through “current 
inventory coverage” and “inventory ratio” which affects “price” which in turn affects “demand” 
and feeds back to “customer demand.” To determine whether it is a reinforcing or balancing 
feedback loop, let’s assume that “customer demand” increases by 20%. This leads to higher 
“selling” which lowers the stock of “inventory” because sales increased by 20%. Higher “selling” 
and lower “inventory” lead to lower “inventory coverage” which in turn leads to higher “price” 
because low inventory coverage sends signals of a supply shortage to the market. Higher “price” 
leads to lower “customer demand” which lowers “selling” in the next round. This indicates that 
this feedback loop is self-correcting and therefore it is a balancing feedback loop.  
 

2- Both variables “customer demand” and “price” are endogenous to the model because they are 
part of a feedback loop described in point 1.     
 

3- Yes, it is possible to run this model in equilibrium. To run the model in equilibrium, all inflow(s) 
and outflow(s) of each stock in the model must be equal. Using the equations provided earlier to 
define model elements to operationalize the added structure of the model in figure 28 will make 
the model to run in equilibrium. Below are a few figures of the model behavior in equilibrium.  
 
 
 

   
Figure 29: Breeding stock behavior of the model shown in figure 28 
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Figure 30: Inventory behavior of the model shown in figure 28 
 

 
Figure 31: Price behavior of the model shown in figure 28 
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Figure 32: Customer demand behavior of the model shown in figure 28 
 
In the latest version of the model shown in figure 28, the model is run in equilibrium (figure 29 and 32). 
To conduct an equilibrium shock and behavior prediction test, let’s increase demand by 20% from week 
10 to 12 (i.e. from week 10 to 12 there will be a 20% increase in demand but demand then heads back 
to its original value afterwards).  
 
 
 
 
 

Exercise 12: 

1- Can you predict the behavior of “breeding stock” under the proposed demand shock (please use 
the space provided below to draw a figure)? If your figure is not similar (only qualitatively, do 
not worry about quantitative precision) to the figure provided in solution 12? Why? 
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2- Can you predict the behavior of “inventory” under the proposed demand shock (please use the 
space provided below to draw a figure)? If your figure is not similar (only qualitatively, do not 
worry about quantitative precision) to the figure provided in solution 12? Why? 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

3- Can you predict the behavior of “price” under the proposed demand shock (please use the 
space provided below to draw a figure)? If your figure is not similar (only qualitatively, do not 
worry about quantitative precision) to the figure provided in solution 12? Why?18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

                                                           
18 The x-axis of the figure is time in weeks; y-axis is $/pig 
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4- Can you predict the behavior of “customer demand” under the proposed demand shock (please 
use the space provided below to draw a figure)? If your figure is not similar (only qualitatively, 
do not worry about quantitative precision) to the figure provided in solution 12? Why?19 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  
 
 
 
Solution 12 (in figures of this solution, run 1 represents behavior without a shock; run 2 represents 
behavior under the shock): 

1- We expect that the behavior of “breeding stock” will not change under the demand shock 
because the producer’s decision to manage pig production (i.e. “indicated breeding stock 
change rate”) is exogenous. That is, pig supply remains the same because the model does not 
have “indicated breeding stock change rate” endogenized to ensure that any changes in demand 
and price are reflected in supply.  
 

 
Figure 33: updated breeding stock behavior under a demand shock (run 2) 

                                                           
19 The x-axis of the figure is time in weeks; y-axis is pig/week 
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2- During weeks 10 to 12 (20% increase in demand), the inventory level declines to satisfy the 20% 
increase in demand. However, decreased “inventory” leads to increase in “price” which lowers 
“customer demand”. This leads “inventory” to head back to the original equilibrium level after 
some time lag when the demand shock finishes.     
 

 
Figure 34: updated inventory behavior under a demand shock (run 2) 
 

3- During weeks 10 to 12 (20% increase in demand), “price” increases because of a lower 
“Inventory” level. However, increased “price” leads to lower “customer demand”. This leads 
“inventory” to head back to the original equilibrium level after some time lag when the demand 
shock finishes which in turn makes price to move towards the original equilibrium.     

 
Figure 35: updated price behavior under a demand shock (run 2) 
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4- “Customer demand” increases sharply at the first few weeks of the demand shock (20% 
increases in demand from week 10 to 12). However, this temporary shock leads to a decline in 
“inventory” which leads to a higher “price”. Higher “price” affects consumers which leads them 
to lower “customer demand”. Lower “customer demand” leads to increase in “inventory” in the 
next rounds which in turn lowers “price” until “customer demand” moves toward its original 
equilibrium level.  
 

 
Figure 36: updated customer demand behavior under demand shock (run 2) 
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Note:  
Comparing “breeding stock” and “inventory” figures of exercise 9 with exercise 12 shows the impact of 
endogenizing “customer demand” and “price” on the model behavior at the demand side. However, in 
both exercises (9 and 12) “breeding stock” behavior remains intact. This is an indication that the 
producer’s decision to manage supply of pigs to the market is exogenous to the model. It is unrealistic to 
assume the price movement has no impact on the producer’s decision. Thus, further expansion of the 
model is needed to comply with real life systems.  
 
To link the movement in pig “price” to producer’s behavior, we need to endogenize “indicated breeding 
stock change rate”. To do this, let’s define the factors that affect “indicated breeding stock change rate”. 
These factors include “breeding stock adjustment” and number of pigs in the stock of “growers”. 
“Breeding stock adjustment” represents the number of pigs producers aim to add to “breeding stock” 
each period of time. However, the number of pigs that producers can actually add to “breeding stock” 
depends on number of “grower” pigs available at producer’s facility. Thus, “indicted breeding stock 
change rate” is a function of “breeding stock adjustment” and “grower” pigs. In your SD model, create a 
stock named “breeding stock adjustment” and then use a connector to make a connection from 
“breeding stock adjustment” to “indicated breeding stock change rate”.  In a similar vein, make a 
connection from the stock of “growers” to “indicted breeding stock change rate” using a connector. 
Earlier in this manual (table 1), “indicted breeding stock change rate” was assigned a fixed value. 
However, now “indicted breeding stock change rate” is affected by both stocks of “breeding stock 
adjustment” and “growers”. Therefore, the definition of “indicated breeding stock change rate” needs 
to be updated as follows: 
 
Indicated breeding stock change rate = MAX ((Breeding Stock Adjustment/Growers), 0) {1/week}  
 
We used a MAX function to ensure that “indicted breeding stock change rate” cannot be negative 
because a breeding pig cannot revert to being a grower (if a breeding pig is not needed, it will be sold). 
Let’s define factors that affect the stock of “breeding stock adjustment”. We know that stocks can only 
change through flows. “Breeding stock adjustment” can change in either direction (increase or decrease) 
each time. Thus, we can model this via a biflow. In your iThink model, drag a flow into the stock of 
“breeding stock adjustment” and then name it “change in breeding stock adjustment”. Double click on 
“change in breeding stock adjustment” flow and make it a biflow (note that we already described how 
to switch a flow to a biflow in iThink earlier in this manual). Multiple factors regulate the biflow of 
“change in breeding stock adjustment” such as the stock of “breeding stock adjustment”, the gap 
between actual number of pigs in breeding stock and desired number of pigs in breeding stock, and the 
time it takes producers to fill the gap between actual and desired breeding stock. In your SD model, 
make a connection using a connector from “breeding stock adjustment” and the biflow “change in 
breeding stock adjustment”. Use converters to create a parameter called “gap adjustment time” and a 
variable called “breeding stock gap”.  Then connect both “gap adjustment time” and “breeding stock 
gap” to the biflow “change in breeding stock adjustment”.  The initial value of the stock of “breeding 
stock adjustment” and the biflow of “change in breeding stock adjustment” are as follows: 
 
Breeding stock adjustment = Breeding Stock Gap20 {pig/week} 
 

                                                           
20 Note this only represents the initial value. That is, the initial value of “breeding stock adjustment” equals to 
initial value of “breeding stock gap”.  
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Change in breeding stock adjustment = (Breeding Stock Gap – Breeding Stock Adjustment)/Gap 
Adjustment Time {pig/week/week} 
 
The variable “breeding stock gap” depends on the producer’s desired number of breeding pigs, number 
of breeding pigs slaughtered each time, and the actual number of breeding pigs held by a producer. In 
your SD model, make a connection from “breeding stock” to “breeding stock gap” using a connector. To 
account for the number of breeding pigs slaughtered each time, create a variable called “perceived 
breeding stock slaughter rate” to represent the number of pigs slaughtered each time. Then make a 
connection from the flow of “breeding stock slaughtering” to “perceived breeding stock slaughter rate” 
using a connector. Create a parameter named “time to perceive slaughter rate” to represent the time 
that it takes producers to get informed and account for breeding pigs that have been sold and exited the 
farm. Make a connection from parameter “time to perceive slaughter rate” to “perceived breeding stock 
slaughter rate” using a connector. Then make a link from “perceived breeding stock slaughter rate” to 
“breeding stock gap”. Next, use a converter to create a variable named “desired breeding stock”, then 
connect it using a connector to “breeding stock gap”. Use the following equations to define the 
elements described above: 
 
Breeding stock gap = (Desired Breeding Stock + Perceived Breeding Stock Slaughter Rate) - Breeding 
Stock {pig/week} 
Perceived breeding stock slaughter rate = SMTH1 (Breeding Stock Slaughtering, Time to Perceived 
Slaughter Rate) {pig/week} 
Time to perceive slaughter rate = 1{week} 
Gap adjustment time = 26 {week} 
 
“Desired breeding stock” represents the desired number of breeding pigs producers aim to have. One 
factor that affects “desired breeding stock” is production capacity (that is, producer’s farm size in terms 
of number of pigs that can be kept). In your SD model, use a converter to create a parameter called 
“production capacity” and then connect it to “desired breeding stock” using a connector. Define 
parameter “production capacity” as: 
 
Production capacity = (Initial Demand*1.1111)*(52/ (Litter per Year*Head per Litter))21 {pig} 
 
We will define “desired breeding stock” after exercise 13. Note: make sure you got all connections 
especially direction of flows and connectors as shown in figure 37. 

                                                           
21 Production capacity is a constant. The outcome of this equation is used as an initial value. The reason for using 
this equation is to make sure to be able to run the model in equilibrium if the modeler decided to change 
parameter value (such as litter per year or head per litter). That is, using equation rather than a direct number 
updates initial value of the model automatically without a need to check and change initial value of stocks and 
relevant parameters one by one if modeler decided to use different parameter values.  
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Figure 37: Added structure to the model to address factors that affect the producer’s decision to supply pigs to the market (i.e. “indicated 
breeding stock change rate”) 
  



 
 

56 

Exercise 13: 

1- Would “desired breeding stock” in the latest version of the model shown in figure 37 be an 
exogenous or endogenous element of the model? Why? 
 
---------------------------------------------------------------------------------------- 
 

2- Should pig “price” in the latest version of the model shown in figure 37 affect “desired breeding 
stock”? Why? 
 
 
---------------------------------------------------------------------------------------- 

 
 
 
 

Solution 13: 

1- “Desired breeding stock” as shown in figure 37 is an exogenous parameter because it is not part 
of any feedback loops.  
 

2- Pig “price” is a very important factor. Pig “price” should definitely affect “desired breeding 
stock” to ensure that any movement in pig “price” is taken into account by producer’s to 
manage “breeding stock” and determine pig supply to the market. 

 
In the latest version of the model in figure 37, “desired breeding stock” is exogenous to the model which 
indicates that the producer’s decision to manage “breeding stock” is made without taking pig “price” 
into account.  This violates real life market dynamics.  In a real life markets, price movements along the 
value chain will influence producer behavior. To introduce the effect of price movements on producer 
behavior, we need to introduce the investment effects of a pig “price” movement on producer decisions 
to utilize their farm capacity.  
 
To do this, first, we need to smooth pig “price” over some time period because producers usually do not 
make decisions on the percentage of breeding pigs kept on farm based on short term (for example, 
week to week) price movements. Rather, producers perceive pig “price” over some time period before 
making any decision to avoid sudden reactions to short term price volatility. In other words, if prices 
keep moving up for a year or so, producer expectations of future profitability of the pig farming business 
will increase. In turn, farmers might decide to expand their farm capacity to produce more pigs.  
 
To smooth pig “price” movements, create a stock and name it “short term expected price”. Then drag a 
flow into the stock of “short term expected price” and name it “change in short term expected price”. 
Since price can either increase or decrease, switch the flow of “change in short term expected price” to 
a biflow. In order to form an expectation of expected pig price, we need to define a parameter to define 
the amount of time that it takes producers to smooth their price expectations. Let’s create a parameter 
called “price adjustment time and assume that it equals to half the length of a pig production cycle (i.e. 
about 12 weeks). To operationalize the stock and flow structure used to form short term expected price, 
connect “price”,  “short term expected price”, and “price adjustment time” to the biflow of “change in 
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short run price” using connectors. Use the following equations to define the structure to form short 
term expected price: 
 
Short term expected price = Price {$/pig}  
Change in short term price = (Price-Short Term Expected Price)/Price Adjustment time {$/pig/week} 
 
Note that the initial value of short term expected price is equal to initial value of price. To do this in 
iThink, double click on the stock of “short term expected price”, then start to write price in the equation 
box and it will automatically show up on the list of parameters and other elements used in the model. 
Make sure to select the intended element on the list. Keep in mind that this will only define the initial 
value (the value at starting time).  
 
In our model, the profitability of operations will guide decision-making. We define profitability quite 
simply as the ratio of price to production costs i.e. our expected markup. To make this definition, we 
first need to define production costs. Let’s use a converter to create a parameter named “production 
cost”. “Production cost” represents overall costs to produce one pig expressed as the percentage of the 
initial price. Let’s assume that this is a fixed percentage (0.4) of “initial price”. To define this in iThink, 
make a link from “initial price” to “production cost”. We then create a second variable using a converter 
and name it “expected margin”. Make a link using a connector from the stock of “short term expected 
price” to “expected margin”. Similarly, make a link using a connector from “production cost” to 
“expected margin”. Define the two equations as: 
 
Production cost = 0.4*Initial Price {$/pig} 
Expected margin = Short Term Expected Price/Production Cost {unitless} 

 
“Expected margin” is a profitability indicator that affects producer farm capacity utilization. In other 
words, if “expected margin” is higher than 1, it indicates that pig farming is a profitable business. 
We need next to relate profitability to capacity utilization and investment decisions. Farms typically 
operate at excess capacity so that when prices rise, we would expect farmers to first use unutilized 
capacity to expand production. When that is exhausted, farmers would have to invest in new capacity. 
To model this, let’s first use a converter to create a variable named “indicted capacity utilization” to 
represent producer’s desired capacity utilization based on “expected margin”. Use a connector to make 
a link from “expected margin” to “indicated capacity utilization”. Let’s define “indicated capacity 
utilization” in a way that reflects movement in “expected margin”. In other words, as “expected margin” 
increases, so does “indicated capacity utilization”. In this case, we will use a graphical function (see 
figure 20 on how to create a graphical function in iThink). 
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Indicated capacity utilization22 = (graphical function) 
 

           
 
 
“Indicted capacity utilization” represents the immediate reaction by producers to movements in 
“expected margin”. However, in real life capacity utilization cannot be changed immediately if “expected 
margin” moves upward or downward. Rather, it takes some time for producers to adjust their farm 
capacity utilization. To do this in iThink, use a converter to create a variable named “capacity utilization” 
to represent actual (or current) capacity utilization. Similarly, use a converter to create a parameter 
named “adjustment time” to represent the amount of time it takes producers to change their farm’s 
capacity utilization (“adjustment time” is equal to one production cycle, about 26 weeks). Make a link 
using a connector from “indicated capacity utilization” to “capacity utilization”. Similarly, make a link 
from “adjustment time” to “capacity utilization”. Use smooth function (SMTH1) to define the equation 
inside “capacity utilization” to reflect the gradual adjustment process over time.  

 
Capacity utilization = SMTH1 (Indicated Capacity Utilization, Adjustment Time) {1/week} 

 
Next, make a link using a connector from “capacity utilization” to “desired breeding stock”. This will 
close the feedback loop of the impact of price movement on producer’s behavior. Let’s define “desired 
breeding stock” based on the factors that affect it (“production capacity” and “capacity utilization”). 

 
Desired breeding stock = Production Capacity*Capacity Utilization {pig/week} 
 
Figure 38 shows an expanded version of the model structure that includes effect of pig “price” on 
producer’s behavior. Hint: make sure you have all connections especially direction of flows and 
connectors as shown in figure 38. 

  

                                                           
22 Note that figure on the left-hand side shows graphical representation of the relationship between “expected 
margin” and “indicted capacity utilization”. The table on the right-hand side represents precise values on both the 
x-axis and the y-axis. These are assumed value and can be changed as needed.  
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Figure 38: Added structure to present effect of price on producer behavior 
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Exercise 14: 

1- Can you explain the feedback loop that “desired breeding stock” is part of? Is it a balancing or a 
reinforcing feedback loop? 
 
 
----------------------------------------------------------------------------------------- 
 

2- Is it possible to run the model shown in figure 38 in equilibrium? How? 
 
 
----------------------------------------------------------------------------------------- 

 
 
 

Solution 14:  

1- “Desired breeding stock” is part of an important feedback loop that connects “price” with the 
supply side of the model. This feedback loop begins where “desired breeding stock” affects 
“breeding stock” through “breeding stock adjustment”, “indicated breeding stock change rate” 
and the flow of “replenishing”. Then the change in “breeding stock” goes all the way through 
aging model (“gestation” to “piglets” to “growers” to “adult pigs”) to affect “inventory”. Change 
in “inventory” affects “price” through “current inventory coverage” and “inventory ratio” which 
in turn affects “expected short term price”, “expected margin”, “capacity utilization” and feeds 
back to “desired breeding stock”. This is a balancing (self-correcting) feedback loop. Please note 
that we went through a main feedback loop but there are more than one loop that “desired 
breeding stock” is part of.  
 

2- Yes, it is possible to run this model in equilibrium. To run the model in equilibrium, all inflow(s) 
and outflow(s) of each stock in the model must be equal. Using the equations provided above to 
operationalize the added structure in figures 37 and 38 will make the model to run in 
equilibrium. Below are a few figures of the model behavior in equilibrium.  
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Figure 39: Breeding stock behavior of the model shown in figure 38 

 

 
Figure 40: Inventory behavior of the model shown in figure 38 
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Figure 41: Price behavior of the model shown in figure 38 

 

 
Figure 42: Customer demand behavior of the model shown in figure 38 
 
The latest version of the model in figure 38 runs in equilibrium (see figure 39 and 42). To conduct an 
equilibrium shock and behavior prediction test, let’s increase demand by 20% from week 10 to 12 and 
do the exercise below. 
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Exercise 15: 

1- Can you predict the behavior of “breeding stock” under the proposed demand shock (please use 
the space provided below to draw a figure)? If your figure is not similar (only qualitatively, do 
not worry about quantitative precision) to the figure provided in solution 15? Why? 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2- Can you predict the behavior of “inventory” under the proposed demand shock (please use the 
space provided below to draw a figure)? If your figure is not similar (only qualitatively, do not 
worry about quantitative precision) to the figure provided in solution 15? Why? 
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3- Can you predict the behavior of “price” under the proposed demand shock (please use the 
space provided below to draw a figure)? If your figure is not similar (only qualitatively, do not 
worry about quantitative precision) to the figure provided in solution 15? Why?23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

4- Can you predict the behavior of “customer demand” under the proposed demand shock (please 
use the space provided below to draw a figure)? If your figure is not similar (only qualitatively, 
do not worry about quantitative precision) to the figure provided in solution 15? Why?24 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

                                                           
23 The x-axis of the figure is time in weeks; the y-axis is $/pig 
24 The x-axis of the figure is time in weeks; the y-axis is pig/week 
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Solution 15: 

1- “Breeding stock” reacts smoothly to a 20% increase in demand and takes a long period of time 
to get back to the original equilibrium level after the demand shock is over. A 20% increase in 
demand leads to a higher pig “price” which in turn motivates producers to increase “breeding 
stock” for future investments to increase supply in the future. However, there is a long time lag 
(one production cycle) from the moment producers make a decision until the consequences of 
that decision to reach market (i.e. “inventory). Therefore, when the demand shock (week 10 to 
12) finishes, it takes a long time for “breeding stock” to reach original equilibrium because there 
are pigs in the supply line that will reach market and “breeding stock” with a lag. Note here that 
“price” affects both the demand (i.e. “customer demand”) and the supply (i.e. “indicated 
breeding stock change rate”) side at the same time and both sides try to get the model back to 
the equilibrium point when the demand shock is over. But because there are time lags 
(especially in the supply side, longer than 26 weeks), the model oscillates slightly until it heads 
back toward its original equilibrium level.       
 

 
Figure 643: updated breeding stock behavior under demand shock (run 2) 

 
2- During weeks 10 to 12 (20% increase in demand), the “inventory” level declines to satisfy the 

20% increase in demand. However, on the demand side, decreased “inventory” leads to an 
increase in “price” which lowers “customer demand”. This leads “inventory” to head back to the 
original equilibrium level after some time lag when the demand shock finishes. Unlike exercise 
12 – question 2, “price” movement not only affects the demand side, but also the supply side. 
Therefore, the higher pig “price” induced by the demand shock motivates producers to increase 
“breeding stock” to increase supply in the future. This indicates that the higher “price” leads to 
lower “customer demand” but triggers producers to produce more in expectation of a higher 
“expected margin” in the future. However, unlike the demand side where “customer demand” 
reacts quickly to higher “price”, the consequences of producers decisions (i.e. “indicated 
breeding stock change rate”) to increase “breeding stock” take longer to reach the market, given 
biological delays equivalent to one production cycle. Therefore, “inventory” declines during the 
demand shock, then heads towards the original equilibrium level but slightly overshoots 
because of pigs that are already in the supply line as a consequence of past decisions by 
producers. Eventually, excess pigs in the supply line are absorbed by the market and the model 
moves back towards its original equilibrium.         
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Figure 44: updated inventory behavior under demand shock (run 2) 
 

3- Similar to points 1 and 2, the demand shock (weeks 10 to 12) leads to a higher pig “price”. Pig 
“price” moves smoothly towards original equilibrium after the shock but slightly undershoots 
because excess pigs in the supply line increase “inventory” level that leads to a slightly lower 
“price” until the excess pigs in the supply line are absorbed by the market.   

 
Figure 45: updated price behavior under demand shock (run 2) 
 

4- The spike in “customer demand” is the demand shock (weeks 10 to 12). An increase in 
“customer demand” leads to a higher pig “price” which leads to a quick consumer reaction to 
lower demand. However, producer reactions to higher pig “price” leads to an excess of pigs in 
supply line as a consequence of investment decisions to increase supply. This leads to a higher 
“inventory” and, hence, a slightly lower pig “price”. This in return leads to slightly higher 
“customer demand” until excess pigs in the supply line are absorbed by the market.   
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Figure 46: updated customer demand behavior under demand shock (run 2) 
 
 

Model extensions – integrating external animal health influences to the value chain  

So far, we have showed a simple pig value chain model of pig production and marketing and provided 
insights by which such a model could be expanded to add other market channels and actors. This model 
has been used to highlight and simulate a few simple scenarios and even in its simple form 
demonstrates the power of SD models in analyzing different value chain phenomena. 
 
In this section, we add an external animal health component to the model to simulate the impacts that 
animal diseases might have on the value chain and, in turn, how changes in the value chain engendered 
by disease could influence the evolution of disease in future periods (Rich 2007; Rich and Roland-Holst 
2013).  The basis for our disease model is the standard SIR (Susceptible-Infectious-Recovered) model 
from the epidemiology literature (Anderson and May 1991). This model separates pig population into 
three groups. 

1- Susceptible (S): disease free pigs but vulnerable to be infected. 
2- Infectious (I): diseased pigs. 
3- Recovered (R): diseased pigs that become disease free. 

 
Pigs move from one stage to another depending on their health condition. In the meantime, new pigs 
enter the model through births and adult pigs move out of the model through slaughtering (these two 
flows are modeled in the value chain section).  The differential equations that characterize the S-I-R 
model are presented below in equation, where S, I, and R are the population states as defined above 

and the parameters  and α represent the transition rates from Susceptible to Infected and Infected to 
Removed, respectively: 
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I
dt

dR

SII
dt

dI

SI
dt

dS













  

 
The model above is simplistic in the sense that it assumes a closed population. In reality, however, 
animals will enter and leave the population based on migration, births, market movements (e.g., sales of 
animals for slaughter or export), and mortality that are either attributable to disease or natural.  In 
addition, control measures such as vaccination will further modulate the dynamics of the system – in 
such cases, there will be an additional transition between susceptible animals and removed animals that 
will depend on the rate of vaccination.  We will adapt these changes – and their interface with the value 
chain – in our model. 
 
 
Consider the questions in the exercise below. 
 

Exercise 16: 

1- Would “Susceptible population”, “infectious population” and “recovered population” be stocks 
or flows? Can you draw them in space provided below (or on iThink software)?  
 
 
 
 
 
 
 
 
 
 
 
-------------------------------------------------------------------------------------------- 
 

2- Would the movements among “susceptible population”, “infectious population” and “recovered 
population” be stocks or flows? Can you add this to the figure you drew in first question (or in 
the iThink software)? 
 
 
 
 
---------------------------------------------------------------------------------------------    
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Solution 16: 

1- “Susceptible population”, “infectious population” and “recovered population” are stocks; they 
are the number of pigs in each state at time t. In your SD model, use a stock to create a stock 
named “susceptible population”. Repeat the process to create two more stocks named 
“infectious population” and “recovered population”. 

 
 

 
 
Figure 47: Stocks of susceptible, infectious, and recovered pig populations 
 

2- First, we will have the straightforward connections: there will be a flow from susceptible to 
infectious (“infection rate”) and from infectious to recovered (“recovery rate”). These flows can 
be deduced from the differential equations given above. However, there will be other possible 
flows too. In particular, consider possible other flows into the susceptible population. Depending 
on the type of disease, it is possible that recovered pigs could become susceptible again if 
immunity from disease wanes over time. This means there could be a flow from the recovered 
population to susceptible (“becoming vulnerable”). Second, consider a system that is not closed 
(as opposed to the standard SIR model which assumes a closed system). In this case, we could 
see the entry of both newly born pigs into the susceptible population and the exit of pigs sold for 
slaughtered exiting the susceptible stock. See figure 48 below for the representation of these 
flows in iThink. 

 

 
Figure 48: Stock and flow structure of the SIR model 
 
Let’s next address factors that affect these flows as illustrated in figure 48.  The flow “Infection rate” 
depends on multiple factors such as the size of vulnerable pig population (i.e. “susceptible population”), 
the size of the diseased pig population (i.e. “infectious population”), how often pigs contact each other 
(i.e. “contact rate”), the probability of catching disease if an infected pig contacted a healthy one (i.e. 
“infectivity”), and the total pig population.  
 
To define the “infection rate” in your model, first, use a converter to create a variable named “total pig 
population” to represent the total pig population from the value chain model. Now, use connectors to 
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make connections from each stock that represents the different pig age groups (“breeding stock”, 
“piglets”, “growers” and “adult pigs”) in the value chain model to the variable “total pig population”. 
Then make a link using connector from “total pig population” to the flow of “infection rate”. Similarly, 
use a connector to make a link from the stock “infectious population” to the flow of “infection rate”. 
Then make a connection from the stock “susceptible population” to the flow of “infection rate”. To 
relate the infectivity of disease to the flow of “infection rate”, use a converter to define a parameter 
named “infectivity”. Then link “infectivity” using a connector to the flow “infection rate”. Similarly, use a 
converter to create a parameter named “contact rate”. Finally, use a connector to make a link from 
“contact rate” to “infection rate”.  
 
The equations below define this added structure in SIR model:  
 
Infection rate = Susceptible Population*Contact rate*Infectivity*Infectious Population/Total Pig 
Population {pig/week} 
Total population = Piglets + Growers + Adult Pig + Breeding Stock {pig} 
Infectivity = 0.05 {unitless} 
Contact rate = 4 {pig/week} 
Susceptible population = Total Pig Population – Infectious Population – Recovered Population25 
{pig} 
Infectious population = 0 {pig} 
Recovered population = 0 {pig} 
 
Both of the flows “recovery rate” and “becoming vulnerable” represent respectively the number of 
animals that recover from disease and those recovered that will return to “susceptible population”. 
“Recovery rate” depends on the stock of “infectious population” and the amount of time that it takes an 
infectious pig to become disease free. In iThink, use a converter to create a parameter named “average 
duration of illness” and then make a connection from “average duration of illness” to the flow “recovery 
rate”. Similarly, make a link using a connector from the stock of “infectious population” to the flow 
“recovery rate”.  
 
The flow “Becoming vulnerable” depends on the stock “recovered population” (i.e. number of pigs in 
the recovered stock) and the amount of time that it takes a recovered pig to become vulnerable again. 
In other words (and depending on the disease), pigs that recover from a disease will eventually become 
vulnerable again. In iThink, use a converter to create a parameter named “average immunity time” to 
represent the time a pig remains immune from disease after recovering from it. Then make a link using a 
connector from “average immunity time” to the flow “becoming vulnerable”. In a similar vein, make a 
link using a connector from the stock “recovered population” to the flow “becoming vulnerable”. Use 
equations below to add the new structure to the SIR model: 
 
Recovery rate = Infectious Population/Average duration of illness {pig/week} 
Becoming vulnerable = Recovered Population/Average Immunity Time {pig/week} 

                                                           
25 Note that under this equation, we assume that all pigs are in “susceptible population” because we assume that 
both stocks of “infectious population” and “recovered population” are zero. But if initial value of both or either 
“infectious population” and “recovered population” to more than 0, then the initial value of “susceptible 
population” will automatically update itself. This way, we will be sure that we have the same number of pigs in 
both value chain and SIR model. In other words, we will be sure that we will not have more “susceptible pigs” than 
pigs exist in the value chain model or more “infectious pigs” than number of pigs a farmer has.  
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Average duration of illness = 12 {week} 
Average immunity time = 1 {week} 
 
The two flows “new born” and “removing for slaughter” on the left-hand side of the SIR model are 
exogenous and are directly taken from the value chain model constructed earlier in this manual (refer to 
figure 38 to see the latest version of the model). To connect value chain model to the SIR model, make a 
link using a connector from the flow of “weaning” in the value chain model to the inflow “new born”. In 
other words, the moment a pig is born, it becomes susceptible to disease. In a similar vein, to remove 
pigs that are slaughtered from the SIR model, make a link using a connector from the flow 
“slaughtering” in the value chain model to the flow “removing for slaughter”. In a similar vein, make a 
link using a connector from the flow “breeding stock slaughtering” in in the value chain model to the 
flow of “removing for slaughter”. 
 
New born = Weaning {pig/week} 
Removing for slaughter = Slaughtering + Breeding Stock Slaughtering {pig/week} 

 
Compare your model with that illustrated below in figure 49. 
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Figure 49: Adding the SIR model to the value chain model
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An important check of this model is that the number of pigs in the SIR model must be equal to the 
number of pigs in the value chain model. That is, “breeding stock” + “piglets” + “growers”+ “adult pigs” 
must equal the sum of “susceptible population”, “infectious population” and “recovered population”. In 
order to ensure that both the value chain model and the SIR model are consistent, we can check this by 
adding a graph to our model that plots “Total pig population” (already defined) to a new parameter 
called “Total pig population in SIR”, defined as “susceptible population” + “infectious population” + 
“recovered population”26. If we run this in iThink, we should get a graph like that shown in figure 50 
where both population levels are equal.  
 
 
 

 
Figure 50: Consistency check of total pig population in the value chain model and total pig population 
in the SIR model 

The impact of animal health policy on the value chain  

The latest version of the model in figure 49 integrates both the value chain and the SIR model. The SIR 
model in its current form does not include any structure to manage or control disease. In this section, 
we will design two different interventions to manage animal disease and simulate their impacts on both 
the evolution of disease and the pig value chain.  

1- Vaccination policy: vaccinating pigs in “susceptible population” before getting infected.  
2- Quarantine policy: removing pigs in “infectious population” to limit contact with healthy pigs. 

Vaccination policy 

This policy removes pigs from “susceptible population” to a new stock “vaccinated population” where 
pigs are immune from an infectious disease. To introduce a vaccination policy to the SIR model, create a 
stock named “vaccinated population”. Then create a flow from the stock of “susceptible population” to 
the stock of “vaccinated population”, and name this flow “vaccinating”.  
 

                                                           
26 Note: you can create a variable called “total pig population in SIR” and add all SIR pig population stocks to it. For 
simplicity of figure, we have not included “total pig population in SIR” in figure 49. 
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The flow “vaccinating” depends on three factors. First, it will depend on the number of pigs that can be 
vaccinated each time. Create a converter named “vaccination rate”. “Vaccination rate” will be regulated 
by (1) the “time to deploy vaccine” (i.e. time needed to vaccinate all pigs), (2) “fraction vaccinated” (i.e. 
the percentage of the vulnerable pig population we aim to vaccinate, where 1 denotes 100% and 0 
denotes 0%), and (3) the number of pigs that potentially can be vaccinated (i.e., pigs in the stock 
“susceptible population”). Create two converters “time to deploy vaccine” and “fraction vaccinated”. 
Then connect “susceptible population”, “time to deploy vaccine”, and “fraction vaccinated” to the 
variable “vaccination rate”.   
 
The equations below summarize the additions noted above: 
 
Vaccination rate = Fraction Vaccinated*(Susceptible Population/Time to Deploy Vaccine) 
{pig/week} 
Time to deploy vaccine = 52 {week} 
Fraction vaccinated = 0.3 {unitless} 
 
Second, while “vaccination rate” represents the ability to deliver vaccines each time, it might not be 
guaranteed that vaccinated pigs will be fully immune from disease. In iThink, use a converter to create a 
parameter named “effectiveness of the vaccine”. Make a link from the parameter “effectiveness of the 
vaccine” to the flow “vaccinating”. For now, let’s assume that the vaccine is 100% effective. We enter a 
value of 1 to denote this percentage effectiveness.  
 
Effectiveness of the vaccine = 1 {unitless} 
  
Third, vaccination is an expensive procedure and is not implemented until a certain percentage of the 
pig population actually catches an infectious disease. Therefore, let’s create a variable called “threshold 
to start vaccination” that equals to 0.5% of “total pig population”. What this means is that if 0.5% of 
“total pig population” is infected (i.e. the number of pigs in “infectious population”), then the 
vaccination policy is automatically launched. Use a connector to link “threshold to start vaccination” to 
the flow “vaccinating”. The equation “threshold to start vaccination” is thus: 
 
Threshold to start vaccination = 0.005*Total Pig Population {pig} 
 
Finally, we define the flow “vaccinating” as follows: 

 
Vaccinating = (IF (Infectious Population>Threshold to Start Vaccination) THEN (Vaccination 
Rate*Effectiveness of the Vaccine) Else (0)) {pig/week} 
 
This equation says that when number of infected pigs (i.e., the number of pigs in “infectious 
population”) exceeds 0.5% of total pig population, then the vaccination policy is launched. Otherwise, 
there is no vaccination policy implemented and the rate of vaccinating is zero 
 
Figure 51 below summarizes graphically the connections generated from the instructions above. 
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Figure 51: Implementing a vaccination policy in the integrated SIR-value chain model 
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Quarantine policy 

In this policy, infected pigs are quarantined. To do this, we remove infected pigs from “infectious 
population” to “quarantined population” using a new flow called “quarantine rate”. The purpose of 
placing infected pigs in quarantine is to restrict their contact rate with healthy pigs.  
 
In your model, create a stock called “quarantined population”. Then create a flow from the stock of 
“infectious population” into the stock of “quarantined population” and name it “quarantine rate”. The 
flow “Quarantine rate” depends on the stock of “infectious population” (i.e. number of infected pigs), 
“quarantine time” (i.e. the time that it takes to quarantine a pig from the moment it enters the stock of 
“infectious population), and “quarantine fraction” (i.e. what percentage of the infectious pig population 
we aim to place in quarantine, where 1 equals 100% and 0 equals 0%). Use a connector to link the stock 
“infectious population” to the flow “quarantine rate”. Create converters called “quarantine time” and 
“quarantine fraction”. Use a connector to link “quarantine fraction” to the flow “quarantine rate”. 
Similarly, use connectors to link the parameter “quarantine time” to the flow “quarantine rate”.  
 
Define the equations below to add the quarantine policy to the SIR model:  
 
Quarantine rate = ((Infectious Population*Quarantine Fraction)/Quarantine Time) 
{pig/week} 
Quarantined population = 0 {pig} 
Quarantine fraction = 0.3 {unitless} 
Quarantine time = 8 {week} 
 
Pigs that are placed in quarantine will remain quarantined until they recover and become disease free. 
In other words, when infected pigs in “quarantined population” become disease free, they move to the 
stock of “recovered population” via the flow of “quarantine population recovery rate”. In your SD 
model, create a flow out of the stock “quarantined population” into the stock of “recovered population” 
and name it “quarantine recovery rate”. “Quarantine recovery rate” will depend on the number of pigs 
in the stock of “quarantined population” and the parameter “average duration of illness”27 that 
represents the average period of time it takes each infected pig to recover from disease. Use the 
equation below to define the flow of “quarantine recovery rate” and make the relevant links using 
connectors to generate this equation: 
 
Quarantine recovery rate = Quarantined Population/Average duration of illness {pig/week} 
 
Figure 52 below summarizes graphically the connections generated from the instructions above. 
 
 

                                                           
27 This parameter is already added to the model.  
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Figure 52: Implementing a quarantine policy in the integrated SIR-value chain model 
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Policy costs 

Vaccination and quarantine policies are potentially expensive interventions. The costs of any policy 
intervention need to be included in the model to analyze the cumulative costs of the interventions and 
their cost over time.  
 
To include policy costs in our model, create two stocks, one that is named “cumulative vaccine cost” and 
the other named “cumulative quarantine cost”. Similarly, drag a flow into the stock of “cumulative 
vaccine cost” and name it “vaccine cost over time”. Similarly, drag a flow into the stock of “cumulative 
quarantine cost” and name it “quarantine cost over time”. Note that we used inflows because neither 
quarantine cost nor vaccine costs can be negative. “Vaccine cost over time” will depend on the number 
of pigs that are vaccinated each period (i.e. flow of “vaccinating”) times the “average cost of vaccine per 
pig”. Use connectors to link the flow of “vaccinating” to the flow of “vaccine cost over time”. Then use a 
converter to create a parameter named “average cost of vaccine per pig”.  
 
“Quarantine cost over time” will depend on the number of pigs that are placed in quarantine over time 
(i.e. the flow “quarantine rate”) times the “average quarantine cost per pig”.  Use a connector to make a 
link from the flow “quarantine rate” to the flow “quarantine cost over time”. Then use a converter to 
create a parameter named “average quarantine cost per pig”. Then use a connector to link “average 
quarantine cost” to the flow “quarantine cost over time”.  
 
Use the following equations to define the cost features defined above: 
 
Vaccine cost over time = Vaccinating*Average vaccine cost per pig {$/week} 
Cumulative vaccine cost = 0 {$} 
Average vaccine cost per pig = 5 {$/pig} 
Quarantine cost over time = Quarantine Rate*Average Quarantine cost per pig {$/week} 
Cumulative quarantine cost = 0 {$} 
Average quarantine cost per pig = 10 {$/pig} 
 
Figure 53 below summarizes graphically the connections generated from the instructions above. 
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Figure 53: Implementing policy costs in the integrated SIR-value chain model 
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Exercise 17 

1- Under current assumptions in SIR model (i.e. initial value of “infectious population” is equal to 
zero), how would stocks of “susceptible population”, “infectious population”, “recovered 
population”, “Vaccinated population” and “quarantined population” behave? Why? (Note: 
please be aware that the value chain model is running in equilibrium (no shocks tested))  
 
 
----------------------------------------------------------------------------------------------------------- 
 
 

2- How would stocks of “susceptible population”, “infectious population”, and “recovered 
population” behave if the initial value of “infectious population equals to 1? Why?28 Please draw 
possible behavior of each stock on three spaces to draw figures provided below (please pay 
attention to pattern of behavior (i.e. exponential growth or exponential decay or linear growth 
or a combination of these patterns of behavior rather than quantitative precision).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 

                                                           
28 Note: 

1- be aware that the value chain model is running in equilibrium (no shocks test here) 
2- For now, we assume policy interventions are not activated (we have no policy (vaccine and quarantine) in 

place). 
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Solution 1729 

1- The stocks “susceptible population”, “infectious population”, “recovered population”, 
“vaccinated population” and “quarantined population” in the SIR model will remain unchanged 
because when “infectious population” is equal to zero it means there are no infected pigs to 
start disease outbreaks. Additionally, all stocks of the SIR model except “susceptible population” 
are equal to zero over a 520 week simulation time horizon because the farm or the region is 
disease free (there need to be at least one infected pig to start a disease outbreak). In this case, 
“Susceptible population” is equal to “total pig population”.  Figure 54 shows the behavior of 
targeted stocks in the SIR model when “infectious population” is equal to zero.  
 

Figure 54: shows behavior of stocks of “susceptible population”, “infectious population”, “recovered 
population”, “vaccinated population” and “quarantined population” in SIR model, respectively 

 
 

 
 

                                                           
29 In solutions 17 and 18 (next exercise), run 1 represents no disease case; run 2 represents disease outbreak 
without policy interventions; run 3 represents disease outbreak with vaccination policy; run 4 represents disease 
outbreak with quarantine policy in place. 
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2- When the initial value of “infectious population” is equal to 1, this will lead to a disease 
outbreak. Initially, there is only one infected pig. This infected pig will infect other pigs in the 
farm or region. At the beginning, “infection rate” is very slow because one pig cannot cause a 
large-scale outbreak. However, more pigs get infected over time which accelerates “infection 
rate”. This leads to an outbreak and an increasing decline in “susceptible population” because 
more pigs get infected which in turn increases the level of “infectious population” in an 
increasing rate. However, as “infectious population” increases and “susceptible population” 
declines, the flow of “infection rate” begins to decrease in an accelerating rate because there 
are less vulnerable pigs (i.e. lower “susceptible population”). As “infectious population” grows, 
so does the flow of “recovery rate” and stock of “recovered population” which in turn increases 
flow of “becoming vulnerable” and feeds back to the stock of “susceptible population”. Then the 
infection cycle repeats itself.  Figure 55 shows model behavior of “susceptible population”, 
“infectious population”, and “recovered population”, respectively.  
 
  

Figure 55: behavior of stocks of “susceptible population”, “infectious population”, and “recovered 
population”, respectively 
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Exercise 18 

1- If a vaccination policy is applied, how would stocks of “susceptible population”, “infectious 
population”, “recovered population”, and “vaccinated population” behave if the initial value of 
“infectious population equals to 1? Why?30 Please draw the possible behavior of each stock on 
four spaces to draw figures provided below (please pay attention to pattern of behavior i.e. 
exponential growth or exponential decay or linear growth or a combination of these patterns of 
behavior rather than being quantitatively precise).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
 

                                                           
30 Note: 

3- be aware that the value chain model is running in equilibrium (no shocks tested here) 
4- For now, we assume quarantine policy intervention is not activated. 
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2- If a quarantine policy is applied, how would stocks of “susceptible population”, “infectious 
population”, “recovered population”, and “quarantined population” behave if the initial value of 
“infectious population equals to 1? Why?31 Please draw the possible behavior of each stock on 
four spaces to draw figures provided below (please pay attention to pattern of behavior i.e. 
exponential growth or exponential decay or linear growth or a combination of these patterns of 
behavior rather than being quantitatively precise).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
 
 

                                                           
31 Note: 

5- be aware that the value chain model is running in equilibrium (no shocks tested here) 
6- For now, we assume vaccination policy intervention is not activated. 
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Solution 18 

1- When a vaccination policy is active, vulnerable pigs are continuously vaccinated and move to 
“vaccinated population” where pigs are immune from disease. This means that the “vaccinated 
population” continuously increases until it reaches the pig population limit.  Since there are 
more outflows of pigs out of “susceptible population” compared to the previous exercise, 
“susceptible population” declines at a faster rate because a percentage of pigs become infected 
and another percentage gets vaccinated.  Both the “infectious population” and “recovered 
population” peak at a much lower magnitude and then decline to reach very low levels 
compared to question 2 of exercise 17 because as infected pigs recover and move back to 
“susceptible population”, a fraction of those pigs get vaccinated until most pigs are immune 
from disease.  

 
 
Figure 56: behavior of stocks of “susceptible population”, “infectious population”, “recovered 
population”, and “vaccinated population, respectively 
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2- When a quarantine policy is active, the ‘susceptible population” declines at a slower rate than 

results of question 2 of exercise 17 because infectious pigs are placed in quarantine to restrict 
their contact rate with healthy pigs. This greatly reduces the infection rate. However, infected 
pigs in “quarantine population” recover from disease and move to “recovered population” and 
then become vulnerable again. But since the infection rate is lower than the no quarantine case, 
both “infectious population” and “recovered population” peak at a much lower level compared 
to the no quarantine case.  
 

Figure 57: behavior of stocks of “susceptible population”, “infectious population”, “recovered 
population”, and “quarantined population, respectively 
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Concluding remarks 
The integrated value chain and SIR model of the previous section can be further expanded and 
integrated to provide a more realistic assessment of the joint epidemiological and economic impacts of 
different disease interventions. For example, we could include pig death rates in the value chain model 
in a manner that is consistent with death rate parameters in the SIR model. As disease management 
interventions directly affect pig fecundity and mortality, there will be an important feedback loop 
between disease and value chain dynamics and demonstrate how the evolution of disease can affect 
chain behavior, and how chain behavior can influence subsequent waves of infection over time (Rich 
2007). Similarly, we could model vaccination in a manner that allows pigs to become susceptible again 
and require re-vaccination in order to stay immune from disease.  
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The models developed in this manual provide a first glimpse into the power of using SD in a value chain 
setting. As value chains are complex systems replete with a variety of interactions among different 
actors, biological parameters, environmental variables, and behavioral considerations, SD models are a 
natural means to model and conceptualize the structure of these chains and possible entry points for 
intervention. Future research will be needed to refine our thinking on how to model different 
agricultural and livestock systems that take into account the contextual differences associated with 
different chains, although it is hoped that this work provides a lens into how new models could be 
adapted from the lessons generated here.  
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