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Sustainable agriculture requires the careful optimization of the use of organic amendments to improve
soil fertility while minimizing any harmful environmental effects. To understand the events that occur in
soil after the addition of different organic amendments, we evaluated the nitrogen (N) mineralization
dynamics in soil after adding organic amendments, and evaluated changes in the microbial population.
The four organic amendments were fresh dairy cattle manure, fresh white clover, vegetable, fruit, and
yard waste compost, and poplar tree compost. The N mineralization potential of each organic
amendment was determined by analyzing total mineral nitrogen during a 97-day laboratory incubation
experiment. Soils amended with clover released 240 pg N g soil during the 97-day incubation, more
than twice as much as that released from soils amended with manure or composts (76-100 pg N g~ soil).
At the end of the incubation, the net N mineralization in clover-amended soils was 54%, more than five
times higher than that in soils amended with composts or manure (4%-9%). Nitrogen was mineralized
faster in clover-amended soil (1.056 wgNg~! soil day~™') than in soil amended with composts
(0.361-0.417 g N g~ ' soil day~'). The microbial biomass carbon content was higher in clover-amended
soil than in the soils amended with manure or composts. We monitored changes in the microbial
population in amended soils by a phospholipid fatty acid (PLFA) analysis. On day 97, there were higher
concentrations of total PLFAs in soils with organic amendments (e.g., 14.41 nmol g~ ! in clover-amended
soil) than in control soil without amendments (9.84 nmolg~'). Bacteria (Gram-positive and Gram-
negative), actinomycetes, and fungi were more abundant in clover-amended soils than soils amended
with manure or composts. The N mineralization potential varied among the four organic amendments.
Therefore, the timing of application and the type of organic amendment should be matched to the
nutrient needs of the crop.
© 2016 Z. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

To increase crop yields, reduce environmental pollution, and
achieve sustainable agriculture, soil fertility needs to be main-
tained at an appropriate level, or restored if it has decreased

Abbreviations: AMF, arbuscular mycorrhizal fungi; CLO, fresh white clover; COI,
poplar tree compost; COV, vegetable, fruit, and yard waste compost; ILVO, Institute
for Agriculture and Fisheries Research; MAN, cattle manure; OA, organic
amendments; PLFA, phospholipid fatty acid; SOM, soil organic matter; TOC, total
organic carbon.
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(Diacono and Montemurro, 2010; Fageria, 2007). In farming
systems with low inputs of chemical fertilizers and pesticides,
this can be achieved by rotating leguminous and non-leguminous
crops, and by addition of organic amendments (OA). These OAs can
be composted or non-composted organic wastes from agriculture,
industry, municipal operations, seaweed, or blood and bone meal
(Quilty and Cattle, 2011).

0929-1393/© 2016 Z. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The application of OAs is common in organic farming systems.
These OAs enhance plant growth and may reduce the need for
mineral fertilizers (Mohanty et al., 2011), which reduces costs for
farmers. Organic amendments restore and reclaim degraded soils
by maintaining organic matter and sustaining soil fertility for
agricultural production, particularly in the long-term, by slowly
releasing nutrients (Tejada et al., 2009). Thus, OAs recycle nutrients
and organic matter to support crop productivity and maintain soil
quality (Whalen et al., 2001).

Soil organic matter (SOM) is a storehouse and supplier of
nutrients such as nitrogen (N), phosphorus, and sulfur to crops
(Schulten and Schnitzer, 1998), and it improves the physical,
chemical, and biological properties of soils (Diacono and Mon-
temurro, 2010). The growth and activity of soil microbes are
stimulated by SOM, leading to efficient mineralization of crop
nutrients (Tejada et al., 2009). The SOM is derived from plants,
animals, and microbes. These organic materials, either added to the
field or already on-site, decompose via mineralization to release
the nutrients required for crop growth and development (Diacono
and Montemurro, 2010). The recent popularity of OAs in
agriculture represents an alternative strategy to manage wastes
and improve the SOM content in low-fertility soils (Flavel and
Murphy, 2006).

Nitrogen mineralization is a biological process. The amount of N
released to crops depends on the chemical composition of organic
matter (e.g., N content, carbon:N ratio, and contents of cellulose
and hemicelluloses, lignin, and polyphenols) (Calderén et al., 2005;
Mohanty et al., 2011) and on the physical, chemical, and biological
properties of soil microbes (Manojlovi¢ et al., 2010). Organic
amendments with high N contents and low C:N ratios mineralize
sufficient N to satisfy plant growth (Cordovil et al, 2005;
Seneviratne, 2000). Conversely, N can be immobilized in OAs
with lower N contents and higher C:N ratios (Manojlovi¢ et al.,
2010).

It is important to manage OAs appropriately to avoid
contaminating the environment (Manojlovic et al., 2010). Ground-
water and atmospheric contamination are the main impacts of
excessive use of organic fertilizers in agriculture (Calderén et al.,
2005). There are two main reasons for exploring the N minerali-
zation dynamics of OAs used in agriculture; first, to avoid excess
fertilizer application and reduce N losses to the environment; and
second, to optimize residue management to maximize crop
production, especially in low-input agriculture based on nutrient
recycling (Bruun et al., 2006).

There have been some studies on the dynamics of N
mineralization from OAs in agro-ecosystems; for example, animal
manures, crop residues, and composts (Abbasi et al, 2007;
Amanullah, 2007; Azeez and Van Averbeke, 2010; De Neve and
Hofman, 1996; Van Kessel and Reeves, 2002). However, few studies
have specifically compared the effects of various kinds of OAs (e.g.,
cattle manure, compost, and green manure) on N mineralization
and on the microbial population as the main decomposers. In this
study, we focused on the effects of various OAs on both N
mineralization and the microbial population, which plays an
important role in nutrient recycling, especially in organic farming
systems. Two hypotheses were tested. First, we hypothesized that
the N mineralization dynamics in soil will differ depending on the
type of OA added. Second, we hypothesized that the addition of
different OAs will have different consequences in terms of the size
and composition of the microbial population.

2. Materials and methods
2.1. Soil collection and analysis

Sandy loam soil was collected from the surface layer (0-20 cm)
at the Research Farm of the Institute for Agriculture and Fisheries
Research (ILVO), Merelbeke, Belgium. White clover had been
cultivated in this soil continuously for several years. The soil was
obtained in September 2011 at 17% (w/w) field moisture content,
and a subsample was taken for chemical analysis. Field-moist soil
was passed gently through a 4.75-mm sieve to remove root
materials, surface litter, and stones. The soil pH was measured with
a pH meter in a potassium chloride suspension (1.0 g soil: 2.5 ml
KCI). Total N and C contents were determined using a CNS Analyzer
(Variomax CNS Elementar, Hanau, Germany). The soil had a pHyc
of 5.5 (1:2.5w/v), a bulk density of 1.3gcm>3, 0.09% total N
content, and 1.12% total C content.

2.2. Organic amendments

We used four different OAs in the 97-day laboratory incubation
experiment. Fresh dairy cattle manure (MAN) and fresh white
clover (CLO) were obtained from the ILVO. The other two OAs were
composts: vegetable, fruit, and yard waste compost (COV),
produced from household wastes and obtained from Vlaamse
Compostorganisatie (VLACO; Mechelen, Belgium); and poplar tree
and grass compost (COI), which was obtained from the ILVO.

2.3. Laboratory incubation procedure

Before the incubation experiment, the fresh white clover was
chopped into small pieces (with dimensions of approximately 2-
10mm) using a kitchen knife. Each OA was mixed with 200 g of
moist soil at a rate indicated in Table 6 then placed in plastic tubes
(7.2-cm length, 6.8-cm diameter). Then, the soil was compacted to
give a bulk density of 1.3 gcm > (identical to that measured in the
field). The tubes were covered with pin-holed parafilm to allow air
circulation and minimize water evaporation, then incubated in the
dark at 20°C for 97 days. For the control, no OA was added to the
soil, but the soil samples were mixed, compacted, covered, and
incubated in exactly the same way as the soils in the OA
treatments. During the incubation period, all soils were main-
tained at 55% water-filled pore space (WFPS), which was calculated
from the bulk density and the gravimetric moisture content. The
weight loss of each tube was checked daily, and distilled water was
added to each tube to maintain a constant soil moisture content as
required.

Four separate replicates of each of the four treatments and the
control were analyzed at each sampling time (days 7, 21, 40, 68, and
97 days of incubation). All parameters (mineral N, microbial
biomass C (Cnic), PLFA concentration, and moisture content) were
measured for each replicate.

2.4. Measurements of mineral nitrogen and microbial biomass carbon

To measure mineral N, 30 g of soil was extracted in 60ml 1M
KCl with shaking for 1 h. The mixture was filtered through mineral
N filter paper (MN 616), then the extract was stored at —18 °C until
analysis. Mineral N (NOs™-N and NH4"-N) was determined with a
continuous flow auto-analyzer (Chemlab System 4, Skalar, The
Netherlands).

The net N mineralization of each OA was calculated as the
difference in the amount of mineral N released between amended
and control soil (Mohanty et al., 2011). The percentage of total N
mineralized from each OA at each sampling time was calculated as
described by Azeez and Van Averbeke (2010) and Abbasi et al.
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(2007), as follows:

MN(amended) — MN(control)

N Total (applied) x 100

% Mineralization =

where MN is total mineral N, and N total is total N in the applied
OA.

The chloroform fumigation-extraction method (Vance et al,,
1987) was used to determine Cp.. Each 30-g soil sample was
fumigated with chloroform for 24 h, then 60 ml 0.5 M K,SO, was
added and the mixture was shaken for 1h. The samples were
filtered through Whatman No. 5 filter paper and the filtrates were
stored at —18°C until analysis. Non-fumigated samples were
simultaneously extracted using the same procedure. The organic C
content of the extracts was determined with a total organic carbon
(TOC) analyzer. The Cy,c value was calculated as the difference in
organic carbon content between fumigated and non-fumigated
samples (Wang et al.,, 2007; Moore et al., 2000). The K,SO4
extraction efficiency factor of 0.45 stated by Joergensen (1996) was
used to estimate Cp;c with the following equation:

Cr — Cur
KkEC ’
where Cr and C,r represent the amount of carbon extracted from

fumigated and non-fumigated samples, respectively, and kEC is the
extraction factor.

Cmic =

2.5. Phospholipid fatty acids (PLFAs) analysis

Soils sampled at each time were freeze-dried and stored at
—18°C until analysis. The PLFAs were extracted from 4 g of soil
using a modified technique. The extracted samples were analyzed
by gas chromatography mass spectrometry (GC-MS) with a
Thermo Focus GC coupled to a Thermo DSQ MS (Thermo Fisher
Scientific Inc., Waltham, USA) in electron ionization mode.

Fatty acids were designated as X: YwZ, where ‘X’ is the number
of carbon atoms in the chain, ‘Y’ is the number of double bonds
(unsaturations), and ‘Z’ is the number of carbon atoms from the
methyl end of the molecule to the first unsaturated bond (Bossio
et al., 1998; Fraterrigo et al., 2006; Peacock et al., 2001; Zelles,
1999). The prefixes a,i, cy, and d refer to anteiso, iso, cyclopropyl
branching, and dicarboxylic fatty acids, respectively; br indicates
unknown branching type, and ME indicates the position of a
methyl group. The prefixes « and [3 indicate that the OH groups of
an OH fatty acid are located at positions 2 and 3, respectively.
Numbers preceded by w indicate the position of OH groups from
the aliphatic end of the fatty acid. The suffixes ¢ and t indicate cis
and trans geometry, respectively.

Different fatty acids indicate different microbial groups:
cyclopropyl fatty acids are indicative of Gram-negative bacteria;
branched fatty acids (e.g., iso and anteiso) indicate Gram-positive
bacteria (Balser and Firestone, 2005 Zelles, 1999); monounsatu-
rated fatty acids are indicative of fungi and bacteria (Peacock et al.,
2001 Zelles, 1999); and polyunsaturated fatty acids are indicative
of eukaryotes, excluding cyanobacteria. The fatty acids with methyl
branching on the tenth carbon atom are indicative of actino-
mycetes (Zelles, 1999).

We calculated the total PLFA and PLFA concentrations for
different microbial groups for each sample. The sum of iC15:0,
aC15:0, iC16:0, aC16:0, iC17:0 and aC17:0 represented Gram-
positive bacteria. The sum of cyC17:0 and cyC19:0 fatty acids
represented Gram-negative bacteria. The total bacterial commu-
nity was the sum of marker PLFAs for Gram-positive bacteria,
Gram-negative bacteria, C15:0, and C17:0. The sum of C18:2w9,
12¢, C18:1w9c, and C18: 3w9, 12, and 15c¢ represented fungi, and
C16:1wl11 represented arbuscular mycorrhizal fungi (AMF).

Actinomycetes were calculated as the sum of 10Me16:0 and
10Me18:0. We also calculated the ratio of bacteria to fungi (B:F).

2.6. Statistical analyses

All data (MN, Cpyie, and PLFA concentrations) were statistically
analyzed by two-way analysis of variance (ANOVA) using SPSS
version 16.0. Tukey’s (honestly significant difference) post-hoc test
was used to compare means when significant differences were
found. The main effects (time and treatment) and their interaction
were considered significant at a probability level (p) of 0.05.
Pearson’s correlation analysis was performed to test relationships
between variables.

3. Results
3.1. Initial properties of organic amendments

Table 1 shows the chemical characteristics of the OAs used in
the experiment. Total N content was significantly higher in CLO
than in the other OA materials. The carbon content was
significantly higher in CLO and MAN than in COI and COV. The
carbon:N ratio was significantly lower in CLO than in the other OAs.
From the lowest carbon:N ratio to the highest, the four amend-
ments were ranked as follows: CLO < COV < COI < MAN.

3.2. Nitrogen mineralization

The total mineral N (MN) content increased in all OA treatments
and the control during the incubation experiment. The range was
6-71.7 wgN g~ ! soil in the control, and 37.4-240.9 ugN g~ soil in
the OA treatments (Fig. 1, Table 7). In CLO-amended soil, the total
MN increased from 148.7 ugNg~! soil (day 7) to 2409 ugNg™!
soil (day 97). The total MN released during the entire incubation
period was lowest in the control (65.7 ug N g~ soil) and highest in
CLO-amended soil (240.9 wgNg™!). Intergrated over the whole
incubation period, the highest percentage of N mineralization was
in CLO-amended soil and the lowest was in COl-amended soil. Net
N mineralization increased at the beginning of the incubation
period. The maximum amount of mineralized N was recorded at
40 days of incubation in COI- and MAN-amended soils, and at 68
days in CLO- and COV-amended soils. Afterwards, net mineraliza-
tion decreased in CLO-, COV-, and COI-amended soils, but leveled
off in MAN-amended soil after 40 days of incubation.

Net mineralization (Table 2) represents the difference in the
amount of mineral N released between OA-amended soil and
control soil. The net N mineralization was markedly higher in CLO-
amended soil than in the other amended soils. Consequently, net N
mineralization showed an increasing trend in all treatments from
day 7 until day 68, then decreased. The relative decrease was larger
in the COI-amended soil and COV-amended soil (from 18.5 to
4.6 ugNg ! in COl-amended soil, and from 28.6 to 6.5 ugNg~ ! in
COV-amended soil).

Table 1

Chemical properties of organic amendments used in 97-day incubation experiment.
Material C% (DM) N% (DM) C:N ratio pH (KCl)
CLO 46.2 (0.05) ¢ 6.3 (0.03) ¢ 74 (0.02) ¢ n.d.
COI 253(0.7) b 2.2(0.06)ab 114 (0.18) a 7.6 (0.04) b
cov 26.0 (6.58) b 2.9(0.89) b 9.1 (0.52) b 6.9 (0.01) ab
MAN 40.6 (0.54) bc 3.3 (0.03)b 123 (0.64)a 7.3 (0.50) b

Notes: n.d.=not determined, C=carbon, N = nitrogen, DM = dry matter, CLO = fresh
white clover, COI=poplar tree compost, COV =vegetable, fruit, and yard waste
compost, MAN = fresh dairy cattle manure. Different letters in the same column
indicate significant differences (p < 0.05). Values shown are means (n =4; standard
errors in parentheses).
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Fig.1. Nitrogen mineralization in soils with organic amendments. A. Total mineral nitrogen released in soils with or without organic amendments during a 97-day laboratory

incubation experiment. Values are means. Error bars show standard deviation.

Table 2
Net total mineral nitrogen released (g N g~ soil) from amendments during a 97-
day laboratory incubation experiment.

Time (days) Treatment

CoI cov CLO MAN

(ngNg! soil)

7 5.6 17.71 125.43 20.44
21 6.92 25.21 122.64 25.94
40 19.33 16.83 163.02 3333
68 18.51 28.6 192.49 33.47
97 4.61 6.46 169.21 28.73

Notes: CLO=fresh white clover, COIl=poplar tree compost, COV = vegetable, fruit,
and yard waste compost, MAN = fresh dairy cattle manure.

Table 3
Total mineral nitrogen (MN) released (wgNg
during incubation, and in different treatments.

~1 soil) at different sampling times

Time MN Treatment MN
(rgNg™) (pgNg™)

0 5.96 (7.9) a CTR 4420 (3.2)a
7 65.65 (3.5) b COI 60.73 (3.5) b
21 75.87 (3.5) b cov 70.0 (3.5) bc
40 100.06 (3.5) ¢ CLO 204.30 (3.5)d
68 106.57 (3.5) ¢ MAN 7812 (3.5) ¢
97 116.85 (3.5) ¢

Notes: different letters in the same column indicates significant differences
between means (Tukey’s test: p < 0.05). Values shown are means (standard errors in
parentheses); CTR=Control, CLO=fresh white clover, COI=poplar tree compost,
COV = vegetable, fruit, and yard waste compost, MAN =fresh dairy cattle manure.

In the two-way ANOVA, the effects of time, treatment, and their
interaction on total MN were significant (p < 0.05; Table 3). That is,
time and the type of OA affected total MN, and the effects of the OA
depended on the incubation time. The amount of total MN released
was lower on day 7 than on other days. Comparing OA treatments,
the amount of total MN released was always higher in CLO-
amended soil than in the other treatments. The amount of total MN
released did not differ significantly between the COI- and COV-
amended soil, or between MAN- and COV-amended soil.

A zero-order mineralization kinetics equation was fitted to the
total mineral N data, as follows

Nmin(t) =k x t x C,

where Npin(t) is the cumulative amount of N mineralized at time t
(days), k is the zero-order mineralization rate (day~!) and C is the
intercept parameter (amount of N mineralized at t=0). The results
of these calculations are shown in Table 4. The N mineralization
rate was higher in CLO-amended soil (1.056 g N g~ day~!) thanin
COV-amended soil and COI-amended soil (0.361 and 0.417 pgN
g~ lday~ !, respectively).

3.3. Microbial biomass carbon

The Cpjc values showed similar trends in the control and
OA-containing soils over the 97-day incubation period (Fig. 2). The
Cmic peaked on day 21 in all treatments. The highest Cy;c values
were in CLO-amended soil (280 g C g~ soil) and the lowest in the
control (180 pJgCg*l soil). The Cpyic then decreased until day 68 in
all treatments. After that, it peaked again in MAN- and CLO-
amended soils on day 97, but did not increase again in COI- or

Table 4
Nitrogen mineralization, nitrogen mineralization rate, and field nitrogen mineralization rate in soils with or without organic amendments during a 97-day incubation
experiment.

Treatment Mineralization at t=0 (intercept) Mineralization rate (k) (at 20°C) R? Mineralization rate Mineralization rate (0.2 m depth)

(ngNg™! soil) (ngNg ! soil day™!) (ngNg! soil yr") (kgNha='yr 1)

CTR 28.63 a 0.498 a 0.89 182.5 70.19

Co1 4129 b 0417 b 0.75 153.3 58.96

cov 53.19 ¢ 0.361 ¢ 0.89 146 56.15

CLO 155.10 d 1.056 d 0.83 386.9 148.81

MAN 5542 e 0.487 e 0.86 175.2 67.39

Notes: different letters in the same column indicate significant differences (p < 0.05). Values shown are means.
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Fig. 2. Microbial biomass carbon (g Cg~' soil) over time in soil with or without organic amendments during a 97-day laboratory incubation. Value shown are means. Error
bars show standard errors. Organic amendments: fresh dairy cattle manure (MAN), fresh white clover (CLO), vegetable, fruit, and yard waste compost (COV), and poplar tree

compost (COI). Control (CTR).

COV-amended soils. There was a weak but highly significant
positive correlation (R*=0.473, p <0.01) between total MN and
Cmic-

There were significant effects of time, type of OA, and their
interaction on Cp.. Averaged over all of the sampling times, Cp;c
was significantly higher in CLO-amended soil (mean=S.E.,
219.6+7.8ugg ') than in other treatments (ranging from
161.1+7.8 in COV-amended soil to 189.6+8.0ugg ' in MAN-
amended soil) and the control (132.2+7.5ugg™").

3.4. Phospholipid analysis

We analyzed the changes in PLFAs concentrations over the
97-day incubation period (Fig. 3A; Table 5). In all treatments and
the control, the total PLFAs concentration decreased over time. On
day 7, the highest PLFA concentrations were in CLO- and MAN-
amended soil (25nmol g~ soil) and the lowest was in the control
(14nmol g~! soil). The total PLFAs concentration did not change
significantly from day 40 to day 97 in CLO-amended soil, MAN-
amended soil, and the control. Based on the fatty acid biomarkers
(Table 5; Fig. 3B), Gram-positive bacteria and fungi were the
dominant microbes in all treatments, and other groups made up a
smaller proportion of the total. The two-way ANOVA revealed that
time, type of OA, and their interaction affected the total PLFAs
concentration (Table 5). That is, the mean total PLFAs concentra-
tion differed among treatments and among sampling times, and
the effect of OAs depended on the incubation time. Overall, the
total PLFAs concentration was significantly higher in CLO-and
MAN-amended soils than in the control, COV-amended soil, and
COIl-amended soil. The total PLFAs concentration did not differ
significantly between COI- and COV-amended soils, nor between
CLO- and MAN-amended soils. The total PLFAs concentration was
significantly higher on day 7 than on any other sampling day.

The population of Gram-positive bacteria was significantly
larger in COl-amended soil than in the other treatments (Table 5).
There were more fungi, protozoa, and actinomycetes in CLO-
amended soil than in the other treatments. There were more
Gram-positive bacteria and AMF in COIl-amended soil than in the

other treatments and the control. The effect of time on the
concentration of fatty acid biomarkers was significantly higher
(p < 0.05) on the first days of incubation than on the other days. The
B:Fratio was significantly higher in CLO-amended soil (1:4.5) than
in the other treatments (1:4.0; 1:8, and 1:3.9 for COI, COV, and
MAN, respectively) and the control (1:3).

4. Discussion
4.1. Chemical properties of organic amendments

The OAs showed significant differences in their chemical
composition (Table 1). The highest total N content was in CLO,
because clover fixes atmospheric N as well as taking up N from soil
(Seneviratne, 2000). The high N content in CLO resulted in a low C:
N ratio (approx. 7). The N and C contents did not differ significantly
between the two composts, but both were significantly lower in
the composts than in CLO. The total N content was lower in MAN
than in CLO, giving a higher C:N ratio for MA Bernal et al. (1998)
reported that nutrient contents were lower in composted organic
materials than in other materials, because the decomposition
during composting degraded organic matter. The range of C:N
ratios of composts in this study (9.1-11.4) was similar to the range
(8-10) reported by Gale et al. (2006).

4.2. Nitrogen mineralization

Nitrogen availability is often limited in agro-ecosystems. The
main source of N for crops and microbes is SOM, via mineralization.
High-quality organic matter is that with a low C:N ratio and with
sufficient N to sustain microbe and crop growth. In most cases, soil
is N deficient because it contains little or poor-quality organic
matter. Addition of OAs, which are usually N-rich, to soil usually
improves the quality of soil organic matter.

Nitrogen mineralization differed among the OAs, with the
highest N mineralization in CLO-amended soil (Table 4). Ross et al.
(2009) compared seven clover species as green manure, and white
clover showed the highest N mineralization. In the present study,
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Fig. 3. Phospholipid fatty acids (PLFAs) and fatty acid biomarkers in soils with or without organic amendments over a 97-day incubation period. A. Total PLFAs concentration
(nmol g~ soil) in soils with or without organic amendments during a 97-day laboratory incubation. Values shown are means. Bars show standard error. B. Concentrations
(nmolg~') of fatty acid biomarkers (Gram-positive (G +) bacteria, Gram-negative (G-) bacteria, actinomycetes (Actino), fungi, arbuscular mycorrhizal fungi (AMF), and
protozoa) in different treatments after a 97-day laboratory incubation. Organic amendments: fresh dairy cattle manure (MAN), fresh white clover (CLO), vegetable, fruit, and
yard waste compost (COV), and poplar tree compost (COI). Control (CTR).

Table 5
Effects of treatments and time on fatty acid biomarker concentrations (nmolg~") in soils with or without organic amendments incubated for 97 days.

Fatty acid biomarkers (nmolg~! soil)

Treatment Gram+ Gram- Actino Fungi AMF Protozoa Total PLFA

CTR 2.16 (0.8) a 0.83(0.2) a 0.70 (0.2) a 0.99 (0.3) a 0.38 (0.1) a 0.21(0.1)b 9.84 (3.1)a
Co1 2.80 (1.1) ¢ 0.91 (0.2) ab 0.78 (0.3) ab 118 (0.4) b 0.56 (0.2) c 0.23 (0.1) b 11.69 (41) b
cov 2.52 (0.8)b 0.90 (0.2) ab 0.76 (0.2) ab 115(03) b 0.48 (0.1) b 0.20 (0) b 11.25(3.1) b
CLO 2.79 (1.3) bc 111 (0.3) c 0.97 (0.3) c 1.82 (0.8) ¢ 0.50 (0.3) bc 0.38 (0.2) a 14.41 (6.5) ¢
MAN 2.58 (1.0) bc 0.95(0.2) b 0.80 (0.2) b 1.38 (0.5)d 0.52 (0.2) bc 0.27(0.1) b 13.6 (6.4) c
Time

7 3.77 (0.6) a 124 (0.2) a 1.06 (0.2) a 1.96 (0.7) a 0.75 (0.2) a 0.25 (0.1) a 18.73 (5.2) a
21 3.57 (04) a 112 (0.1) b 1.050.1)a 1.58 (0.3) b 0.67 (0.1) b 0.39 (0.2) b 15.60 (2.1) b
40 194 (04) b 0.75 (0.1)d 0.64 (0.1) bc 114 (0.2) c 0.37 (0.1) c 0.23 (0) b 9.42 (1.5) c
68 1.82(0.2) b 0.66 (0.1) d 0.56 (0.1) ¢ 0.92 (0.2)d 0.30 (0) d 0.18 (0) b 812 (1.2)d
97 1.76 (0.2) b 0.92 (0.1) c 0.70 (0.1) b 0.90 (0.1) d 0.35(0.1) cd 0.23 (0) b 8.96 (0.5) cd

Notes: actino = actinomycetes, AMF = arbuscular mycorrhizal fungi. Different letters in the same column indicate significant differences (Tukey’s test, p < 0.05). Values shown
are means (standard errors in parentheses).
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Table 6
Application rates of amendments used in 97-day laboratory incubation experiment.

Amendment Moist soil Water Application rates of organic amendments

Moist Dry basis
(gtube™?) (ml) (gtube™!) (gtube ') (kgNha ') (tha™!)
Ccol 200 2.2 428 2.09 126.5 5.8
cov 200 1.0 2.57 1.59 127.6 4.4
CLO 200 39 5.59 0.73 126.0 2.0
MAN 200 43 4.82 1.39 125.4 3.8

the high net N mineralization from CLO (154 g N g~ ! soil, or 54% of
the total N applied) may have been because of the low C:N ratio and
high N content in CLO. In other reports, N mineralization in soil
containing clover residues ranged from 30% (Marstorp and
Kirchmann, 1991) to 60% (Cookson et al., 2002) of the total N
applied. Differences in N mineralization may be because of
differences in incubation conditions (e.g., temperature, duration),
and/or the characteristics and composition of the clover materials
(plant age, plant part, crop management, and proportions of
cellulose, hemicelluloses, and lignin).

Nitrogen mineralization did not differ significantly between
COV- and COl-amended soils (19 and 11 wg N g~ ! soil, respectively,
or 7% and 4% of the total N applied, respectively). These low rates of
N mineralization may be because these composts contained a high
proportion of stable, recalcitrant materials, and most N was
complexed in organic forms. The composting process stabilizes
organic compounds, reducing the proportion of soluble forms of C
and N (Flavel and Murphy, 2006). In another study, only a small
proportion of organic N in composts was mineralized over time
(Zaman et al., 2004). Therefore, even if compost is N-rich, the N is
mineralized slowly. Nevens and Reheul (2003) observed that N
release was limited in compost made from vegetable, fruit and
garden waste, despite its high N content (1.5% of fresh weight).
Hartz et al. (2000) also observed that N mineralization was higher
in manure than in composts (7% and 1% of organic N applied,
respectively), despite their similar C:N ratios and N contents
(10.1 and 9.3, respectively, and 1.2% and 2.2%, respectively).

Nitrogen mineralization was lower in MAN-amended soil
(28 wgNg~!, or 9% of total N applied) than in CLO-amended soil.
The same N mineralization value was reported for cattle manure by
Abbasi et al. (2007) (9% of total N applied after 120 days), but a
lower value (2%) was reported by Chadwick et al. (2000). Hartz
et al. (2000) reported slightly higher N mineralization from
manure (16% of organic N) than from composts (1%-7%). In this
study, the MAN was obtained from intensively managed dairy
cattle whose nutrients requirements were met. Possible reasons
for the low N mineralization from MAN include the age of the
animals and the type of diet (Chadwick et al., 2000).

In this study, N mineralization continuously increased over
time in MAN- and CLO-amended soils, but leveled off in the

compost-amended soils after day 68 (Fig. 1). The largest amounts
of mineral N released by the end of the incubation were in the
control, CLO-amended soil, and MAN-amended soil. In these
treatments, N was mineralized steadily over time.

In COI- and COV-amended soils, N was immobilized from day
40 to day 97. The N immobilization from day 40 corresponded to
the increase in the microbial population. In other incubation
studies, N was first immobilized but then re-mineralized (Azeez
and Van Averbeke, 2010) because OAs stimulated microbial growth
and reproduction, and hence, increased competition for available
nutrients. Cordovil et al. (2005) reported that N mineralization
from composted pig manure increased up to 35 days of incubation,
but then slowed and stopped after 57 days. This was because most
of the organic N was complexed in the stable recalcitrant
compounds that remained after the initial rapid mineralization.

The N mineralization rate (k) in CLO-amended soil was at least
twice that in the other treatments (Table 4), possibly because of the
large pool of labile N in CLO. The two composts showed the slowest
N mineralization rates, implying that N was bound more strongly
in composts than in the other OAs. In a laboratory incubation
experiment, the N mineralization rate of winter wheat was
0.952mgNkg 'day ! (Watkins and Barraclough, 1996), compa-
rable to that in CLO-amended soil.

4.3. Soil microbial biomass carbon

Addition of OAs to soil stimulates soil microbial activity, and
changes the size of the soil microbial biomass (Wang et al., 2007).
Also, the quality and quantities of OAs applied can affect the
microbial biomass in soil (Cerny et al., 2008). In this study, Cpp;ic was
higher in OA-amended soils than in the control soil (Fig. 2),
possibly because the high C content in OA-amended soils created
suitable conditions for microbial growth. The increase in Cy,ic was
consistent with the size of the C input. Flavel and Murphy (2006)
found that the increase in Cy;c in soils with amendments could be
attributed to increased available carbon, which served as an energy
source for rapid microbial growth. In this study, Cy,ic was higher in
CLO- and MAN-amended soils than in compost-amended soils,
because CLO and MAN had higher C contents than did the
composts (Table 1). The Cy. did not differ significantly between
COI- and COV-amended soils because the size of the C inputs was
similar (Table 1). A previous study showed that C in composts is
complexed in stable forms, and thus, is not readily available to soil
microbes (Zaman et al., 1999). Tu et al. (2006) reported higher Cp;c
in plots treated with composts than in those treated with animal
manure and rye/vetch green manures. Bhattacharyya et al. (2005)
observed higher Cy;c in soils treated with cow manure composts
than in those treated with municipal solid waste. The quality and
quantity of C inputs, as well as environmental factors, may explain
such variations.

Incubation time significantly affected Cp, with Cpic values
peaking on day 21 in soils containing OAs (Fig. 2). After day 21, the

Table 7
Changes in mineral nitrogen release (g Ng~' soil) over time from amended and non-amended soil incubated for 97 days in controlled laboratory conditions.
Days Treatment
CTR COI cov CLO MAN
NH4 NO3 TMN NH4 NO3 TMN NH,4 NO3 TMN NH4 NO3 TMN NH4 NO3 TMN
0 0.7 53 6.0 n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a.
7 0.7 311 31.8 13 36.1 374 0.8 48.7 49.5 1.2 147.6 148.2 1.1 51.2 52.2
21 0.0 39.7 39.7 0.1 46.6 46.6 0.2 64.8 64.9 0.6 161.7 162.3 0.6 54.3 54.8
40 0.5 53.0 53.6 0.6 723 72.9 0.5 69.9 70.4 0.7 207.7 208.4 0.6 86.3 86.9
68 4.7 48.0 52.0 22 68.3 70.5 2.6 75.8 80.6 21 236.4 238.2 2.6 82.8 85.4
97 0.4 713 71.7 0.6 75.7 76.3 04 77.7 84.6 0.5 240.3 240.9 0.7 99.7 1004

n. a. indicates not applicable, because mineral nitrogen was included in the control on day 0.
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Cmic decreased, then increased in CLO— and MAN-amended soils,
but remained low in compost-amended soils. The Cy,;c in control
soil did not change during the incubation experiment. The higher
Cmic values at day 21 probably represented the C inputs from the
OAs, and the resulting stimulation of microbial growth. The
decreases in Cp;c after day 21 probably represented C depletion.
Zaman et al. (1999) observed that the Cyy;c in soil containing dairy
shed effluent peaked at 16 days, then decreased. Flavel and Murphy
(2006) also observed a peak of Cp;c after 16 days of incubation in
soils containing manure and composts.

The variability in Cy;c and microbial activity among different
OAs has implications for nutrient availability to crops. High
microbial biomass and activity can increase nutrient availability to
crops as a result of greater microbial biomass turnover and
degradation of non-microbial organic materials (Zaman et al,,
1999). Therefore, CLO, which resulted in high microbial biomass in
soil, is likely to be a good source of nutrients to crops.

In this study, Crnic Was weakly positively correlated (R*=0.473)
with total MN in OA-amended soils, implying that OAs increased
the activities of enzymes that accelerate N mineralization. Wang
et al. (2007) found a positive relationship (R*=0.57) between
mineral N concentrations and Cy,; in different cover crops. Zaman
et al. (1999) reported a positive correlation (R*>=0.61, p < 0.001)
between N mineralization and Cy;c in dairy shed effluent.
Variations in the relationship between Cy,;c and N mineralization
may be explained by differences in the quality of materials used.
The weak correlation between N mineralization and Cy;c in this
study indicated that Cy;c was not the only factor affecting
mineralization. Other important factors include the quality of
materials, N content, and the C:N ratio.

4.4. Phospholipid fatty acids analysis

We evaluated the microbial community after OA addition by
monitoring PLFAs, which are indicators of microbial biomass
(Zelles, 1999). PLFAs particularly reflect the active microbial
population “flushed” in response to substract. The total PLFAs
decreased over the 97-day incubation period in all treatments and
in the control. This trend was consistent with the carbon substrate
depletion reflected by the increase in Cp,;c over time. At day 97, the
total PLFA concentration was significantly higher in OA-amended
soils than in control soil (Table 5). Carbon is a substrate for
microbial growth. In another study, the amount of carbon input
into soils by the OAs affected the microbial population (Peacock
et al, 2001). In the present study, the total PLFA concentration was
significantly higher in the CLO- and MAN-amended soils than in
the compost-amended soils, possibly because of the higher carbon
inputs from CLO and MAN (Table 1).

The microbial communities differed significantly among the OA
treatments (Table 5). There were more bacteria, actinomycetes,
and fungi in the CLO-amended soil than in the other treatments.
The B:F ratio was higher in CLO-amended soil than in soils
containing composts. Fungi made up a larger proportion of total
microbes in soils containing compost. The differences in microbial
community composition among treatments were likely due to
differences in composition and substrate availability among the
OAs (Marschner et al., 2003). The dominance of fungi in soil
containing composts and of bacteria in soils containing CLO and
MAN implies that bacteria preferentially degrade decomposable
materials over recalcitrant ones, whereas fungi degrade the
recalcitrant and insoluble compounds (Marschner et al., 2003).
Previous studies found that bacteria were dominant in soils
containing dairy cattle manure (Peacock et al., 2001).

The significant positive linear relationship between total
mineral N and G, in OA-amended soils indicated that OAs
stimulated microbial carbon, ultimately benefiting soil microbes.

However, the total PLFAs decreased over time in all soils because of
depletion of the carbon substrate (represented by the increase in
Cmic over time). The higher total PLFAs concentration in soil with
CLO was indicative of its large and varied microbial population,
which could be related to efficient CLO decomposition.

5. Conclusions

Nitrogen mineralization from OAs is very important for efficient
nutrient use in agriculture. Our results showed that the N
mineralization potential differed among various OAs, suggesting
that the type of OA should be matched to the needs of the crop. Net
N release peaked more than 2 months after OA application. This
suggests that OAs should be applied approximately 2 months in
advance to synchronize N release with crop uptake, depending on
the crop and time of year. Also, farmers should try to avoid losses of
mineral N via leaching. Of the four OAs evaluated in this study, CLO
showed the highest N release (54%). Therefore, CLO may be the best
organic N source for crops, because it could meet the needs of the
crop without an additional mineral N source. However, the high N
mineralization from CLO may pose a risk to the environment if its
application is not timed to match plant uptake. The other OAs
showed low N mineralization rates. Therefore, the application
rates of these OAs should be increased to satisfy the needs of the
microbial community and the crop. Addition of composts can
improve other soil qualities, e.g., reduce the leaching risk when the
N demands of crops are low.

In further research, these OAs should be tested in a field
experiment to confirm the results of the laboratory incubation
experiment.

The results of this study highlight that the N content of an OA
does not always correspond to the amount of N released. After OAs
are added to soil, the N dynamics are complex and depend on
multiple factors including temperature, time, moisture content,
and the microbial community. Consequently, the use of OAs for N
nutrition in cropping systems is much more sophisticated than the
use of mineral compounds, which have known compositions and
release nutrients in a predictable manner. The implications of
these findings are that farmers need to understand how to use OAs
appropriately, and to understand the advantages and disadvan-
tages of using such materials to supply the nutrient needs of crops.
More research on the synchronization of nutrient mineralization
and plant up-take is required.
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